首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V. P. Singh 《水文研究》1997,11(12):1649-1669
The shape, timing and peak flow of a stream flow hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed characteristics. Depending upon the size and shape of a watershed, its hydrological response is closely linked with storm dynamics. On an urban watershed a rain storm moving in the direction of flow produces a higher peak than it would if it were moving in the opposite direction. The effect of storm speed on peak discharge is much less for rapidly moving storms than for storms moving at about the same speed as the flow velocity. In a relatively homogeneous watershed the most important effect of spatial variability of rainfall occurs in the timing and shape of the runoff hydrograph. Temporally variable rainfall leads to higher peak flow than does constant rainfall. Significant errors in the prediction of runoff occur when an equivalent uniform hillslope is used to represent a heterogeneous hillslope. When average soil properties are used instead of spatially variable properties, significant differences are observed in infiltration. Spatially variable roughness alters the flow dynamics significantly. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
This paper analyses the effect of rain data uncertainty on the performance of two hydrological models with different spatial structures: a semidistributed and a fully distributed model. The study is performed on a small catchment of 19.6 km2 located in the north‐west of Spain, where the arrival of low pressure fronts from the Atlantic Ocean causes highly variable rainfall events. The rainfall fields in this catchment during a series of storm events are estimated using rainfall point measurements. The uncertainty of the estimated fields is quantified using a conditional simulation technique. Discharge and rain data, including the uncertainty of the estimated rainfall fields, are then used to calibrate and validate both hydrological models following the generalized likelihood uncertainty estimation (GLUE) methodology. In the storm events analysed, the two models show similar performance. In all cases, results show that the calibrated distribution of the input parameters narrows when the rain uncertainty is included in the analysis. Otherwise, when rain uncertainty is not considered, the calibration of the input parameters must account for all uncertainty in the rainfall–runoff transformation process. Also, in both models, the uncertainty of the predicted discharges increase in similar magnitude when the uncertainty of rainfall input increase.  相似文献   

3.
Weather radar systems provide detailed information on spatial rainfall patterns known to play a significant role in runoff generation processes. In the current study, we present an innovative approach to exploit spatial rainfall information of air mass thunderstorms and link it with a watershed hydrological model. Observed radar data are decomposed into sets of rain cells conceptualized as circular Gaussian elements and the associated rain cell parameters, namely, location, maximal intensity and decay factor, are input into a hydrological model. Rain cells were retrieved from radar data for several thunderstorms over southern Arizona. Spatial characteristics of the resulting rain fields were evaluated using data from a dense rain gauge network. For an extreme case study in a semi-arid watershed, rain cells were derived and fed as input into a hydrological model to compute runoff response. A major factor in this event was found to be a single intense rain cell (out of the five cells decomposed from the storm). The path of this cell near watershed tributaries and toward the outlet enhanced generation of high flow. Furthermore, sensitivity analysis to cell characteristics indicated that peak discharge could be a factor of two higher if the cell was initiated just a few kilometers aside.  相似文献   

4.
Quantification of rainfall and its spatial and temporal variability is extremely important for reliable hydrological and meteorological modeling. While rain gauge measurements do not provide reasonable areal representation of rainfall, remotely sensed precipitation estimates offer much higher spatial resolution. However, uncertainties associated with remotely sensed rainfall estimates are not well quantified. This issue is important considering the fact that uncertainties in input rainfall are the main sources of error in hydrologic processes. Using an ensemble of rainfall estimates that resembles multiple realizations of possible true rainfall, one can assess uncertainties associated with remotely sensed rainfall data. In this paper, ensembles are generated by imposing rainfall error fields over remotely sensed rainfall estimates. A non-Gaussian copula-based model is introduced for simulation of rainfall error fields. The v-transformed copula is employed to describe the dependence structure of rainfall error estimates without the influence of the marginal distribution. Simulations using this model can be performed unconditionally or conditioned on ground reference measurements such that rain gauge data are honored at their locations. The presented model is implemented for simulation of rainfall ensembles across the Little Washita watershed, Oklahoma. The results indicate that the model generates rainfall fields with similar spatio-temporal characteristics and stochastic properties to those of observed rainfall data.  相似文献   

5.
Radar rainfall estimation for flash flood forecasting in small, urban catchments is examined through analyses of radar, rain gage and discharge observations from the 14.3 km2 Dead Run drainage basin in Baltimore County, Maryland. The flash flood forecasting problem pushes the envelope of rainfall estimation to time and space scales that are commensurate with the scales at which the fundamental governing laws of land surface processes are derived. Analyses of radar rainfall estimates are based on volume scan WSR-88D reflectivity observations for 36 storms during the period 2003–2005. Gage-radar analyses show large spatial variability of storm total rainfall over the 14.3 km2 basin for flash flood producing storms. The ability to capture the detailed spatial variation of rainfall for flash flood producing storms by WSR-88D rainfall estimates varies markedly from event to event. As spatial scale decreases from the 14.3 km2 scale of the Dead Run watershed to 1 km2 (and the characteristic time scale of flash flood producing rainfall decreases from 1 h to 15 min) the predictability of flash flood response from WSR-88D rainfall estimates decreases sharply. Storm to storm variability of multiplicative bias in storm total rainfall estimates is a dominant element of the error structure of radar rainfall estimates, and it varies systematically over the warm season and with flood magnitude. Analyses of the 7 July 2004 and 28 June 2005 storms illustrate microphysical and dynamical controls on radar estimation error for extreme flash flood producing storms.  相似文献   

6.
1INTRODUCTIONBasedonthemountainstreamclasificationandhazardzonemapping(Wangetal,1996;andWangetal,1998),aswelastheinvestigatio...  相似文献   

7.
The main objective of this paper is to estimate the error in the rainfall derived from a polarimetric X-band radar, by comparison with the corresponding estimate of a rain gauge network. However the present analysis also considers the errors inherent to rain gauge, in particular instrumental and representativeness errors. A special emphasis is addressed to the spatial variability of the rainfall in order to appreciate the representativeness error of the rain gauge with respect to the 1 km square average, typical of the radar derived estimate. For this purpose the spatial correlation function of the rainfall is analyzed.  相似文献   

8.
ABSTRACT

Assessment of forecast precipitation is required before it can be used as input to hydrological models. Using radar observations in southeastern Australia, forecast rainfall from the Australian Community Climate Earth-System Simulator (ACCESS) was evaluated for 2010 and 2011. Radar rain intensities were first calibrated to gauge rainfall data from four research rainfall stations at hourly time steps. It is shown that the Australian ACCESS model (ACCESS-A) overestimated rainfall in low precipitation areas and underestimated elevated accumulations in high rainfall areas. The forecast errors were found to be dependent on the rainfall magnitude. Since the cumulative rainfall observations varied across the area and through the year, the relative error (RE) in the forecasts varied considerably with space and time, such that there was no consistent bias across the study area. Moreover, further analysis indicated that both location and magnitude errors were the main sources of forecast uncertainties on hourly accumulations, while magnitude was the dominant error on the daily time scale. Consequently, the precipitation output from ACCESS-A may not be useful for direct application in hydrological modelling, and pre-processing approaches such as bias correction or exceedance probability correction will likely be necessary for application of the numerical weather prediction (NWP) outputs.
EDITOR M.C. Acreman ASSOCIATE EDITOR A. Viglione  相似文献   

9.
It is crucial to analyze the sensitivity of watershed (rainfall-runoff) models to imperfect knowledge of rainfall input, in order to judge whether or not they are reliable and robust, especially if they are to be used for operational purposes. In this paper, a new approach to sensitivity analysis is proposed, based on a comparison between the efficiency ratings and parameter values of the models and the quality of rainfall input estimate (GORE and BALANCE indexes, assessing the quality of rainfall time distribution and the total depth respectively). Data from three watersheds of increasing size (71, 1120, and 10700 km2), are used to test three watershed models of varying complexity (three-parameter GR3J model and six-parameter modified versions of TOPMODEL and IHACRES).

These models are able to cope with imperfect rainfall input estimates, and react to improvements in rainfall input accuracy by better performance and reduced variability of efficiency. Two different types of model behavior were identified: the models either benefit from improved rainfall data by producing more consistent parameter values, or they are unable to take advantage of the improvements. Although the watershed size seems to be immaterial, the smaller watersheds appear to need more precise areal rainfall estimates (a higher concentration of raingages) to ensure good modeling results.  相似文献   


10.
11.
The emergence of artificial neural network (ANN) technology has provided many promising results in the field of hydrology and water resources simulation. However, one of the major criticisms of ANN hydrologic models is that they do not consider/explain the underlying physical processes in a watershed, resulting in them being labelled as black‐box models. This paper discusses a research study conducted in order to examine whether or not the physical processes in a watershed are inherent in a trained ANN rainfall‐runoff model. The investigation is based on analysing definite statistical measures of strength of relationship between the disintegrated hidden neuron responses of an ANN model and its input variables, as well as various deterministic components of a conceptual rainfall‐runoff model. The approach is illustrated by presenting a case study for the Kentucky River watershed. The results suggest that the distributed structure of the ANN is able to capture certain physical behaviour of the rainfall‐runoff process. The results demonstrate that the hidden neurons in the ANN rainfall‐runoff model approximate various components of the hydrologic system, such as infiltration, base flow, and delayed and quick surface flow, etc., and represent the rising limb and different portions of the falling limb of a flow hydrograph. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
司伟  包为民  瞿思敏  石朋 《湖泊科学》2018,30(2):533-541
空间集总式水文模型的洪水预报精度会受到面平均雨量估计误差的严重影响.点雨量监测值的误差类型、误差大小以及流域的雨量站点密度和站点的空间分布都会影响到面平均雨量的计算.为提高实时洪水预报精度,本文提出了一种基于降雨系统响应曲线洪水预报误差修正方法.通过此方法估计降雨输入项的误差,从而提高洪水预报精度.此方法将水文模型做为输入和输出之间的响应系统,用实测流量和计算流量之间的差值做为信息,通过降雨系统响应曲线,使用最小二乘估计原理,对面平均雨量进行修正,再用修正后的面平均雨量重新计算出流过程.将此修正方法结合新安江模型使用理想案例进行检验,并应用于王家坝流域的16场历史洪水以及此流域不同雨量站密度的情况下,结果证明均有明显修正效果,且在雨量站密度较低时修正效果更加明显.该方法是一种结构简单且不增加模型参数和复杂度的实时洪水修正的新方法.  相似文献   

13.
Despite human is an increasingly significant component of the hydrologic cycle in many river basins, most hydrologic models are still developed to accurately reproduce the natural processes and ignore the effect of human activities on the watershed response. This results in non‐stationary model forecast errors and poor predicting performance every time these models are used in non‐pristine watersheds. In the last decade, the representation of human activities in hydrological models has been extensively studied. However, mathematical models integrating the human and the natural dimension are not very common in hydrological applications and nearly unknown in the day‐to‐day practice. In this paper, we propose a new simple data‐driven flow forecast correction method that can be used to simultaneously tackle forecast errors from structural, parameter and input uncertainty, and errors that arise from neglecting human‐induced alterations in conceptual rainfall–runoff models. The correction system is composed of two layers: (i) a classification system that, based on the current flow condition, detects whether the source of error is natural or human induced and (ii) a set of error correction models that are alternatively activated, each tailored to the specific source of errors. As a case study, we consider the highly anthropized Aniene river basin in Italy, where a flow forecasting system is being established to support the operation of a hydropower dam. Results show that, even by using very basic methods, namely if‐then classification rules and linear correction models, the proposed methodology considerably improves the forecasting capability of the original hydrological model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Influence of rainfall spatial variability on flood prediction   总被引:9,自引:0,他引:9  
This paper deals with the sensitivity of distributed hydrological models to different patterns that account for the spatial distribution of rainfall: spatially averaged rainfall or rainfall field. The rainfall data come from a dense network of recording rain gauges that cover approximately 2000 km2 around Mexico City. The reference rain sample accounts for the 50 most significant events, whose mean duration is about 10 h and maximal point depth 170 mm. Three models were tested using different runoff production models: storm-runoff coefficient, complete or partial interception. These models were then applied to four fictitious homogeneous basins, whose sizes range from 20 to 1500 km2. For each test, the sensitivity of the model is expressed as the relative differences between the empirical distribution of the peak flows (and runoff volumes), calculated according to the two patterns of rainfall input: uniform or non-uniform. Differences in flows range from 10 to 80%, depending on the type of runoff production model used, the size of the basin and the return period of the event. The differences are generally moderate for extreme events. In the local context, this means that uniform design rainfall combining point rainfall distribution and the probabilistic concept of the areal reduction factor could be sufficient to estimate major flood probability. Differences are more significant for more frequent events. This can generate problems in calibrating the hydrological model when spatial rainfall localization is not taken into account: a bias in the estimation of parameters makes their physical interpretation difficult and leads to overestimation of extreme flows.  相似文献   

16.
Precipitation is a key control on watershed hydrologic modelling output, with errors in rainfall propagating through subsequent stages of water quantity and quality analysis. Most watershed models incorporate precipitation data from rain gauges; higher‐resolution data sources are available, but they are associated with greater computational requirements and expertise. Here, we investigate whether the Multisensor Precipitation Estimator (MPE or Stage IV Next‐Generation Radar) data improve the accuracy of streamflow simulations using the Soil and Water Assessment Tool (SWAT), compared with rain gauge data. Simulated flows from 2002 to 2010 at five timesteps were compared with observed flows for four nested subwatersheds of the Neuse River basin in North Carolina (21‐, 203‐, 2979‐, and 10 100‐km2 watershed area), using a multi‐objective function, informal likelihood‐weighted calibration approach. Across watersheds and timesteps, total gauge precipitation was greater than radar precipitation, but radar data showed a conditional bias of higher rainfall estimates during large events (>25–50 mm/day). Model parameterization differed between calibrations with the two datasets, despite the fact that all watershed characteristics were the same across simulation scenarios. This underscores the importance of linking calibration parameters to realistic processes. SWAT simulations with both datasets underestimated median and low flows, whereas radar‐based simulations were more accurate than gauge‐based simulations for high flows. At coarser timesteps, differences were less pronounced. Our results suggest that modelling efforts in watersheds with poor rain gauge coverage can be improved with MPE radar data, especially at short timesteps. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

17.
This study develops improved Soil Moisture Proxies (SMP) based suspended sediment yield (SMPSY) models corresponding to three antecedent moisture conditions (AMCs) (i.e., AMC-I-AMC-III) by coupling the improved initial abstraction (Ia-λ) model, the SMA procedure and the SMP concept for modelling the rainfall generated suspended sediment yield. The SMPSY models specifically incorporate a watershed storage index (S) model to accentuate the transformation from storm to storm and to avoid the sudden jumps in sediment yield computation. The workability of the SMPSY models is tested using a large dataset of rainfall and sediment yield (98 storm events) from twelve small watersheds and a comparison has been made with the existing MSY model. The goodness-of-fit (GOF) statistics is evaluated in terms of the Nash Sutcliffe efficiency (NSE), and error indices, i.e., root mean square error (RMSE), normalized root mean square error (nRMSE), standard error (SE), mean absolute error (MAE), and RMSE-observations standard deviation ratio (RSR). The NSE values vary from 74.31% to 96.57% and from 75.21% to 91.78%, respectively for the SPMSY and MSY model. The NSE statistics indicate that the SMPSY model has lower uncertainty in simulating sediment yield as compared to the MSY model. The error indices are lower for the SMPSY model than the MSY model for most of the watersheds. These results show that the SMPSY model has less uncertainty and performs better than the MSY model. A sensitivity analysis of the SMPSY model shows that the parameter β is most sensitive followed by parameter S, α and A. Overall, the results show that the characterization of soil moisture variability in terms of SMPs and incorporation of improved delivery ratio and runoff coefficient relationship improves the simulation of the erosion and sediment yield generation process.  相似文献   

18.
This study aims at evaluating the uncertainty in the prediction of soil moisture (1D, vertical column) from an offline land surface model (LSM) forced by hydro-meteorological and radiation data. We focus on two types of uncertainty: an input error due to satellite rainfall retrieval uncertainty, and, LSM soil-parametric error. The study is facilitated by in situ and remotely sensed data-driven (precipitation, radiation, soil moisture) simulation experiments comprising a LSM and stochastic models for error characterization. The parametric uncertainty is represented by the generalized likelihood uncertainty estimation (GLUE) technique, which models the parameter non-uniqueness against direct observations. Half-hourly infra-red (IR) sensor retrievals were used as satellite rainfall estimates. The IR rain retrieval uncertainty is characterized on the basis of a satellite rainfall error model (SREM). The combined uncertainty (i.e., SREM + GLUE) is compared with the partial assessment of uncertainty. It is found that precipitation (IR) error alone may explain moderate to low proportion of the soil moisture simulation uncertainty, depending on the level of model accuracy—50–60% for high model accuracy, and 20–30% for low model accuracy. Comparisons on the basis of two different sites also yielded an increase (50–100%) in soil moisture prediction uncertainty for the more vegetated site. This study exemplified the need for detailed investigations of the rainfall retrieval-modeling parameter error interaction within a comprehensive space-time stochastic framework for achieving optimal integration of satellite rain retrievals in land data assimilation systems.  相似文献   

19.
Post-fire debris flows represent one of the most erosive consequences associated with increasing wildfire severity and investigations into their downstream impacts have been limited. Recent advances have linked existing hydrogeomorphic models to predict potential impacts of post-fire erosion at watershed scales on downstream water resources. Here we address two key limitations in current models: (1) accurate predictions of post-fire debris flow volumes in the absence of triggering storm rainfall intensities and (2) understanding controls on grain sizes produced by post-fire debris flows. We compiled and analysed a novel dataset of depositional volumes and grain size distributions (GSDs) for 59 post-fire debris flows across the Intermountain West (IMW) collected via fieldwork and from the literature. We first evaluated the utility of existing models for post-fire debris flow volume prediction, which were largely developed for Southern California. We then constructed a new post-fire debris flow volume prediction model for the IMW using a combination of Random Forest modelling and regression analysis. We found topography and burn severity to be important variables, and that the percentage of pre-fire soil organic matter was an essential predictor variable. Our model was also capable of predicting debris flow volumes without data for the triggering storm, suggesting that rainfall may be more important as a presence/absence predictor, rather than a scaling variable. We also constructed the first models that predict the median, 16th percentile, and 84th percentile grain sizes, as well as boulder size, produced by post-fire debris flows. These models demonstrate consistent landscape controls on debris flow GSDs that are related to land cover, physical and chemical weathering, and hillslope sediment transport processes. This work advances our ability to predict how post-fire sediment pulses are transported through watersheds. Our models allow for improved pre- and post-fire risk assessments across diverse ranges of watersheds in the IMW.  相似文献   

20.
The primary objective of the Watershed Model Studies Project, reported herein, was to ascertain the effect of selected watershed characteristics on hydrograph parameters under a rainfall simulator. Since most of the runoff contributing to the peak flow was found to emanate from the lower half of the drainage, a measure of watershed eccentricity utilizing easily measured properties in that area is derived and evaluated as a reliable predictor of peak magnitude. In the process of isolating watershed shape, slope, size, drainage pattern, and soil depth were isolated and, along with rainfall intensity, direction of storm movement, and antecedent moisture conditions, evaluated for the models. Studies were made into the similarities between the models and real world watersheds. Three of the several conclusions are 1) the models exhibit hydrologic responses similar to those of a wide range of real watersheds; 2) watershed shape, of itself, does not have a tremendous effect on peak magnitude, and 3) watershed eccentricity is an effective, easily measured, meaningful, and useful expression of watershed shape insofar as that characteristic affects maximum peak flows and certain time parameters of the hydrograph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号