目前在地震勘探频带范围内通常假设品质因子Q与频率无关,且呈衰减各向同性.事实上,相比较速度各向异性,介质的衰减各向异性同样不可忽视.本文将衰减各向异性和速度各向异性二者与常Q模型相结合,建立了黏弹性衰减VTI介质模型,并基于分数阶时间导数理论,给出了对应的本构关系和波动方程.利用均匀平面波分析和Poynting定理,推导出准压缩波qP、准剪切波qSV和纯剪切波SH的复速度、相速度、能量速度以及品质因子的解析表达式.对模型的正确性进行了数值验证,并分析了qP,qSV和SH波在介质中的传播特性.数值试验结果表明:本模型能够实现理想的恒定Q行为,表现了品质因子和速度的各向异性特征,显示出黏弹性增强将导致能量速度和相速度的频散曲线变化剧烈;速度和衰减各向异性参数与传播角度之间的耦合效应对qP,qSV和SH波的速度和能量影响明显;qP,qSV和SH波的频散曲线和波前面随着衰减各向异性强度的改变发生显著变化,其中耦合在一起的qP和qSV波变化趋势相同,而SH波与它们呈现相反的变化规律.本研究为从常Q模型角度分析地震波在衰减各向异性黏弹性介质中的传播特征奠定了理论基础.
相似文献分数阶微分算子具有描述历史依赖性和全域相关性的特质,本文利用这种特质描述双相介质固体骨架的黏弹性特征.基于Kjartansson常Q理论将含有分数阶时间导数的黏弹固体骨架各向异性本构关系与双相介质理论有机地结合起来,并引入流变学本构关系描述孔隙流体的黏滞性力学行为,提出一种新的基于分数阶时间导数常Q黏弹本构关系的含黏滞流体双相VTI模型.推导了相应的时间域波传播方程,然后对该方程进行了数值模拟.对整数阶导数采用高阶交错网格有限差分算法,对分数阶时间导数采用短时记忆中心差分算法,进行了不同相界、不同品质因子组及双层地质结构情况下该类介质中波场的数值模拟与特征分析.模拟结果表明:将含有分数阶时间导数的常Q黏弹固体骨架各向异性本构关系及孔隙流体的黏滞性本构关系引入双相介质理论是可行的,二者的结合能更好地反映地下介质的黏弹性特征,对于进一步认识波在黏弹各向异性孔隙介质中的传播机理具有重要意义,为反演和重构地下油气储层和结构奠定正演理论基础.
相似文献