首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrophobic organic contaminants (HOCs) may be used as tracers of particle dynamics in aquatic systems. Internal cycling of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were studied in the mesohaline Chesapeake Bay to assess the role of resuspension in maintaining particle and contaminant inventories in the water column, and to compare settling and suspended particle characteristics. Direct measurements of sediment resuspension and settling conducted in conjunction with one of the sediment trap deployments indicate reasonable agreement between measurements of particle flux using the two different methods. Organic carbon and PCB concentrations in settling solids collected in near-surface sediment traps were remarkably lower than concentrations in suspended particles collected by filtration during the trap deployments, but higher PAH concentrations were found in the settling particles. The different behaviors of PAHs and PCBs in the settling particles are due to their different source types and association to different types of particles. Sediment trap collections in near bottom waters were dominated by resuspension. Resuspension fluxes of HOCs measured 2 m above the bay bottom were as high as 2.5 μg/m2 day for total PCBs and 15 μg/m2 day for fluoranthene, and were 25 and 10 times higher than their settling fluxes from surface waters, respectively. HOC concentrations in the near bottom traps varied much less between trap deployments than HOC concentrations in the surface traps, indicating that the chemical composition of the resuspended particles collected in the near bottom traps was more time-averaged by repeated resuspension than the surface particles.  相似文献   

2.
The Meriadzek Terrace (a 2100m deep plateau on the North-East Atlantic continental slope) was chosen as the experimental site for a multidisciplinary programme to observe the parameters needed for a better understanding of biological processes in the benthic environment.Two approaches were used to study the input of particulate matter to the bathyal seabed: sediment traps and indirect particle concentration measurements with nephelometry. These two technologies do not measure particles of the same size range, but as we are interested in the fluctuations of the particle supply, their results are complementary.Vertical profiles of nephelometry show that over the Meriadzek Terrace there is 125m thick nepheloid layer immediately above the bottom.The dynamics in the deep layer has been determined by measurements made with a Module Autonome Pluridisciplinaire (MAP), an in situ monitoring device developed at IFREMER which measures currents, nephelometry, temperature vertical profile near the bottom.Throughout six months of measurements in 1984, the currents at 0.5m and 120m above the bottom were subject to semi-diurnal tidal oscillations. The intensity of light scattering recorded with the nephelometer on the MAP was highly correlated with current velocities especially with semidiurnal tidal oscillations which seem to induce local resuspension. There are also longer term fluctuations, notably a very strong event which lasted several days during August. This event lagged behind a period of high intensity of internal waves correlated with a reversal in current direction. The sediment trap (Pièges à Particules “PAP”) observations showed that the particle fluxes on the Meriadzek Terrace have a cycle of variation similar to primary production which is characterized by a maximum in May during the phytoplankton bloom and a minimum during January. There was also interannual fluctuation.These two kinds of results point out the different time scales (from some hours to several months) of the large temporal fluctuations which affect the near-bottom particle behaviour.  相似文献   

3.
Temporal variations of sinking particle flux, together with their organic chemical properties, were monitored in the deep basin of Sagami Bay, Japan, using sediment traps with very high time resolutions from March 1997 to August 1998. At a height of 350 m above the bottom (about 1200 m water depth), the averaged total mass flux was more than 1000 mg/m2/day, which is about 10 times higher than those obtained for open ocean regions near Sagami Bay. While large amounts of phytodetritus, derived from phytoplankton blooms in the surface water, were transported downward in spring, the following extraordinary patterns in the temporal variability of sinking particle flux were also observed: (1) A sustained large flux of sinking particles during low productive periods from summer to winter in 1997. (2) An episodic increase of sinking particle flux in June 1998. (3) A difference in the temporal variability of sinking particles between the spring bloom periods of 1997 and 1998. The content of total organic carbon (TOC) and the stable carbon isotopic ratio (δ13C) of TOC demonstrated that the large fluxes observed in (1) and (2) could be attributed to the resuspension of phytodetritus deposited on the sea floor during the spring bloom period, and the abrupt erosion of surface sediment on the continental slope, respectively. The concentration of suspended particles in the deep water column affect the apparent flux of sinking particles. At the same time, sinking particles exported from surface waters during the spring bloom both decrease and increase suspended particle concentration through scavenging and rebound processes, respectively. Finally, the apparent difference in sinking particle flux between 1997 and 1998, (3), could be explained by differences in the extent of the scavenging process, which depend on the flux and quality of exported particles from the surface waters.  相似文献   

4.
Suspended particulate matter samples were collected from the water column, the bottom nepheloid layer and the ‘ fluffy layer ’ from four stations along a coastal-basin transect in the Pomeranian Bight, western Baltic Sea. Sampling was performed nine times between October 1996 and December 1998 for various analyses, including electron probe x-ray micro analysis for detailed mineralogical investigations.Specific vertical patterns of clay mineral distributions were found. Suspended particulate matter (SPM) in the bottom nepheloid layer and the ‘ fluffy layer ’ overlying sediments was enriched in organic carbon and hydrated three layer clay minerals, whereas the non-aggregated SPM was dominated by quartz and biogenic opal. It appears that separation effects operate during aggregation of mineral particles and organic matter in repeated cycles of resuspension and settling. No clear seasonal variations in the composition of the SPM were found, in spite of high spatial and temporal variability of biological and physical variables. The results suggest that preferential incorporation, possibly aided by microbiological colonization, of hydrated three layer silicates into the organic flocs is a process that occurs under a wide range of conditions. Because aggregates sink faster than individual particles, aggregate formation led to a relative enrichment of illite and smectite in the near-bottom layers. Considering the affinity of organic contaminants and heavy metals to organic matter, the selective removal of aggregated organic matter and hydrated three-layer clay minerals from the water column and enhanced transport in the near-bottom fluffy layer may be a natural cleansing mechanism operating in the shallow waters of the bight.  相似文献   

5.
Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment traps were planted in three layers: the upper layer of the thermocline (ULT) above the HSCWM, the lower layer of the thermocline (LLT), and the bottom layer of water column (BL). To determine the particle flux, the contents of organic carbon (POC), organic nitrogen (PON), total carbon (PC), and total phosphorous (PP) in SPM were analyzed, and two flux models (Ⅰ and Ⅱ) were improved to calculate the resuspension ratio, with an assumption in Model Ⅰ that the vertical flux of SPM in the LLT equals the net vertical flux of SPM in the whole water column. An X value, i.e., the fraction of the resuspension flux originating from the surficial sediments nearby the sampling station, was deduced from Model Ⅰ to estimate the contribution of lateral currents to the total resuspension flux. The results showed that inorganic particles, fecal pellets, and miscellaneous aggregates were the major types of SPM in the HSCWM, and the contents of POC, PON, PC, and PP all decreased with water depth. A great deal of fecal pellets found in the LLT indicates that the main space producing biogenic SPM is the thermocline, and especially the LLT, where the C/N ratio is lower than that in the ULT. The resuspension ratios, 90%-96% among stations, imply strong impact ofresuspension on particle flux in the BL. These values were not significantly different between the two flux models, suggesting that the hypothesis in Model Ⅰ that the flux in the LLT equaling the net flux to the bottom is acceptable for shallow waters with stratification like the HSCWM. The POC export ratio from the HSCWM ranges from 35% to 68%. It benefits from the short sinking distance in shallow water. The upwelling in the HSCWM enhanced the POC flux through the water mass, and the lateral currents provides up to being greater than 50% ofresuspension flux in the BL according to evaluation of the X value.  相似文献   

6.
Studies on aggregate formation and size distribution in relation to bottom water composition and flow regime were carried out in November 1994 at two transects in the inner and outer Mecklenburg Bight (Baltic Sea). The bottom water sampler ‘BIOPROBE' (BWS) was used to collect 10-dm3 water samples at 5, 10, 20 and 40 cm above the seabed. The outer transect samples tended to be more influenced by the open western Baltic Sea, whereas the inner transect samples were more affected by the coastal hydrography. Aggregate size distribution was investigated using a newly developed particle camera allowing identification of particles down to 150 μm size. Increasing concentrations of total particulate matter (TPM), particulate organic carbon (POC) and chlorophyll pigment equivalents (CPE) towards the seafloor together with a low proportion of POC/TPM (<5%) implied that the material was of resuspended origin. Aggregate size in both transects was positively correlated with TPM, transparent exopolymer particles (TEP) and bacterial cell abundance. Higher particle concentrations and aggregate numbers in the outer transect indicated a higher resuspension frequency, or lateral advection processes. The higher concentration of aggregates at the outer transect may reflect the larger amount of near-bottom transported material.  相似文献   

7.
Concentrations and mineralogy of suspensates in the central and western Mediterranean are vertically and laterally variable. This variability is related to input by resuspension of bottom sediments and from local terrigenous sources. Bottom currents flowing through constrictions at the straits of Sicily and Gibraltar and the eastern entrance of the Alboran Sea resuspend bottom sediments, giving rise to increased concentrations of suspensates in near-bottom waters and limited inputs to higher levels. There is no evidence of a suspensate-rich bottom water in the Balearic Sea.Terrigenous sources are believed to be the cause of increasing relative amounts of montmorillonite in surface waters as they flow eastward within the Mediterranean. Montmorillomite is relatively more important in suspended sediments than in bottom sediments where kaolinite—chlorite is dominant.  相似文献   

8.
The natural isotope 234Th is used in a small-scale survey of particle transport and exchange processes at the sediment–water interface in the Benguela upwelling area. Results from water and suspended particulate matter (SPM) samples from the uppermost and lowermost water column as well as the underlying sediment of three stations are compared. The stations are situated in different sedimentological environments at 1200–1350 m water depth at the continental slope off Namibia. Highly differing extent and particle content of the bottom nepheloid layer (BNL) are determined from transmissometer data. Three models are presented, all explaining the 234Th depletion of the BNL and 234Th excess of the surface sediment that were observed. While the first model is based solely on local resuspension of surface sediment particles, the second evaluates the influence of vertical particle settling from the surface waters on the 234Th budget in the BNL. The third model explains 234Th depletion in the BNL by sedimentation of particles that were suspended in the BNL during long-range transport. Particle inventory of the BNL is highest at a depocenter of organic matter at 25.5°S, where strong deposition is presently taking place and lateral particle transport is suggested to predominate sediment accumulation. This is supported by the high settling flux of particles out of the BNL into the sediments of the depocenter, exceeding the vertical particle flux into sediment traps at intermediate depth in the same area by up to an order of magnitude. High particle residence/removal times in the BNL above the depocenter in the range of 5–9 weeks support this interpretation. Comparison with carbon mineralization rates that are known from the area reveals that, notwithstanding the large fraction of advected particles, organic carbon flux into the surface sediment is remineralized to a large extent. The deployment of a bottom water sampler served as an in situ resuspension experiment and provided the first data of 234Th activity on in situ resuspended particles. We found a mean specific activity of 86 disintegrations per minute (dpm) g−1 (39–339 dpm g−1), intermediate between the high values for suspended particles (in situ pump: 580–760 dpm g−1; CTD rosette: 870–1560 dpm g−1) and the low values measured at the sediment surface (26–37 dpm g−1). This represents essential information for the modeling of 234Th exchange processes at the sediment–water interface.  相似文献   

9.
根据2011年5月31日至6月3日在长江口南槽口门附近海域投放三角架观测系统获取的沉积动力观测数据以及现场采集的水样和底质样品,进行底部边界层参数、悬沙粒度及悬沙组分分析,以探讨研究区近底部边界层特征和沉积物再悬浮过程。结果表明,研究区海域的悬沙以粉砂组分为主,潮周期内近底部流速与相应层位的悬沙浓度变化呈正相关,存在显著的再悬浮作用。分析发现,随着水体中悬沙砂组分的增加,再悬浮通量随之显著增加;砂组分减小,则再悬浮通量亦减小。因此,悬沙砂组分是对再悬浮过程响应的敏感组分,在一定程度上可指示和"示踪"再悬浮效应。  相似文献   

10.
This report describes extensive investigations of the near bottom layer of the Western Baltic (Mecklenburg Bight, Darss Sill and Arkona Basin) which were conducted over a 5 year period to determine the typical structure, vertical thickness, vertical turbulence structure, and spatial and temporal variability of this water mass with regard to the area's particular hydrographic conditions. Series of vertical profiles were obtained using the microstructure profiler MSS86, which is capable of measuring high resolution profiles of temperature, conductivity, current shear, light attenuation and pressure down to the seafloor. The near bottom current structure was simultaneously measured with conventional current metres at fixed depths. A typical vertical density structure of the near bottom layer was found. At all investigation sites the Bottom Boundary Layer was separated from the overlying water mass by a well pronounced thermohaline pycnocline. A homogeneous water layer was situated above the bottom with a mean thickness of 2.2 m and typical variation between 0.5 and 3.5 m. The thickness of both the homogeneous layer and of the near bottom layer vary considerably. It is suggested that horizontal advection is responsible for these fluctuations in thickness. The variation in thickness of the Homogeneous Layer is independent of the local mean current velocity, wind speed and energy dissipation rate. Over periods of about 2 days the thickness of the Homogeneous Layer is determined by the average wind speed. The Bottom Boundary Layer shows its own characteristic dynamic, which is largely decoupled from that of the remaining water body. A logarithmic layer was generally not resolved by the current measurements. From dissipation rate measurements, the wall layer was determined to be 0.9 m thick. There was no significant correlation between the dissipation rate and the local wind speed, or between the dissipation rate and local mean current u100. This means that any simple parameterisation relating u100 or friction velocity to the locally produced turbulence and consequently to the resuspension of sediment is probably not applicable to shallow sea areas with properties like the Western Baltic. The investigation of sediment concentration in the BBL illustrates the importance of local effects combined with advection. The sediment stratified layer covers only the bottom most 50 cm.  相似文献   

11.
太平洋悬浮体特征及近底雾状层(雾浊层)探讨   总被引:2,自引:0,他引:2  
2005年在太平洋12个测站分层采集了悬浮体水样及连续的水体温度、盐度、深度等数据.利用水体悬浮体含量在垂向上的分布特征初步分析了大洋雾状层的特点,并讨论了水体中悬浮体颗粒物质的来源,对不同海洋环境中悬浮体分布进行了对比,发现大洋水体中悬浮体含量总体很小,一般不超过0.30mg/dm3,但在一定水层内悬浮体含量相对较高,形成雾状层.雾状层在大洋内广泛分布,一般以表层雾状层和近底雾状层形式存在.大洋水体中悬浮体颗粒物来源广泛.表层雾状层的形成主要受透光层内生物作用的影响,而底质沉积物的再悬浮是影响底部雾状层形成的重要因素.因受水体物理海洋环境和物质来源的影响,不同区域水体中悬浮体含量不同,雾状层的分布不同.海山顶部受水流及岩石基底影响雾状层分布不明显,海山底部与开辟区洋盆海域雾状层更普遍.开辟区东西区由于物源差异水体中悬浮体含量差别明显,靠近火山喷口的西区水体中悬浮体含量明显高于东区的.  相似文献   

12.
Dynamics of the natural radioactive particle tracer 234Th (half-life: 24.1 days) within the abyssal water column up to 1000 m above bottom and within surface sediments of the northeast Atlantic (Porcupine Abyssal Plain; depth: ≈4845 m) were investigated. Distributions of transmissometer voltages and potential temperature indicated a subdivision of the near-bottom water column into a benthic mixed layer (BML; thickness: ≈10–65 m) and the layer above the BML up to the upper boundary of the bottom nepheloid layer (BNL; thickness: ≈1000 m). Comparison of 234Th fluxes (dpm m−2d−1) in sediment traps, vertical fluxes derived from 234Th/238U-disequilibrium in the near-bottom water column and excess 234Th inventories in the surface sediment provided evidence for lateral advection of 234Th-depleted water and a ‘missing sink’ for 234Th. A simple one-dimensional steady-state box-model approach was applied to investigate 234Th dynamics. Estimated residence times suggest the BML and the resuspension zone of the surface sediment to be highly dynamic systems with respect to particle cycling and sorptive reactions on a time scale of weeks. Model results indicate that, through the chemical forcing of changing particle concentration, a thickening BML results in (1) increasing residence times of particulate 234Th in the BML with respect to the net fluxes across the upper boundary of the BML and into the surface sediment; (2) declining adsorption rate constants in the BML; (3) increasing desorptive fluxes in the BML resulting in (4) enhanced 234Th decay in the BML; (5) decreasing net fluxes of particulate 234Th from the BML to the upper BNL above the BML and to the sediment. Potential consequences for carbon cycling in the water column of the deep ocean are discussed.  相似文献   

13.
Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49°N within the EU-funded Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid-slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off-slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of particulate organic carbon exceed the primary flux by over a factor of 2 at 1440 m on the outer slope. Estimated lateral fluxes of suspended particulate matter in the water column and intermediate nepheloid layers at the outer slope are potentially large compared to sinking fluxes measured by sediment traps. A comparison is made of particle flux at three continental margin sites and two sites in the adjacent open North Atlantic, from which it is seen that bulk and organic matter flux increases exponentially with proximity to the shelf break. The percentage contribution of particulate organic carbon to biogenic fluxes increases from a mean of 5.7% in the abyssal N. Atlantic to 13.9% at the continental margins.  相似文献   

14.
Sediments are the major repository of mercury in estuaries and could be a significant source of Hg to the overlying water column via release from the solid phase during resuspension. There is, however, little information on the effect of resuspension on Hg partitioning and release to the water column. The objective of this study was to determine the effect of resuspension on the cycling of THg and MeHg between the water column and the sediment. Tidal resuspension was simulated using the MEERC STORM facility. The facility can mimic both realistic bottom shear stress and water column turbulence simultaneously. There were three replicates of each resuspension (R) and no resuspension (NR) mesocosms. Two 4-week experiments were conducted in July and October of 2001: experiment 1 without clams and experiment 2 with clams. Both experiments showed that resuspension of muddy sediment introduced significantly higher particulate THg to the water column as TSS increased. The results suggest that THg was mostly bound to sediment particles with very little release during the resuspension events. In contrast, particulate MeHg was significantly lower in the R tanks where sediment particles with poor MeHg were dominant in the water column during the resuspension events. Dissolved THg and MeHg did not change in concert with changes in particulate load, suggesting that the dynamics between dissolved and particulate phases for both THg and MeHg cannot be explained by an equilibrium partitioning.  相似文献   

15.
Suspended particulate matter (SPM) concentration and properties (particle size and settling velocity), water column and boundary layer dynamics were measured during a 60-d period at a site in 110 m water depth in the northern North Sea. The site was in stratified waters and measurements were made during September–November as the seasonal thermocline was progressively weakening. SPM concentration was low, c. 1 mg dm−3 in the surface mixed layer and maximum values of 2 mg dm−3 in the bottom mixed layer. The bottom layer was characterised by larger mean particle size. SPM signals in the two layers were decoupled at the start of the period, when the thermocline was strong, but were increasingly coupled as the thermocline progressively weakened. A spring-neap cycle of resuspension and deposition of SPM was observed in the bottom mixed layer. Bed shear stresses were too small to entrain the bottom sediment (a fine sand) but were competent to resuspend benthic fluff: threshold bed shear stress and threshold current velocity at 10 mab were 0.02–0.03 Pa. and 0.18 m s−1, respectively. Maximum SPM concentration in the bottom layer preceded peak spring tide currents by 3 d. Simulation of fluff resupension by the PROWQM model confirms that this was due to a finite supply of benthic fluff: the fluff layer was stripped from the seabed so that fluff supply was zero by the time of peak spring flow. SPM was redeposited over neap tides. Fluff resuspension must have been enhanced by intermittent inertial currents in the bottom layer but unequivocal evidence for this was not seen. There was some resuspension due to wave activity. Settling velocity spectra were unimodal or bimodal with modal values of 2×10−4–2×10−3 mm s−1 (long-term suspension component) and 0.2–5.7 mm s−1 (resuspension component). The slowest settling particles remained in suspension at peak spring tides after the fluff layer had been exhausted. There was evidence of particle disaggregation during springs and aggregation during neaps.  相似文献   

16.
Fine particles in seawater commonly form large porous aggregates. Aggregate density and settling velocity determine the behavior of this suspended particulate matter(SPM) within the water column.However, few studies of aggregate particles over a continental shelf have been undertaken. In our case study, properties of aggregate particles, including size and composition, over the continental shelf of the North Yellow Sea were investigated. During a scienti?c cruise in July 2016, in situ ef fective particle size distributions of SPM at 10 stations were measured, while temperature and turbidity measurements and samples of water were obtained from surface, middle, and bottom layers. Dispersed and inorganic particle size distributions were determined in the laboratory. The in situ SPM was divided into(1) small particles(<32 μm),(2) medium particles(32–256 μm) and(3) large particles(>256 μm). Large particles and medium particles dominated the total volume concentrations(VCs) of in situ SPM. After dispersion, the VCs of medium particles decreased to low values(<0.1 μL/L). The VCs of large particles in the surface and middle layers also decreased markedly, although they had higher peak values(0.1–1 μL/L). This suggests that almost all in situ medium particles and some large particles were aggregated, while other large particles were single particles. Correlation analysis showed that primary particles <32 μm in?uenced the formation of these aggregates. Microscopic examination revealed that these aggregates consisted of both organic and inorganic ?ne particles, while large particles were mucus-bound organic aggregates or individual plankton.The vertical distribution of coarser particles was clearly related to water strati?cation. Generally, medium aggregate particles were dominant in SPM of the bottom layer. A thermocline blocked resuspension of?ne material into upper layers, yielding low VCs of medium-sized aggregate particles in the surface layer.Abundant large biogenic particles were present in both surface and middle layers.  相似文献   

17.
Distribution of 230Th and 231Pa in the water column was measured in the Eurasian basins of the Arctic Ocean, i.e. the Makarov, Amundsen and Nansen basins. The profiles obtained were compared to one previously published from the Alpha Ridge (Bacon et al., Earth and Planetary Science Letters, 95 (1989) 15–22. The Amundsen and Nansen basins are similar in their 23OTh and 231Pa distribution, whereas in the Makarov Basin and at the Alpha Ridge these radionuclides are comparatively enriched in the deep basin. This may be due to low particle flux in conjunction with low water mass renewal rates. The 230Th concentration in water depth < 1000 m in the Makarov Basin is relatively low compared with the Alpha Ridge, which may be caused by an exchange of water masses between the Amundsen and Makarov basins.In the Eurasian Basin Deep Water, 230Th profiles can be explained both by a scavenging model and by a mixing-scavenging model. Enhanced particle load caused by resuspension may explain the increased scavenging in the Eurasian Basin Bottom Water. The differences in scavenging between the Norwegian-Greenland Sea and the Eurasian basins at present are not large enough to cause significant fractionation between 230Th and 231Pa.  相似文献   

18.
The circulation and distribution of water properties in the water column of the Gulf of Mexico influence the flux of carbon to the benthic environment. The eddy field of the upper 1000 m creates environmental conditions that are favorable for biological productivity in an otherwise oligotrophic subtropical ocean. This eddy field results in the transport of nutrients and organic matter into the photic zone through cross-margin flow of shelf waters, upwelling in cyclones, and uplift from the interaction of anticyclones with bathymetry. These conditions then allow the productivity that becomes a possible source of carbon to the benthos.Data from four cruises during summers of 2000–2002 are used to describe the currents and water property distributions in the deepwater Gulf of Mexico, which consists of water depths greater than 400 m. Comparisons are made to historical data sets to provide an understanding of the persistence of the characteristics of the Gulf and the processes that occur there.The currents in the Gulf are surface intensified, have minimum in 800–1000 m depths, and also exhibit bottom intensification, especially near sloping topography. Historical time series records show current speeds near-bottom reach 50–100 cm s−1. At basin scales, these currents tend to flow cyclonically (counter-clockwise) along the bathymetry. These near-bottom, episodic, high-speed currents provide a mechanism for the transport of organic material, in both large and small particle sizes, from one benthic area to another.The distributions of temperature, salinity, nutrients, and dissolved oxygen during the study appear to be unchanged from historical findings. The source waters for the deep Gulf are the water masses brought into the Gulf by the Loop Current system. The properties in the upper 100–200 m are the most variable of the water column, consistent with their proximity to wind mixing, river discharge mixing, and atmospheric influences. Below 1500 m, there are no major horizontal variations in these water properties.  相似文献   

19.
The velocities of near-bottom currents were measured at six locations on a 180-km transect of the Gulf Stream adjacent to Cape Hatteras. The average velocities indicate a southwesterly flow - the Western Boundary Undercurrent. Maximum recorded velocities at each of the six locations ranged from 15 to 47 cm/sec. Depth distributions of suspended particulate matter over the transect indicated that near-bottom nepheloid layers were present and that relatively large amounts of suspended matter were being carried to the southwest. Bottom photographs taken over the same transect, however, showed no evidence that the sediment surface was being affected by the active bottom currents. These results indicate that swift bottom currents do not always leave a record of their work on deep ocean sediment.  相似文献   

20.
For the first time, a 12-month trap experiment was conducted on both sides of the strait between Crete and Antikythira Island (Eastern Mediterranean Sea) from June 1994 to June 1995 as part of the PELAGOS experiment. Analyses of major chemical constituents, including carbohydrates and stable lead isotopes and Scanning Electron Microscope studies were performed on the trap samples. Total mass fluxes varied between 1 and 1273 mg m−2 d−1. The lowest fluxes observed were in summer and autumn 1994, when stratification of the water column was at its deepest. In general, mass fluxes exhibited very low values throughout this experiment confirming the strong oligotrophy of this area. The mean contents of the major constituents (carbonates, opal, lithogenic fraction) were quite similar during the survey and between traps, with the exception of organic carbon contents, which were highest (7–10%) in summer 1994, i.e. during the period of lowest mass fluxes. During the first 6-month deployment (summer–autumn 1994) there was an important mass flux peak, which was depleted in organic carbon, at the Ionian near-bottom trap. This event coincided with a violent wind episode, which may have caused the resuspension of particles, which were then transported down the steep continental slope on the Ionian side of the strait. A smaller peak in mass flux occurred at the Aegean near-bottom trap, coincident with rainfall. Both these events indicate that environmental factors can control flux variations in an oligotrophic environment. During the second 6-month deployment (winter–spring 1995) there was another important increase in mass fluxes, which occurred at all three traps, although in the Ionian traps mass flux peaks were delayed by one to two sampling intervals. The distance between the two mooring sites gives a rough estimate of a minimum horizontal advection speed of 2 cm s−1 for this particulate transfer from the Aegean to the Ionian area. This estimate is in good agreement with the measured current velocities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号