共查询到20条相似文献,搜索用时 15 毫秒
1.
Julien Malzac 《Monthly notices of the Royal Astronomical Society》2001,325(4):1625-1636
We study a phenomenological model for the continuum emission of Seyfert galaxies. In this quasi-spherical accretion scenario, the central X-ray source is constituted of a hot spherical plasma region surrounded by spherically distributed cold dense clouds. The cold material is radiatively coupled with the hot thermal plasma. Assuming energy balance, we compute the hard X-ray spectral slope Γ and the reflection amplitude R . This simple model enables us to reproduce both the range of observed hard X-ray spectral slopes and the reflection amplitude R . It also predicts a correlation between R and Γ that is very close to what is observed. Most of the observed spectral variations from source to source would be caused by differences in the cloud covering fraction. If some internal dissipation process is active in the cold clouds, darkening effects may provide a simple explanation for the observed distributions of reflection amplitudes, spectral slopes and ultraviolet to X-ray flux ratios. 相似文献
2.
We compute the hard X-ray spectra from a hot plasma pervaded by small cold dense clouds. The main cooling mechanism of the plasma is Compton cooling by the soft thermal emission from the clouds. We compute numerically the equilibrium temperature of the plasma together with the escaping spectrum. The spectrum depends mainly on the amount of cold clouds filling the hot phase. The clouds covering factor is constrained to be low in order to produce spectra similar to those observed in Seyfert galaxies and X-ray binaries, implying that an external reflector is required in order to reproduce the full range of observed reflection amplitudes. We also derive analytical estimates for the X-ray spectral slope and reflection amplitude using an escape probability formalism. 相似文献
3.
Matthew Middleton Chris Done Nick Schurch 《Monthly notices of the Royal Astronomical Society》2008,383(4):1501-1505
The Unified Model of active galactic nuclei (AGN) predicts that the sole difference between type 1 and 2 Seyfert galaxies nuclei is the viewing angle with respect to an obscuring structure around the nucleus. High-energy photons above 20 keV are not affected by this absorption if the column is Compton thin, so their 30–100 keV spectra should be the same. However, the observed spectra at high energies appear to show a systematic difference, with type 1 Seyfert galaxies having Γ∼ 2.1 whereas type 2 Seyfert galaxies are harder with Γ∼ 1.9. We estimate the mass and the accretion rate of Seyferts detected in these high-energy samples, and show that they span a wide range in L / L Edd . Both black hole binary systems and AGN show a correlation between spectral softness and Eddington fraction, so these samples are probably heterogeneous, spanning a range of intrinsic spectral indices which are hidden in individual objects by poor signal-to-noise ratio. However, the mean Eddington fraction for the type 1 Seyfert galaxies is higher than for the type 2 Seyfert galaxies, so the samples are consistent with this being the origin of the softer spectra seen in type 1 Seyfert galaxies. We stress that high-energy spectra alone are not necessarily a clean test of Unification schemes, but that the intrinsic nuclear properties should also change with L / L Edd . 相似文献
4.
Andrzej A. Zdziarski 《Monthly notices of the Royal Astronomical Society》1998,296(4):L51-L55
We solve for the structure of a hot accretion disc with unsaturated thermal Comptonization of soft photons and with advection, generalizing the classical model of Shapiro et al. The upper limit on the accretion rate due to advection constrains the luminosity to ≲ 0.15 y3/5 α7/5 of the Eddington limit, where y and α are the Compton and viscosity parameters, respectively. The characteristic electron temperature and Thomson optical depth of the inner flow at accretion rates within an order of magnitude of that upper limit are ∼ 109 K and ∼ 1, respectively. The resulting spectra are then in close agreement with the X-ray and soft γ-ray spectra from black hole binaries in the hard state and Seyferts. At low accretion rates, bremsstrahlung becomes the dominant radiative process. 相似文献
5.
6.
7.
Carlo Baccigalupi Francesca Perrotta 《Monthly notices of the Royal Astronomical Society》2000,314(1):1-10
The broad X-ray iron line, detected in many active galactic nuclei, is likely to be produced by fluorescence from the X-ray-illuminated central parts of an accretion disc close to a supermassive black hole. The time-averaged shape of the line can be explained most naturally by a combination of special and general relativistic effects. Such line profiles contain information about the black hole spin and the accretion disc, as well as the geometry of the emitting region, and may help to test general relativity in the strong gravity regime. In this paper we embark on the computation of the temporal response of the line to the illuminating flux. Previous studies concentrated on the calculation of reverberation signatures from static sources illuminating the disc. In this paper we focus on the more physically justified case of flares located above the accretion disc and corotating with it. We compute the time-dependent iron line, taking into account all general relativistic effects, and show that its shape is of a very complex nature, and we also present light curves accompanying the iron line variability. We suggest that present and future X-ray satellites like XMM or Constellation-X may be capable of detecting features present in the computed reverberation maps. 相似文献
8.
9.
B. Czerny M. Nikoajuk M. Piasecki J. Kuraszkiewicz 《Monthly notices of the Royal Astronomical Society》2001,325(2):865-874
We analyse the scaling of the X-ray power density spectra with the mass of the black hole in the examples of Cyg X-1 and the Seyfert 1 galaxy NGC 5548. We show that the high-frequency tail of the power density spectrum can be successfully used for the determination of the black hole mass. We determine the masses of the black holes in six broad-line Seyfert 1 galaxies, five narrow-line Seyfert 1 galaxies and two quasi-stellar objects (QSOs) using the available power density spectra. The proposed scaling is clearly appropriate for other Seyfert galaxies and QSOs. In all but one of the normal Seyferts, the resulting luminosity to Eddington luminosity ratio is smaller than 0.15, with the source MCG -6-15-30 being an exception. The applicability of the same scaling to a narrow-line Seyfert 1 is less clear and there may be a systematic shift between the power spectra of NLS1 and S1 galaxies of the same mass, leading to underestimation of the black hole mass. However, both the method based on variability and the method based on spectral fitting show that those galaxies have relatively low masses and a high luminosity to Eddington luminosity ratio, supporting the view of those objects as analogues of galactic sources in their high, soft or very high state, based on the overall spectral shape. The bulge masses of their host galaxies are similar to that of normal Seyfert galaxies, so they do not follow the black hole mass–bulge mass relation for Seyfert galaxies, being evolutionarily less advanced, as suggested by Mathur. The bulge mass–black hole mass relation in our sample is consistent with being linear, with the black hole to bulge ratio ∼0.03 per cent, similar to Wandel and Laor for low-mass objects, but significantly shifted from the relation of Magorrian et al. and McLure & Dunlop. 相似文献
10.
A. Merloni A. C. Fabian R. R. Ross 《Monthly notices of the Royal Astronomical Society》2000,313(1):193-197
We present a critical analysis of the usual interpretation of the multicolour disc model parameters for black hole candidates in terms of the inner radius and temperature of the accretion disc. Using a self-consistent model for the radiative transfer and the vertical temperature structure in a Shakura–Sunyaev disc, we simulate the observed disc spectra, taking into account Doppler blurring and gravitational redshift, and fit them with multicolour models. We show not only that such a model systematically underestimates the value of the inner-disc radius, but that when the accretion rate and/or the energy dissipated in the corona are allowed to change, the inner edge of the disc, as inferred from the multicolour model, appears to move even when it is in fact fixed at the innermost stable orbit. 相似文献
11.
12.
Mateusz Ruszkowski Andrew C. Fabian 《Monthly notices of the Royal Astronomical Society》2000,315(2):223-228
The fluorescent iron K α emission-line profile provides an excellent probe of the innermost regions of active galactic nuclei. Fe xxv and Fe xxvi in diffuse plasma above the accretion disc can affect the X-ray spectrum by iron K α resonant absorption. This in turn can influence the interpretation of the data and the estimation of the accretion disc and black hole parameters. We embark on a fully relativistic computation of this effect and calculate the iron line profile in the framework of a specific model in which rotating, highly ionized and resonantly absorbing plasma occurs close to the black hole. This can explain the features seen in the iron K α line profile recently obtained by Nandra et al. for the type 1 Seyfert galaxy NGC 3516. We show that the redshift of this feature can be mainly gravitational in origin and accounted for without the need to invoke fast accretion of matter on to the black hole. New X-ray satellites such as XMM , ASTRO-E and Chandra provide excellent opportunities to test the model against high-quality observational data. 相似文献
13.
14.
X-ray spectra of accretion discs with dynamic coronae 总被引:1,自引:0,他引:1
Julien Malzac rei M. Beloborodov Juri Poutanen 《Monthly notices of the Royal Astronomical Society》2001,326(2):417-427
We compute the X-ray spectra produced by non-static coronae atop accretion discs around black holes and neutron stars. The hot corona is radiatively coupled to the underlying disc (the reflector) and generates an X-ray spectrum which is sensitive to the bulk velocity of the coronal plasma, β = v / c . We show that an outflowing corona reproduces the hard-state spectrum of Cyg X-1 and similar objects. The dynamic model predicts a correlation between the observed amplitude of reflection R and the X-ray spectrum slope Γ since both strongly depend on β . A similar correlation was observed and its shape was well fitted by the dynamic model. The scattering of soft radiation in an outflowing corona can also account for the observed optical–UV polarization pattern in active galactic nuclei. 相似文献
15.
16.
The accretion disc in active galactic nucleus (AGN) is expected to produce strong outflows, in particular an ultraviolet (UV)-line-driven wind. Several observed spectral features, including the soft X-ray excess, have been associated with the accretion disc wind. However, current spectral models of the X-ray spectrum of AGN observed through an accretion disc wind, known to provide a good fit to the observed X-ray data, are ad hoc in their treatment of the outflow velocity and density of the wind material. In order to address these limitations we adopt a numerical computational method that links a series of radiative transfer calculations, incorporating the effect of a global velocity field in a self-consistent manner { xstar Simulation Chain for Outflows with Radiative Transfer ( xscort )}. We present a series of example spectra from the xscort code that allow us to examine the shape of AGN X-ray spectra seen through a smooth wind with terminal velocity of 0.3 c , as appropriate for a UV-line-driven wind. We calculate spectra for a range of different acceleration laws, density distributions, total column densities and ionization parameters, but all these have sharp features that contrast strongly with both the previous 'smeared absorption' models, and with the observed smoothness of the soft X-ray excess. This rules out absorption in a radiatively driven accretion disc wind as the origin of the soft X-ray excess, though a larger terminal velocity, possibly associated with material in a magnetically driven outflow/jet, may allow outflow models to recover a smooth excess. 相似文献
17.
A. Janiuk B. Czerny P. T. ycki 《Monthly notices of the Royal Astronomical Society》2000,318(1):180-186
We present the results of both analytical and numerical calculations of the amplitude of the reflection component in X-ray spectra of galactic black hole systems. We take into account the anisotropy of Compton scattering and the systematic relativistic bulk motion of the hot plasma. In the case of the single scattering approximation, the reflection from the disc surface is significantly enhanced owing to the anisotropy of Compton scattering. On the other hand, the calculations of multiple scattering obtained using the Monte Carlo method show that the anisotropy effect is much weaker in that case. Therefore, the enhanced back-scattered flux may affect the observed spectra only if the disc surface is highly ionized, which reduces the absorption in the energy band corresponding to the first Compton scattering. 相似文献
18.
19.
Christopher Copperwheat Mark Cropper Roberto Soria Kinwah Wu 《Monthly notices of the Royal Astronomical Society》2005,362(1):79-88
We have constructed a model to describe the optical emission from ultra-luminous X-ray sources (ULXs). We assume a binary model with a black hole accreting matter from a Roche lobe filling companion star. We consider the effects of radiative transport and radiative equilibrium in the irradiated surfaces of both the star and a thin accretion disc. We have developed this model as a tool with which to positively identify the optical counterparts of ULXs, and subsequently derive parameters such as the black hole mass and the luminosity class and spectral type of the counterpart. We examine the dependence of the optical emission on these and other variables. We extend our model to examine the magnitude variation at infrared wavelengths, and we find that observations at these wavelengths may have more diagnostic power than in the optical. We apply our model to existing HST observations of the candidates for the optical counterpart of ULX X-7 in NGC 4559. All candidates could be consistent with an irradiated star alone, but we find that a number of them are too faint to fit with an irradiated star and disc together. Were one of these the optical counterpart to X-7, it would display a significant temporal variation. 相似文献