首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flocculation settling characteristics of mud: sand mixtures   总被引:2,自引:1,他引:1  
When natural muds become mixed with sandy sediments in estuaries, it has a direct effect on the flocculation process and resultant sediment transport regime. Much research has been completed on the erosion and consolidation of mud/sand mixtures, but very little is known quantitatively about how mixed sediments interact whilst in suspension, particularly in terms of flocculation. This paper presents the settling velocity findings from a recent laboratory study which examined the flocculation dynamics for three different mud/sand mixtures at different concentrations (0.2–5 g.l?1) and turbulent shear stresses (0.06–0.9 Pa) in a mini-annular flume. The low intrusive video-based Laboratory Spectral Flocculation Characteristics instrument was used to determine floc/aggregate properties (e.g., size, settling velocity, density and mass) for each population. Settling data was assessed in terms of macrofloc (>160 μm) and microfloc (<160 μm) settling parameters: Wsmacro and Wsmicro, respectively. For pure muds, the macroflocs are regarded as the most dominant contributors to the total depositional flux. The parameterised settling data indicates that by adding more sand to a mud/sand mixture, the fall velocity of the macrofloc fraction slows and the settling velocity of microflocs quickens. Generally, a mainly sandy suspension comprising 25% mud and 75% sand (25M:75S), will produce resultant Wsmacro which are slower than Wsmicro. The quickest Wsmicro appears to consistently occur at a higher level of turbulent shear stress (τ?~?0.6 Pa) than both the macrofloc and microfloc fractions from suspensions of pure natural muds. Flocculation within a more cohesively dominant muddy-sand suspension (i.e., 75M:25S) produced macroflocs which fell at similar speeds (±10%) to pure mud suspensions at both low (200 mg l?1) and intermediate (1 g?l?1) concentrations at all shear stress increments. Also, low sand content suspensions produced Wsmacro values that were faster than the Wsmicro rates. In summary, the experimental results of the macrofloc and microfloc settling velocities have demonstrated that flocculation is an extremely important factor with regards to the depositional behaviour of mud/sand mixtures, and these factors must be considered when modelling mixed sediment transport in the estuarine or marine environment.  相似文献   

2.
Two year measurements of aerosol concentration and size distribution (0.25 μm < d < 30 μm) in the atmospheric surface layer, collected in L’Aquila (Italy) with an optical particle counter, are reported and analysed for the different modes of the particle size distribution. A different seasonal behaviour is shown for fine mode aerosols (largely produced by anthropogenic combustion), coarse mode and large-sized aerosols, whose abundance is regulated not only by anthropogenic local production, but also by remote natural sources (via large scale atmospheric transport) and by local sources of primary biogenic aerosols. The observed total abundance of large particles with diameter larger than 10 μm is compared with a statistical counting of primary biogenic particles, made with an independent technique. Results of these two observational approaches are analysed and compared to each other, with the help of a box model driven by observed meteorological parameters and validated with measurements of fine and coarse mode aerosols and of an atmospheric primary pollutant of anthropogenic origin (NOx). Except in winter months, primary biogenic particles in the L’Aquila measurement site are shown to dominate the atmospheric boundary layer population of large aerosol particles with diameter larger than 10 μm (about 80 % of the total during summer months), with a pronounced seasonal cycle, contrary to fine mode aerosols of anthropogenic origin. In order to explain these findings, the main mechanisms controlling the abundance and variability of particulate matter tracers in the atmospheric surface layer are analysed with the numerical box-model.  相似文献   

3.
4.
Abstract

The impact of fire on daily discharges from two mountainous basins located in the permafrost region of Eastern Siberia, the Vitimkan (969 km2) and Vitim (18 200 km2) rivers, affected by fire over 78% and 49% of their areas, respectively, in 2003, was investigated. The results of hydrological and meteorological data analysis suggest that the Vitimkan River basin had a rapid and profound hydrological response to wildfire in 2003 expressed through a 41% (133 mm) increase of summer flow. Conversely, the larger Vitim River basin showed no significant changes in discharge after the fire. The parameters of the process-based hydrological model Hydrograph were estimated for pre-fire conditions. The results of runoff simulations conducted for the continuous pre-fire periods of 1966–2002 and 1970–2002 for the Vitimkan and Vitim river basins, respectively, on a daily time step, showed satisfactory agreement with the observed flow series of both basins. Significant underestimation of precipitation and its poor representativeness for mountainous watersheds was revealed as the main cause of observed and simulated flow discrepancies, especially for high flood events. The set of dynamic parameters was developed based on data analysis and post-fire landscape changes as derived from a literature review. The model was applied to investigate the processes in the soil column and their effect on runoff formation during the post-fire period. The new set of model parameters implied the intensification of soil thaw, reduction of infiltration rate and evapotranspiration, and increase of upper subsurface flow fraction in summer flood events following the fire. According to modelling results, the post-fire thaw depth exceeded the pre-fire thaw depth by 0.4–0.7 m. Total evapotranspiration reduced by 40% in summer months, while surface flow increased almost 2.5 times during maximum flood events.  相似文献   

5.
We study the ratio between the gravity variation and vertical displacement on the surface of a self-gravitating earth model when a surface load is applied. We adopt a theoretical and numerical point of view, excluding any observations. First, we investigate the spectral behavior of the ratio of the harmonic components of the gravity variation and vertical displacement. Then, we model the gravity-to-height ratio for different surface loads (continental hydrology, atmospheric pressure, ocean tides) using outputs of global numerical models in order to relate the predicted spatial values to theoretical mean values deduced from the spectral domain. For locations inside loaded areas, the ratio is highly variable because of the Newtonian attraction of the local masses and depends on the size of the load. For the hydrological loading (soil moisture and snow), the mean ratio over the continents is  ?0.87 μGal mm?1, but increases with decreasing size of the river basins. For the atmospheric loading, assuming an inverted-barometer response of the ocean, the ratio is positive, with larger values for high latitudes (0.49 μGal mm?1)—particularly on the coasts—than for lower latitudes (0.30 μGal mm?1). The ratio, however, is much less variable outside the loaded areas: in desert areas such as the Sahara and Arabia, its mean value is  ?0.28 μGal mm?1. For the ocean tidal loading, we find a mean ratio of  ?0.26 μGal mm?1 over the continents for the diurnal tidal waves. Both results are close to the theoretical mean value of  ?0.26 μGal mm?1 combining elastic and remote attraction contributions.  相似文献   

6.
We report an experimental and microstructural study of the frictional properties of simulated fault gouges prepared from natural limestone (96 % CaCO3) and pure calcite. Our experiments consisted of direct shear tests performed, under dry and wet conditions, at an effective normal stress of 50 MPa, at 18–150 °C and sliding velocities of 0.1–10 μm/s. Wet experiments used a pore water pressure of 10 MPa. Wet gouges typically showed a lower steady-state frictional strength (μ = 0.6) than dry gouges (μ = 0.7–0.8), particularly in the case of the pure calcite samples. All runs showed a transition from stable velocity strengthening to (potentially) unstable velocity weakening slip above 80–100 °C. All recovered samples showed patchy, mirror-like surfaces marking boundary shear planes. Optical study of sections cut normal to the shear plane and parallel to the shear direction showed both boundary and inclined shear bands, characterized by extreme grain comminution and a crystallographic preferred orientation. Cross-sections of boundary shears, cut normal to the shear direction using focused ion beam—SEM, from pure calcite gouges sheared at 18 and 150 °C, revealed dense arrays of rounded, ~0.3 μm-sized particles in the shear band core. Transmission electron microscopy showed that these particles consist of 5–20 nm sized calcite nanocrystals. All samples showed evidence for cataclasis and crystal plasticity. Comparing our results with previous models for gouge friction, we suggest that frictional behaviour was controlled by competition between crystal plastic and granular flow processes active in the shear bands, with water facilitating pressure solution, subcritical cracking and intergranular lubrication. Our data have important implications for the depth of the seismogenic zone in tectonically active limestone terrains. Contrary to recent claims, our data also demonstrate that nanocrystalline mirror-like slip surfaces in calcite(-rich) faults are not necessarily indicative of seismic slip rates.  相似文献   

7.
Knowledge of aquifer parameters is essential for management of groundwater resources. Conventionally, these parameters are estimated through pumping tests carried out on water wells. This paper presents a study that was conducted in three villages (Tumba, Kabazi, and Ndaiga) of Nakasongola District, central Uganda to investigate the hydrogeological characteristics of the basement aquifers. Our objective was to correlate surface resistivity data with aquifer properties in order to reveal the groundwater potential in the district. Existing electrical resistivity and borehole data from 20 villages in Nakasongola District were used to correlate the aquifer apparent resistivity (ρ e) with its hydraulic conductivity (K e), and aquifer transverse resistance (TR) with its transmissivity (T e). K e was found to be related to ρ e by; $ {\text{Log }}(K_{\text{e}} ) = - 0.002\rho_{\text{e}} + 2.692 $ . Similarly, TR was found to be related to T by; $ {\text{TR}} = - 0.07T_{\text{e}} + 2260 $ . Using these expressions, aquifer parameters (T c and K c) were extrapolated from measurements obtained from surface resistivity surveys. Our results show very low resistivities for the presumed water-bearing aquifer zones, possibly because of deteriorating quality of the groundwater and their packing and grain size. Drilling at the preferred VES spots was conducted before the pumping tests to reveal the aquifer characteristics. Aquifer parameters (T o and K o) as obtained from pumping tests gave values (29,424.7 m2/day, 374.3 m/day), (9,801.1 m2/day, 437.0 m/day), (31,852.4 m2/day, 392.9 m/day). The estimated aquifer parameter (T c and K c) when extrapolated from surface geoelectrical data gave (7,142.9 m2/day, 381.9 m/day), (28,200.0 m2/day, 463.4 m/day), (19,428.6 m2/day, 459.2 m/day) for Tumba, Kabazi, and Ndaiga villages, respectively. Interestingly, the similarity between the K c and K o pairs was not significantly different. We observed no significant relationships between the T c and T o pairs. The root mean square errors were estimated to be 18,159 m2/day and 41.4 m/day.  相似文献   

8.
Health risk associated with the exposure to the polluted atmospheric air inhalation was estimated for the residents of Kraków, Poland. The air pollution concentration data were obtained from the air-quality monitoring system of the city in 2007–2016. The carcinogenic risk of the studied subpopulations was not acceptable under the formula of C6H6 > BaP > As(PM10) > Cd(PM10) > Pb(PM10) > Ni(PM10). The total carcinogenic risk (Rt) amounted to 3.04E?04 for children, 2.22E?04 for infants, 1.45E?04 for women, and 1.22E?04 for men. The same risk was calculated for the top three locations of the monitoring stations in this respect, within the city of Kraków: Kurdwanów Housing Estate, Nowa Huta district, and Krasińskiego Av. Non-carcinogenic risk in the case of all six monitoring stations and in respect of all the studied subpopulations, resulting from the exposure to PM10 and for NO2 for all stations in case of children and infants, as well as, for adults at Krasińskiego Av. and Dietla Str. stations was rated medium. For C6H6 in the case of adults, children, and infants the risk was rated low. The total risk (HI) of non-carcinogenic pollution was rated medium and ranged as follows: 6.53 for children, 4.70 for infants, 3.19 for women, and 2.67 for men. That type of risk was decreasing at the station locations as follows: Krasińskiego Av. > Dietla Str. > Nowa Huta district > Kurdwanów Housing Estate > Z?oty Róg Str. > Piastów Housing Estate.  相似文献   

9.
This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615–2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.  相似文献   

10.
Chin Array is a dense portable broadband seismic network to cover the entire continental China, and the Phase I is deployed along the north-south seismic belt in southwest China. In this study, we analyze seismic data recorded on the Chin Array following the February 15,2013 Chelyabinsk(Russia) meteor. This was the largest known object entering the Earth's atmosphere since the1908 Tunguska meteor. The seismic energy radiated from this event was recorded by seismic stations worldwide including the dense Chin Array that are more than 4000 km away. The weak signal from the meteor event was contaminated by a magnitude 5.8 Tonga earthquake occurred *20 min earlier. To test the feasibility of detecting the weak seismic signals from the meteor event, we compute vespagram and perform F-K analysis to the surface-wave data. We identify a seismic phase with back azimuth(BAZ) of 329.7° and slowness of 34.73 s/deg, corresponding to the surface wave from the Russian meteor event(BAZ *325.97°). The surface magnitude(MS) of the meteor event is 3.94 ± 0.18. We also perform similar analysis on the data from the broadband array F-net in Japan, and find the BAZ of the surface waves to be316.61°. With the different BAZs of Chin Array and F-net,we locate the Russian meteor event at 58.80°N, 58.72°E.The relatively large mislocation(*438 km as compared with 55.15°N, 61.41°E by others) may be a result of thebending propagation path of surface waves, which deviates from the great circle path. Our results suggest that the dense Chin Array and its subarrays could be used to detect weak signals at teleseismic distances.  相似文献   

11.
The prediction of PM2.5 concentrations with high spatiotemporal resolution has been suggested as a potential method for data collection to assess the health effects of exposure. This work predicted the weekly average PM2.5 concentrations in the Yangtze River Delta, China, by using a spatio-temporal model. Integrating land use data, including the areas of cultivated land, construction land, and forest land, and meteorological data, including precipitation, air pressure, relative humidity, temperature, and wind speed, we used the model to estimate the weekly average PM2.5 concentrations. We validated the estimated effects by using the cross-validated R2 and Root mean square error (RMSE); the results showed that the model performed well in capturing the spatiotemporal variability of PM2.5 concentration, with a reasonably large R2 of 0.86 and a small RMSE of 8.15 (μg/m3). In addition, the predicted values covered 94% of the observed data at the 95% confidence interval. This work provided a dataset of PM2.5 concentration predictions with a spatiotemporal resolution of 3 km × week, which would contribute to accurately assessing the potential health effects of air pollution.  相似文献   

12.
Abstract

Remote sensing has become promising in providing temporal and spatial information on biogeodynamics in large and open freshwater bodies. In optically complex environments, such as in the Western Basin of Lake Erie (WBLE), the water contains multiple biogeochemical constituents or colour producing agents (CPAs), such as phytoplankton, suspended matter and dissolved organic carbon; identifying and analysing such in-water constituents is crucial for understanding and assessing many biogeochemical processes. For example, concentrations of chlorophyll-a and total suspended matter can be used as proxies to assess phytoplankton dynamics and particulate loading. However, quantitative estimation of their concentrations from satellite observations is complicated when working with mixed spectral signatures. Hyperspectral remote sensing is fast emerging as a key technology for advanced and improved understanding of optically complex waters. This study estimates concentrations of chlorophyll-a and total suspended matter (TSM) in the WBLE by applying the partial least squares (PLS) method to a full range (400–900 nm) of continuous narrow spectral bands. The PLS method models the covariance between hyperspectral bands and CPAs, and identifies the optimal bands that characterize most of the variance in the CPAs. This method avoids the curse of dimensionality and the effects of multi-collinearity, a challenge that is associated with new-generation hyperspectral satellite sensors. Validation parameters for the PLS-based models produced R2 of 0.84 for chlorophyll-a (RMSE = 1.18 μg/L), and R2 of 0.90 for TSM (RMSE = 1.26 mg/L), illustrating the potential of the PLS method for isolating and extracting absorption features characterizing the various CPAs in optically complex Case II type waters.
Editor Z.W. Kundzewicz Associate editor Not assigned  相似文献   

13.
In this work, the impact of assimilation of conventional and satellite remote sensing observations (Oceansat-2 winds, MODIS temperature/humidity profiles) is studied on the simulation of two tropical cyclones in the Bay of Bengal region of the Indian Ocean using a three-dimensional variational data assimilation (3DVAR) technique. The Weather Research and Forecasting (WRF)-Advanced Research WRF (ARW) mesoscale model is used to simulate the severe cyclone JAL: 5–8 November 2010 and the very severe cyclone THANE: 27–30 December 2011 with a double nested domain configuration and with a horizontal resolution of 27 × 9 km. Five numerical experiments are conducted for each cyclone. In the control run (CTL) the National Centers for Environmental Prediction global forecast system analysis and forecasts available at 50 km resolution were used for the initial and boundary conditions. In the second (VARAWS), third (VARSCAT), fourth (VARMODIS) and fifth (VARALL) experiments, the conventional surface observations, Oceansat-2 ocean surface wind vectors, temperature and humidity profiles of MODIS, and all observations were respectively used for assimilation. Results indicate meager impact with surface observations, and relatively higher impact with scatterometer wind data in the case of the JAL cyclone, and with MODIS temperature and humidity profiles in the case of THANE for the simulation of intensity and track parameters. These relative impacts are related to the area coverage of scatterometer winds and MODIS profiles in the respective storms, and are confirmed by the overall better results obtained with assimilation of all observations in both the cases. The improvements in track prediction are mainly contributed by the assimilation of scatterometer wind vector data, which reduced errors in the initial position and size of the cyclone vortices. The errors are reduced by 25, 21, 38 % in vector track position, and by 57, 36, 39 % in intensity, at 24, 48, 72 h predictions, respectively, for the two cases using assimilation of all observations. Simulated rainfall estimates indicate that while the assimilation of scatterometer wind data improves the location of the rainfall, the assimilation of MODIS profiles produces a realistic pattern and amount of rainfall, close to the observational estimates.  相似文献   

14.
Wetlands play a significant role on the hydrological cycle, reducing flood peaks through water storage functions and sustaining low flows through slow water release ability. However, their impacts on water resources availability and flood control are mainly driven by wetland type (e.g. isolated wetland—IW—and riparian wetland—RW) and location within a watershed. Consequently, assessing the qualitative and quantitative impact of wetlands on hydrological regimes has become a relevant issue for scientists as well as stakeholders and decision‐makers. In this study, the distributed hydrological model, HYDROTEL, was used to investigate the role and impact of the geographic distribution of isolated and RWs on stream flows of the Becancour River watershed of the St Lawrence Lowlands, Quebec, Canada. The model was set up and calibrated using available datasets (i.e. DEM, soil, wetland distribution, climate, land cover, and hydrometeorological data for the 1969–2010 period). Different wetland theoretical location tests (WTLT) were simulated. Results were used to determine whether stream flow parameters, related to peak flows and low flows, were related to: (i) geographic location of wetlands, (ii) typology of wetlands, and (iii) seasonality. The contribution of a particular wetland was assessed using intrinsic characteristics (e.g. surface area, typology) and extrinsic factors (e.g. location in the watershed landscape and seasonality). Through these investigations, the results suggest, to some extent, that both IWs and RWs impact landscape hydrology. The more IWs are located in the upper part of the watershed, the greater their effect on both on high flow damping and low flow support seems to be. The more RWs are connected to a main stream, the greater their effect is. Our modelling results indicate that local landscape conditions may influence the wetland effect; promoting or limiting their efficiency, and thus their impacts on stream flows depend on a combined effect of wetland and landscape attributes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Repeated gravity measurements were carried out from 1991 until 1999 at sites SE of Vatnajökull, Iceland, to estimate the mass flow and deformation accompanying the shrinking of the ice cap. Published GPS data show an uplift of about 13 ± 5 mm/a near the ice margin. A gravity decrease of –2 ± 1 μGal/a relative to the Höfn base station, was observed for the same sites. Control measurements at the Höfn station showed a gravity decrease of –2 ± 0.5 µGal/a relative to the station RVIK 5473 at Reykjavík (about 250 km from Höfn). This is compatible, as a Bouguer effect, with a 10 ± 3 mm/a uplift rate of the IGS point at Höfn and an uplift rate of ~20 mm/a near the ice margin. Although the derived gravity change rates at individual sites have large uncertainties, the ensemble of the rates varies systematically and significantly with distance from the ice. The relationship between gravity and elevation changes and the shrinking ice mass is modelled as response to the loading history. The GPS data can be explained by 1-D modelling (i.e., an earth model with a 15-km thick elastic lithosphere and a 7·1017 Pa·s asthenosphere viscosity), but not the gravity data. Based on 2-D modelling, the gravity data favour a low-viscosity plume in the form of a cylinder of 80 km radius and 1017 to 1018 Pa·s viscosity below a 6 km-thick elastic lid, embedded in a layered PREM-type earth, although the elevation data are less well explained by this model. Strain-porosity-hydrology effects are likely to enhance the magnitude of the gravity changes, but need verification by drilling. More accurate data may resolve the discrepancies or suggest improved models.  相似文献   

16.
Development of guidelines for ammonia in estuarine and marine water systems   总被引:1,自引:0,他引:1  
The water quality guideline trigger value for ammonia in estuarine and marine waters has been revised with the addition of 38 new results to the data set of 21 used in earlier guideline derivations. Using species sensitivity distributions, a new trigger value of 460 μg total NH3-N/L was derived for slightly to moderately disturbed systems (95% protection concentration, PC95), with a value of 160 μg total NH3-N/L applying to waters of high conservation value (PC99). For sediment pore waters, a guideline trigger value of 3.9 mg total NH3-N/L, derived from the 80th percentile of background data from Sydney Harbour, is recommended. This value is likely to be exceeded in degraded sediments subject to dredging; however, ocean disposal of such sediments results in rapid decreases in porewater ammonia and a guideline trigger value for dissolved ammonia during disposal of dredged sediments of 1550 μg total NH3-N/L is proposed.  相似文献   

17.
A moderate shallow earthquake occurred on 5 December 2014 (M W = 4.9) in the north of Lake Hovsgol (northern Mongolia). The infrasonic signal with duration 140 s was recorded for this earthquake by the “Tory” infrasound array (Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Science, Russia). Source parameters of the earthquake (seismic moment, geometrical sizes, displacement amplitudes in the focus) were determined using spectral analysis of direct body P and S waves. The spectral analysis of seismograms and amplitude variations of the surface waves allows to determine the effect of the propagation of the rupture in the earthquake focus, the azimuth of the rupture propagation direction and the velocity of displacement in the earthquake focus. The results of modelling of the surface displacements caused by the Hovsgol earthquake and high effective velocity of propagation of infrasound signal (~ 625 m/s) indicate that its occurrence is not caused by the downward movement of the Earth’s surface in the epicentral region but by the effect of the secondary source. The position of the secondary source of infrasound signal is defined on the northern slopes of the Khamar-Daban ridge according to the data on the azimuth and time of arrival of acoustic wave at the Tory station. The interaction of surface waves with the regional topography is proposed as the most probable mechanism of formation of the infrasound signal.  相似文献   

18.
Few studies in the Middle East region estimated the spatial distribution of air pollutants for exposure studies. This paper presents a geostatistical approach to assess background NO2 spatial distribution and the associated exposed population in a Mediterranean city with a complex topography, Beirut. Such modeling gave an accurate mapping of the 2010 yearly background average value of NO2: it varies between 35 and 67 μg m?3 with a mean of 53 μg m?3. The mean SD of the estimated error was about 3 μg m?3. The results showed that the spatial distribution of NO2 follows a nested structuring, with a major structure related to topoclimatic characteristics (interaction topography/atmospheric flow at large scale) and a minor one linked to micro-environment and micro-climatic characteristics (interactions urban morphology/atmospheric flows at fine scale). The probability for the city’s inhabitants to be exposed to NO2 levels exceeding 40 μg m?3 threshold limit set by the World Health Organization (WHO) showed that Beirut city has a real sanitary risk to the NO2 pollution. 93 % of the population (around 358,459 people) is 100 % sure to be exposed to a yearly average exceeding 40 μg m?3. This knowledge will be certainly useful for developing a tool for decision support in order to implement policies of reducing air pollution in Beirut, which is, given the results, very urgent.  相似文献   

19.
The role of microbial sulfate reduction on organic matter oxidation was studied quantitatively in temperate intertidal surface sediments of the German Wadden Sea (southern North Sea) on a seasonal base in the years 1998–2007. The sampling sites represent the range of sediments found in the back-barrier tidal area of Spiekeroog Island: sands, mixed and muddy flats. The correspondingly different contents in organic matter, metals, and porosities lead to significant differences in the activity of sulfate-reducing bacteria with volumetric sulfate reduction rates (SRR) in the top 15 cm of up to 1.4 μmol cm?3 day?1. Depth-integrated areal SRR ranged between 0.9 and 106 mmol m?2 day?1, with the highest values found in the mudflat sediments and lower rates measured in sands at the same time, demonstrating the impact of both temperature and organic matter load. According to a modeling approach for a 154-km2 large tidal area, about 39, 122, and 285 tons of sulfate are reduced per day, during winter, spring/autumn, and summer, respectively. Hence, the importance of areal benthic organic matter mineralization by microbial sulfate reduction increases during spring/autumn and summer by factors of about 2 and 7, respectively, when compared to winter time. The combined results correspond to an estimated benthic organic carbon mineralization rate via sulfate reduction of 78 g C m?2 year?1.  相似文献   

20.
The Zuccale fault is a regional, low-angle, normal fault, exposed on the Isle of Elba in central Italy that accommodated a total shear displacement of 6–8 km. The fault zone structure and fault rocks formed at <8 km crustal depth. The present-day fault structure is the final product of several deformation processes superposed during the fault history. In this study, we report results from a series of rotary shear experiments performed on 1-mm thick powdered gouges made from several fault rock types obtained from the Zuccale fault. The tests were done under conditions ranging from room temperature to in situ conditions (i.e., at temperatures up to 300 °C, applied normal stresses up to 150 MPa, and fluid-saturated.) The ratio of fluid pressure to normal stress was held constant at either λ = 0.4 or λ = 0.8 to simulate an overpressurized fault. The samples were sheared at a constant sliding velocity of 10 μm/s for at least 5 mm, after which a velocity-stepping sequence from 1 to 300 μm/s was started to determine the velocity dependence of friction. This can be represented by the rate-and-state parameter (a–b), which was determined by an inversion of the data to the rate-and-state equations. Friction of the various fault rocks varies between 0.3 and 0.8, similar to values obtained in previous studies, and decreases with increasing phyllosilicate content. Friction decreases mildly with temperature, whereas normal stress and fluid pressure do not affect friction values systematically. All samples exhibited velocity strengthening, conditionally stable behavior under room temperature conditions and (ab) increased with increasing sliding velocity. In contrast, velocity weakening, accompanied by stick–slips, was observed for the strongest samples at 300 °C and sliding velocities below 10 μm/s. An increase in fluid pressure under these conditions led to a further reduction in (a–b) for all samples, so that they exhibited unstable, stick–slip behavior at low sliding velocity. The results suggest that phyllosilicate-bearing fault rocks can deform by stable, aseismic creep at low, resolved shear stress and low shear rate conditions. An increase in fluid pressure or loading of stronger portions could lead to a runaway instability. The runaway instability might be limited in size because of (1) the fault heterogeneity, (2) the observed strengthening at higher sliding velocities, and (3) a co-seismic drop in pore-fluid pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号