首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-resolution marine geophysical study was conducted during October-November 2006 in the northern Gulf of Aqaba/Eilat, providing the first multibeam imaging of the seafloor across the entire gulf head spanning both Israeli and Jordanian territorial waters. Analyses of the seafloor morphology show that the gulf head can be subdivided into the Eilat and Aqaba subbasins separated by the north-south-trending Ayla high. The Aqaba submarine basin appears starved of sediment supply, apparently causing erosion and a landward retreat of the shelf edge. Along the eastern border of this subbasin, the shelf is largely absent and its margin is influenced by the Aqaba Fault zone that forms a steep slope partially covered by sedimentary fan deltas from the adjacent ephemeral drainages. The Eilat subbasin, west of the Ayla high, receives a large amount of sediment derived from the extensive drainage basins of the Arava Valley (Wadi ’Arabah) and Yutim River to the north–northeast. These sediments and those entering from canyons on the south-western border of this subbasin are transported to the deep basin by turbidity currents and gravity slides, forming the Arava submarine fan. Large detached blocks and collapsed walls of submarine canyons and the western gulf margin indicate that mass wasting may be triggered by seismic activity. Seafloor lineaments defined by slope gradient analyses suggest that the Eilat Canyon and the boundaries of the Ayla high align along north- to northwest-striking fault systems—the Evrona Fault zone to the west and the Ayla Fault zone to the east. The shelf–slope break that lies along the 100 m isobath in the Eilat subbasin, and shallower (70–80 m isobaths) in the Aqaba subbasin, is offset by approx. 150 m along the eastern edge of the Ayla high. This offset might be the result of horizontal and vertical movements along what we call the Ayla Fault on the east side of the structure. Remnants of two marine terraces at 100 m and approx. 150 m water depths line the southwest margin of the gulf. These terraces are truncated by faulting along their northern end. Fossil coral reefs, which have a similar morphological appearance to the present-day, basin margin reefs, crop out along these deeper submarine terraces and along the shelf–slope break. One fossil reef is exposed on the shelf across the Ayla high at about 60–63 m water depth but is either covered or eroded in the adjacent subbasins. The offshore extension of the Evrona Fault offsets a fossil reef along the shelf and extends south of the canyon to linear fractures on the deep basin floor.  相似文献   

2.
Multibeam sonar mapping, drill cores and underwater video data have confirmed the existence of a previously unknown coral reef province in the Gulf of Carpentaria, Australia. Seven reefs, comprised of coral limestone that support living corals have been mapped so far and as many as 50 other reefs may exist in the region. U/Th ages show that reef growth commenced shortly after limestone pedestals were submerged by rising sea level around 10.5 kyr BP, making them the oldest Holocene reefs known in Australia. Reef growth persisted for ~ 2.0 kyr but it had ceased at most locations by ~ 7.0 kyr BP. Measurements of reef growth rates (0.95 to 4 m kyr− 1), indicate that the reefs were unable to keep pace with contemporaneous rapid sea level rise (> 10 m kyr− 1), which is consistent with a “give up” reef growth history. Core samples from reef platforms demonstrate that Pleistocene limestone is exposed at depths of 27 and 30 m below present mean sea level. These depths represent regionally significant phases of reef growth during a prolonged sea level still stand. We conclude that the reefs are therefore mostly relict features, whose major phase of growth and development relates to an earlier, pre-Holocene sea level still stand.  相似文献   

3.
Benthic foraminifera are established indicators for Water Quality (WQ) in Florida and the Caribbean. However, nearshore coral reefs of the Great Barrier Reef (GBR) and other Pacific regions are also subjected to increased nutrient and sediment loads. Here, we investigate the use of benthic foraminifera as indicators to assess status and trends of WQ on GBR reefs. We quantified several sediment parameters and the foraminiferan assemblage composition on 20 reefs in four geographic regions of the GBR, and along a water column nutrient and turbidity gradient. Twenty-seven easily recognisable benthic foraminiferan taxa (>63 μm) were distinguished. All four geographic regions differed significantly (p < 0.05, ANOSIM) in their assemblage composition, and a redundancy analysis (RDA) showed that sediment parameters only explained a small proportion of the variance in the assemblage composition. On nine reefs along a previously studied water quality gradient, foraminifera showed a distinct shift in assemblage composition towards larger symbiont-bearing taxa from turbid inner shelf towards clearer outer shelf reefs. A RDA separated symbiotic and aposymbiotic (heterotrophic) taxa. In addition, total suspended solid and water column chlorophyll a concentrations were negatively correlated, and optical depth and distance to the mainland were positively correlated, with the abundance of symbiont-bearing taxa. Several large foraminifera were identified as indicators for offshore, clear water conditions. In contrast, heterotrophic rotaliids and a species retaining plastids (Elphidium sp.) where highly characteristic for low light, higher nutrient conditions. Application of the FORAM index to GBR assemblage composition showed a significant increase in the value of this index with increased distance from the mainland in the Whitsunday region (r2 = 0.75, p < 0.001), and therefore with increasing light and decreased nutrient availability. We conclude that it will be possible to apply this index to GBR and possibly other Pacific reefs after some adaptations and additional experimental work on species-specific limiting factors.  相似文献   

4.
Multibeam imagery of siliceous sponge reefs (Hexactinellida, Hexactinosida) reveals the setting, form, and organization of five reef complexes on the western Canadian continental shelf. The reefs are built by framework skeleton sponges which trap clay-rich sediments resulting in a distinctive pattern of low intensity backscatter from the reefs that colonize more reflective glacial sediments of higher backscatter intensity. Bathymetry and backscatter maps show the distribution and form of reefs in two large complexes in the Queen Charlotte Basin (QCB) covering hundreds of km2, and three smaller reef complexes in the Georgia Basin (GB). Ridges up to 7 km long and 21 m in height, together with diversely shaped, coalescing bioherms and biostromes form the principal reef shape in the QCB whereas chains of wave-form, streamlined mounds up to 14 m in height have developed in the GB. Reef initiation is dependent on the distribution of high backscatter-intensity relict glacial surfaces, and the variation in reef complex morphology is probably the result of tidally driven, near seabed currents.  相似文献   

5.
Submerged reef terraces of the Maldives (Indian Ocean)   总被引:1,自引:1,他引:0  
There is limited knowledge about the record of sea-level rise from the last glacial maximum (LGM) until the onset of Holocene reef growth in the Maldives archipelago. Multibeam data show that atoll slopes between 130 and 55 mbsl (meters below sea level) are characterized by a step-like morphology. In parts, these terraces show a raised rim and a crenate geometry. Atoll margin features can be interpreted as successive reef-growth and -drowning stages, which are attributable to changes in the rate of sea-level rise. These changes can tentatively be correlated to known records of global sea-level change since the LGM. In addition to terraces between 97 and 55 mbsl, which can be associated with the initiation of meltwater pulses MWP-1A and -1B, several reef-drowning stages between 94 and 68 mbsl are proposed. As the Maldives can be considered a tectonically stable, far-field site, the submerged reef terraces inferred from the first multibeam dataset for this region likely represent a valuable archive for global deglacial sea-level history in the Indian Ocean.  相似文献   

6.
Extinct volcanic islands in the Bismarck volcanic arc are fringed by well-developed coral reefs. Drowned platforms offshore from these islands provide evidence for subsidence in the central section of the arc, north of the Finisterre Terrane–Australia collision. Bathymetric and backscatter data collected onboard the R/V Kilo Moana in 2004 reveal regularly spaced (~200 m interval) drowned platforms at depths as much as 1,100 m below sea level. However, the adjacent mainland coast has well documented raised terraces indicating long-term uplift. Local subsidence may be due to cessation of magmatic activity and cooling, flexural loading by the uplifting Finisterre Range, loading by nearby active volcanic islands, and/or sediment loading on the seafloor north of the Finisterre Range. We present some simple models in order to test whether flexural loading can account for local subsidence. We find that volcanic and sedimentary loading can explain the inferred relative subsidence.  相似文献   

7.
A variety of analytical models is used to investigate the effects on tidal propagation of a barrier reef system. These models specify reef geometry by two parameters. They can accommodate cases where water flows over reefs, as well as through inter-reef gaps, and also incorporate quadratic bottom friction. Although based on a one-dimensional approach, adaptations of a solution by Huthnance are used to account for the additional blockage effects associated with two-dimensional flow patterns near reef barriers. The present work adopts the philosophy that only a numerical approach can cope with the wide variations in reef geometry that are encountered in areas such as the Great Barrier Reef (GBR) region of Australia. Moreover, since typical model grids cannot resolve inter-reef gaps and other features with sufficient accuracy, a parameterised approach is needed to accommodate the conflicting demands of reef geometry and an economically feasible model resolution. The formulation of the analytical models is such that they can be applied immediately to standard numerical algorithms. Numerical experiments for flow in a channel, with a reef barrier across its centre, are used to test the parameterisation schemes. Comparison of the results for parameterised reefs with those obtained using extremely fine grids, shows convincing evidence of the success of the schemes. A separate method for automatically generating reef parameters has simplified the task of applying the methodology to real reefal systems. A tidal model of the Southern GBR, a region which exhibits unusual tidal behaviour, but which also has ample field data available for model testing, is used to demonstrate the accuracy that can be attained with the parameterised approach. Although tides are considered specifically in the present work, the formulation should be applicable with equal ease to the many other significant classes of low frequency motions in the GBR.  相似文献   

8.
《Marine Geology》2006,225(1-4):223-246
We present detailed bathymetry, remotely operated vehicle (ROV) and submersible observations, and sedimentary and radiocarbon age data from carbonate deposits recovered from two submerged terraces at − 150 m (T1) and − 230 m (T2) off Lanai, Hawaii. The tops of the terraces are veneered by relatively thin (< 5 m) in situ accumulations of coralline algal nodule, coralgal nodule, Halimeda and a derived oolitic facies deposited in intermediate (30–60 m) to deep fore-reef slope settings (60–120 m). The data are used to develop a sedimentary facies model that is consistent with eustatic sea-level variations over the last 30 ka. Both nodule facies on T1 and T2 initiated growth 30–29 ka following a fall in sea level of ∼50 m and increase in bottom currents during the transition from Marine Isotope Stage 3 to 2. The nodules accreted slowly throughout the Last Glacial Maximum when sea-level was relatively stable. Drowning occurred during the early deglaciation (17–16 ka) and was marked by the complete drowning of coralline algal nodules facies on T2 and incipient drowning of coralgal facies on T1. Abrupt sea-level rise during the middle deglaciation, perhaps associated with global meltwater pulse 1A (14–15 ka), finally drowned the coralgal facies on T1, which in turn was overlain by a deep-water Halimeda facies or an oolitic facies derived from upslope. Our data indicates that Lanai has experienced relatively little vertical tectonic movement over the last 30 ka. Using paleobathymetric data derived from the sedimentary facies, age vs. depth relationships, and published sea-level curves, we estimate that Lanai could be either slowly uplifting or subsiding, but at rates < 0.1 m/kyr (uplift) or < 0.4 m/kyr (subsidence) over this 30 kyr period.  相似文献   

9.
Reefs are one of the marine habitats listed in Annex I of the European Union's Habitats Directive, which aims to establish a coherent European ecological network of Special Areas of Conservation. EU Member States are required to prepare and propose a national list of sites for evaluation under the scheme, but currently the occurrence of reefs in the United Kingdom's nearshore and offshore areas is not well documented. Here we report on our search for rocky reefs in the central English Channel, which unexpectedly revealed an extensive reef system covering an area of 1100 km2. Prior to our work, it was generally perceived that the seabed in this area comprised mostly gravel, with a few isolated rock outcrops.Our approach to determining the location, extent and character of these reefs incorporated broad, medium and fine-scale analyses over a 3200 km2 area of seabed, using single- and multi-beam acoustic data, ground-truthed by underwater video and stills imagery. A benthic terrain model was developed in ArcGIS to map topographic features at the broad and medium scales. Biotope assignments were made at the fine scale through detailed analysis of video footage obtained from 30 sampling stations. The study area has a complex geological history and lies at the centre of a major bedload-parting zone. Together, these strongly influence the seabed character and the distribution of biotopes. An integrated assessment of the physical and biological features was used to map the study area to level 4 of the EUNIS habitat classification system.Similar physical conditions exist in other areas of the UK continental shelf, raising the prospect of predicting where other rocky reef systems might occur. In the absence of a co-ordinated national seabed survey programme, such predictions, coupled with interpretation of existing single-beam bathymetry data, can help prioritise areas where limited survey resources could be most effectively deployed.  相似文献   

10.
The Cenozoic succession of Browse Basin is characterized by a carbonate system, that developed from a non-tropical ramp in Eocene-lower Miocene times to a tropical rimmed platform in the middle Miocene. The evolution of the platform was unraveled through the interpretation of the seismic geomorphology and borehole data of the middle Miocene tropical reef system. The first reef structures developed during the early middle Miocene as narrow linear reef belts with an oblique orientation with respect to shelf strike direction. Subsequently, they prograded toward the platform margin to form a barrier reef with a minimum length of 40 km. The barrier reef itself comprises three distinct ridges separated by progradational steps. The second and third step are separated by a karstified horizon, which is interpreted to represent the global sea-level fall shortly before the Serravallian/Tortonian boundary. The following third ridge formed in a slightly downstepped position during the sea-level lowstand and initial transgressive phase. Further sea-level rise during the early Tortonian first drowned the barrier-reef system and subsequently also the patch reefs and relic atolls that had established in a backstepped position in the platform interior. The similar evolution of the Browse Basin reef system and other contemporaneous carbonate systems indicates a strong impact of eustatic sea-level changes. Relatively large subsidence rates in the study area possibly augmented the eustatic sea-level rise in the Tortonian and hence contributed to the drowning of the reef system. However, the initiation and final demise of the reef system was also governed by global and regional climate variations. The first seismically-defined reefs developed simultaneous to a maximum in the transport capacity of the Indonesian throughflow, which brings warm low-salinity waters to the North-West Shelf. Reef drowning followed the restriction of this seaway close to the middle to early Miocene boundary. This near closure of the Indonesian seaway possibly led to a regional amplification of the global middle to late Miocene cooling trend and hampered the potential of the reef system to keep up with the rising sea-level.  相似文献   

11.
Our analysis of approximately 40,000 km of multichannel 2-D seismic data, reef oil-field seismic data, and data from several boreholes led to the identification of two areas of reef carbonate reservoirs in deepwater areas (water depth ≥ 500 m) of the Qiongdongnan Basin (QDNB), northern South China Sea. High-resolution sequence stratigraphic analysis revealed that the transgressive and highstand system tracts of the mid-Miocene Meishan Formation in the Beijiao and Ledong–Lingshui Depressions developed reef carbonates. The seismic features of the reef carbonates in these two areas include chaotic bedding, intermittent internal reflections, chaotic or blank reflections, mounded reflections, and apparent amplitude anomalies, similar to the seismic characteristics of the LH11-1 reef reservoir in the Dongsha Uplift and Island Reef of the Salawati Basin, Indonesia, which house large oil fields. The impedance values of reefs in the Beijiao and Ledong–Lingshui Depressions are 8000–9000 g/cc × m/s. Impedance sections reveal that the impedance of the LH11-1 reef reservoir in the northern South China Sea is 8000–10000 g/cc × m/s, whereas that of pure limestone in BD23-1-1 is >10000 g/cc × m/s. The mid-Miocene paleogeography of the Beijiao Depression was dominated by offshore and neritic environments, with only part of the southern Beijiao uplift emergent at that time. The input of terrigenous sediments was relatively minor in this area, meaning that terrigenous source areas were insignificant in terms of the Beijiao Depression; reef carbonates were probably widely distributed throughout the depression, as with the Ledong–Lingshui Depression. The combined geological and geophysical data indicate that shelf margin atolls were well developed in the Beijiao Depression, as in the Ledong–Lingshui Depression where small-scale patch or pinnacle reefs developed. These reef carbonates are promising reservoirs, representing important targets for deepwater hydrocarbon exploration.  相似文献   

12.
The numerous submarine and elevated terraces that fringe shorelines of the Hawaiian Islands have been used as classic examples of mid-ocean Quaternary eustatic terraces. Submarine canyons are important geomorphic features of island slopes. Later reef growth often partly masks both the terraces and canyons. Although difficult to match from one side of an island to the other, some of the terraces have been correlated to successions of higher and lower Quaternary sea levels determined elsewhere in the world. Subbottom seismic reflection profiling now permits a new view of the problem, especially as related to the most recent marine history of Oahu. The geophysical work allows a partial deciphering of former terraces, now buried by younger reefs and sand, and at the same time shows that the heads of submarine canyons do connect with subaerial valleys beneath the succession of Quaternary nearshore deposits. However, the work has disclosed so many additional buried terraces as to raise serious doubts whether it will be possible, without improved techniques of dating the deposits themselves, to unravel the history of Quaternary sea-level changes in Hawaii, much less to correlate them with events recorded elsewhere.  相似文献   

13.
Analyses of two years (1992 and 1993) of high-resolution sea surface temperature satellite images of the southern Mid Atlantic Bight (MAB), showed that unusually extensive overhang of shelf water occurs episodically, and coherently over along shelf distances of several 100 km. These episodes are dubbed overrunning of the Slope Sea by shelf water. The overrunning volume has a “face” and a “back” (southern and northern limit). It transports substantial quantities of shelf water southward, and does not retreat onto the shelf, but eventually joins the western edge of the Gulf Stream in the vicinity of Chesapeake Bay. The combined analyses of satellite imagery and various in situ data further demonstrated that the shelf waters overrunning the Slope Sea were not mere surface features but reached depths between 40 and 60 m. Results confirm previous concepts on shelf circulation, shelf–slope exchange and fate of shelf water. They also shed new light on shelf water budget: overrunning of the Slope Sea and southwest transport by upper slope current constitutes an important conduit for shelf water transport. Winter storms move the shelf–slope front, and with it shelf water, offshore to distances 10–40 km. The offshore displacement of shelf water can be related to the onshore veering of the Gulf Stream near Cape Hatteras, producing a blocking effect on the shelf circulation. Such a blocking effect of the southwestward flow of shelf water in the MAB appeared to be the reason for the overrunning of shelf water off New Jersey. In addition, the excess fresh water discharge from the St. Lawerence was also observed to be related to the overflow of shelf water off New Jersey.  相似文献   

14.
H.N Siddiquie 《Marine Geology》1975,18(1):M95-M101
The Laccadive atolls have recently been surveyed in detail (1:5,000 and 1:10,000). These surveys indicated the occurrence of a number of terraces on the seaward reefs of these islands at 7–12, 15, 21–36 (prominent) and 43–47 m depths. The first break in the profile of the seaward reefs occurs at depths of 3–5 m and on the windward side this extends down to about 12 m, the break at this shallow depth represents a wave-cut platform. The deeper terraces (>12 m) appear to have been formed during periods of lowered sea level. The most prominent terrace at 21–36 m is correlable with similar terraces recorded on other atolls. The terraces at Bangaram Island are covered by sediment while those at Kadmat do not have any sediment. In some of the atolls, surfaces at depths comparable to the seaward terraces are found in the lagoons also indicating extensive effects of lowered sea levels.  相似文献   

15.
Chang-Feng  Dai 《Marine Ecology》1993,14(3):185-204
Abstract. The distribution pattern of corals and benthic space partitioning patterns on the fringing reefs of southern Taiwan were studied by the line-transect method. The bathymetric distribution of corals in the study area was basically homogeneous except on the protected reef slopes and the exposed reef fronts and terraces. Corals on protected reef slopes are mainly foliaceous, including Montipora foliosa, Merulina ampliata, Mycedium elephantotus , and Pachyseris speciosa , but the dominant species on a reef slope vary from site to site. The formation of the foliaceous coral community is possibly related to a complex of environmental factors, chance, and biological interactions. The reef fronts and submarine terraces of exposed areas are dominated by alcyonacean corals. The most abundant species are Sarcophyton trocheliophorum, S. crassocaule , and Lobophytum sarcophytoides ; their distributions are relatively homogeneous. The formation of alcyonacean-dominated assemblages can be related to the special adaptive strategies of these corals. In regard to space partitioning patterns, the major space occupiers on those reefs exposed to storm disturbances are alcyonacean soft corals, scleractinian corals, and algae; on reefs protected from storms, scleractinian corals and algae dominate. Two conspicuous features of the study area are the high proportion of space occupied by algae and the abundant unoccupied space. The dense algal cover is possibly caused by sewage pollution and overfishing of the reef area. The unoccupied space is most likely related to the high frequency of typhoon disturbances.  相似文献   

16.
Modern reef (the Great Barrier Reef and Ryukyu Reef) distribution in the Indo-Pacific region is strongly controlled by warm currents (East Australian and Kuroshio Currents) that radiate from the Indo-Pacific Warm Pool. The modern distribution of reefs (south of 15°S) on the Western Australian shelf is related to the presence of the warm Leeuwin Current. However, the age of the reefs south of 15°S, and hence their temporal relationship to the Leeuwin Current, has been largely unknown. Seismic and subsurface stratigraphic data show that reef growth and expansion on the Northwest Shelf of Australia began in the Middle Pleistocene (∼0.5 Ma). The oldest ooids in the region are approximately synchronous with reef growth. We suggest a two stage process for the spread of reefs to higher latitudes on the Western Australian coast; first an increase in Leeuwin Current activity at approximately 1 Ma brought warm waters and a tropical biota to the region; and second, increased aridity after ∼0.6 Ma led to a decline in clastic input and increased alkalinity, triggering ooid formation and reef expansion to higher latitudes associated with the switch to higher amplitude glacio-eustatic cycles at the end of the Middle Pleistocene Transition. The timing and mechanisms for reef expansion south along the Western Australian coast has implications for the origin of the Eastern Australian Middle Pleistocene Great Barrier Reef, the New Caledonia Barrier Reef and Japanese Ryukyu Reef systems.  相似文献   

17.
Estimates of abundance and size of three commercially exploited grunt species indicate ontogenetic changes in habitat utilization concentrate their juveniles within the lagoon of the Bay of La Parguera, Puerto Rico. Eleven biotopes, defined by four benthic structures (reef, mangrove, vegetation beds and unconsolidated sediments) and three geographic zones (inner lagoon, outer lagoon and bank shelf) were sampled randomly by visual surveys. French, bluestriped and white grunt (Haemulon flavolineatum, Haemulon sciurus and Haemulon plumeri) were common in the bay and appeared to exhibit similar life history patterns of cross-shelf migration and habitat selection. Recently settled grunts were dispersed over vegetated and unconsolidated soft-bottom sediments of the bay. The juvenile stage occurred in highest densities in shallow lagoon biotopes among the submerged prop-roots of mangrove stands and on inshore reefs. Length data indicates that grunts migrate offshore to adult habitat via increasingly deep reefs. Indices of biotope nursery function based on standing stock estimates of juveniles identified three biotopes, all within the inner lagoon as essential habitat for juveniles of 5–10 cm length interval. This concentration of juveniles within biotopes of the lagoon could represent a bottleneck to recruitment for grunt stocks. Evidence that quantity and quality of lagoon nurseries may limit recruitment indicates that these areas represent a key component of a marine protected area designed to restore fisheries within the bay.  相似文献   

18.
Significant synchronous shifts in the chemistry, mineralogy, grain sizes and color of the sediments at 6 m below sea floor (mbsf) at ODP Site 1195 on the Marion Plateau (NE Australia) are interpreted to reflect a major regional paleoceanographic change: the initiation of the southern province of the Great Barrier Reef (GBR). The onset of this massive carbonate production centre nearby resulted primarily in increased deposition of carbonate-rich sediments of neritic origin. Both sedimentation rate and terrigenous input record a coincident decline attributed to inshore trapping of materials behind the reefs. Our best estimate places the development of reef framework in the southern part of the GBR between 560 and 670 kyr B.P., based on an age model combining magnetostratigraphic and biostratigraphic data. The proposed estimation agrees with previous studies reporting an age between 500 and 930 kyr B.P., constraining more tightly their results. However, it does not support research placing the birth of the GBR in Marine Isotope Stage (MIS) 11 ( 400 kyr), nor the theory of a worldwide modern barrier reef development at that time.  相似文献   

19.
On the basis of newly collected multibeam bathymetric data, chirp profiles and existing seismic data, we presented a detailed morphological interpretation of a series of slope-confined canyons in water depths of 300–2000 m in the Baiyun deep-water area, northern margin of the South China Sea. Although these canyons are commonly characterized by regular spacing and a straight-line shape, they vary in their lengths, starting and ending water depths, canyon relief, slope gradients, wall slope gradients and depth profiles along the axis. The eastern canyons (C1–C8) have complex surface features, low values in their slope gradient, canyon relief and wall slope gradient and high values in their length and starting and ending depth contrasting to the western ones (C9–C17). From the bathymetric data and chirp profiles, we interpret two main processes that have controlled the morphology and evolution of the canyons: axial incision and landsliding. The western part of the shelf margin where there were at least four stages of submerged reefs differs from the eastern part of the shelf margin where sedimentary undulations occurred at a water depth of ~650 m. We consider that the variation in morphology of submarine canyons in the study area is the result of multiple causes, with the leading cause being the difference in stability of the upper slope which is related to the submerged reefs and sedimentary undulations.  相似文献   

20.
The widespread occurrence of microbialites in the last deglacial reef frameworks (16–6 Ka BP) implies that the accurate study of their development patterns is of prime importance to unravel the evolution of reef architecture through time and to reconstruct the reef response to sea-level variations and environmental changes.The present study is based on the sedimentological and chronological analysis (14C AMS dating) of drill cores obtained during the IODP Expedition #310 “Tahiti Sea Level” on the successive terraces which typify the modern reef slopes from Tahiti. It provides a comprehensive data base to investigate the microbialite growth patterns (i.e. growth rates and habitats), to analyze their roles in reef frameworks and to reconstruct the evolution of the reef framework architecture during sea-level rise.The last deglacial reefs from Tahiti are composed of two distinctive biological communities: (1) the coralgal communities including seven assemblages characterized by various growth forms (branching, robust branching, massive, tabular and encrusting) that form the initial frameworks and (2) the microbial communities developed in the primary cavities of those frameworks, a few meters (1.5 to 6 m) below the living coral reef surface, where they heavily encrusted the coralgal assemblages to form microbialite crusts. The dating results demonstrate the occurrence of two distinctive generations of microbialites: the “reefal microbialites” which developed a few hundred years after coralgal communities in shallow-water environments, whereas the “slope microbialites” grew a few thousands of years later in significantly deeper water conditions after the demise of coralgal communities.The development of microbialites was controlled by the volume and the shape of the primary cavities of the initial reef frameworks determined by the morphology and the packing of coral colonies. The most widespread microbialite development occurred in frameworks dominated by branching, thin encrusting, tabular and robust branching coral colonies which built loose and open frameworks typified by a high porosity (> 50%). In contrast, their growth was minimal in compact coral frameworks formed by massive and thick encrusting corals where primary cavities yielded a low porosity (~ 30%) and could not host a significant microbialite expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号