首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 352 毫秒
1.
Field and experimental investigations demonstrate the chemistry of mid-ocean ridge hydrothermal vent fluids reflects fluid-mineral reaction at higher temperatures than those typically measured at the seafloor. To account for this and, in turn, be able to better constrain sub-seafloor hydrothermal processes, we have developed an empirical geothermometer based on the dissolved Fe/Mn ratio in high-temperature fluids. Using data from basalt alteration experiments, the relationship; T (°C) = 331.24 + 112.41*log[Fe/Mn] has been calibrated between 350 and 450 °C. The apparent Fe-Mn equilibrium demonstrated by the experimental data is in good agreement with natural vent fluids, suggesting broad applicability. When used in conjunction with constraints imposed by quartz solubility, associated sub-seafloor pressures can be estimated for basalt-hosted systems. As an example, this methodology is used to interpret new data from 13°N on the East Pacific Rise, where high-temperature fluids both enriched and depleted in chloride (339-646 mmol/kg), relative to seawater, are actively venting within a close proximity. Accounting for these variable salinities, active phase separation is clearly taking place at 13°N, yet the fluid Fe/Mn ratios and the silica concentrations suggest equilibration at temperatures less than those coinciding with the two-phase region. These data show the chloride-enriched fluid reflects the highest temperature and pressure (∼432 °C, 400 bars) of equilibration, consistent with circulation near the top of the inferred magma chamber. This is in agreement with the elevated CO2 concentration relative to the chloride-depleted fluids. The noted temperature derived from the Fe/Mn geothermometer is higher than the critical temperature for a fluid of equivalent salinity. This carries the important implication that, despite being chloride-enriched relative to seawater, these fluids evolved as the vapor component of even higher salinity brine.  相似文献   

2.
A unique dataset from paired low- and high-temperature vents at 9°50′N East Pacific Rise provides insight into the microbiological activity in low-temperature diffuse fluids. The stable carbon isotopic composition of CH4 and CO2 in 9°50′N hydrothermal fluids indicates microbial methane production, perhaps coupled with microbial methane consumption. Diffuse fluids are depleted in 13C by ∼10‰ in values of δ13C of CH4, and by ∼0.55‰ in values of δ13C of CO2, relative to the values of the high-temperature source fluid (δ13C of CH4 =−20.1 ± 1.2‰, δ13C of CO2 =−4.08 ± 0.15‰). Mixing of seawater or thermogenic sources cannot account for the depletions in 13C of both CH4 and CO2 at diffuse vents relative to adjacent high-temperature vents. The substrate utilization and 13C fractionation associated with the microbiological processes of methanogenesis and methane oxidation can explain observed steady-state CH4 and CO2 concentrations and carbon isotopic compositions. A mass-isotope numerical box model of these paired vent systems is consistent with the hypothesis that microbial methane cycling is active at diffuse vents at 9°50′N. The detectable 13C modification of fluid geochemistry by microbial metabolisms may provide a useful tool for detecting active methanogenesis.  相似文献   

3.
The Rainbow hydrothermal field is located at 36°13.8′N-33°54.15′W at 2300 m depth on the western flank of a non-volcanic ridge between the South AMAR and AMAR segments of the Mid-Atlantic Ridge. The hydrothermal field consists of 10-15 active chimneys that emit high-temperature (∼365 °C) fluid. In July 2008, vent fluids were sampled during cruise KNOX18RR, providing a rich dataset that extends in time information on subseafloor chemical and physical processes controlling vent fluid chemistry at Rainbow. Data suggest that the Mg concentration of the hydrothermal end-member is not zero, but rather 1.5-2 mmol/kg. This surprising result may be caused by a combination of factors including moderately low dissolved silica, low pH, and elevated chloride of the hydrothermal fluid. Combining end-member Mg data with analogous data for dissolved Fe, Si, Al, Ca, and H2, permits calculation of mineral saturation states for minerals thought appropriate for ultramafic-hosted hydrothermal systems at temperatures and pressures in keeping with constraints imposed by field observations. These data indicate that chlorite solid solution, talc, and magnetite achieve saturation in Rainbow vent fluid at a similar pH(T,P) (400 °C, 500 bar) of approximately 4.95, while higher pH values are indicated for serpentine, suggesting that serpentine may not coexist with the former assemblage at depth at Rainbow. The high Fe/Mg ratio of the Rainbow vent fluid notwithstanding, the mole fraction of clinochlore and chamosite components of chlorite solid solution at depth are predicted to be 0.78 and 0.22, respectively. In situ pH measurements made at Rainbow vents are in good agreement with pH(T,P) values estimated from mineral solubility calculations, when the in situ pH data are adjusted for temperature and pressure. Calculations further indicate that pH(T,P) and dissolved H2 are extremely sensitive to changes in dissolved silica owing to constraints imposed by chlorite solid solution-fluid equilibria. Indeed, the predicted correlation between dissolved silica and H2 defines a trend that is in good agreement with vent fluid data from Rainbow and other high-temperature ultramafic-hosted hydrothermal systems. We speculate that the moderate concentrations of dissolved silica in vent fluids from these systems result from hydrothermal alteration of plagioclase and olivine in the form of subsurface gabbroic intrusions, which, in turn are variably replaced by chlorite + magnetite + talc ± tremolite, with important implications for pH lowering, dissolved sulfide concentrations, and metal mobility.  相似文献   

4.
Low temperature vent fluids (<91 °C) issuing from the ultramafic-hosted hydrothermal system at Lost City, 30°N Mid-Atlantic Ridge, are enriched in dissolved volatiles (H2,CH4) while attaining elevated pH values, indicative of the serpentization processes that govern water/rock interactions deep in the oceanic crust. Here, we present a series of theoretical models to evaluate the extent of hydrothermal alteration and assess the effect of cooling on the systematics of pH-controlled B aqueous species. Peridotite-seawater equilibria calculations indicate that the mineral assemblage composed of diopside, brucite and chrysotile likely dictates fluid pH at moderate temperature serpentinization processes (<300 °C), by imposing constraints on the aCa++/a2H+ ratios and the activity of dissolved SiO2. Based on Sr abundances and the 87Sr/86Sr isotope ratios of vent fluids reported from Lost City, estimated water/rock mass ratios (w/r = 2-4) are consistent with published models involving dissolved CO2 and alkane concentrations. Combining the reported δ18O values of vent fluids (0.7‰) with such w/r mass ratios, allows us to bracket subseafloor reaction temperatures in the vicinity of 250 °C. These estimates are in agreement with previous theoretical studies supporting extensive conductive heat loss within the upflow zones. Experimental studies on peridotite-seawater alteration suggest that fluid pH increases during cooling which then rapidly enhances boron removal from solution and incorporation into secondary phases, providing an explanation for the highly depleted dissolved boron concentrations measured in the low temperature but alkaline Lost City vent fluids. Finally, to account for the depleted 11B composition (δ11B ∼25-30‰) of vent fluids relative to seawater, isotopic fractionation between tetrahedrally coordinated aqueous boron species with BO3-bearing mineral sites (e.g. in calcite, brucite) is proposed.  相似文献   

5.
Olivine (Fo89), orthopyroxene (En85), and clinopyroxene (Di89) were reacted, individually and in combinations, with NaCl-MgCl2 at 400°C, 500 bars to better assess alteration and mass transfer in ultramafic-hosted hydrothermal systems at mid-ocean ridges. Data indicate that temperature plays a key role in mineral solubility and kinetic processes, which influence the compositional evolution of the fluid. At the temperature and pressure of the experiments, the rate of olivine hydrolysis is sluggish as indicated by the limited extent of mass transfer between the fluid and mineral and absence of hydrous alteration phases. In contrast, reactions involving pyroxenes proceed rapidly, which result in significant increases in dissolved Ca, SiO2, Fe and H2, and formation of SiO2-rich secondary minerals (talc and tremolite) and magnetite. SiO2 release from pyroxene occurs in non-stoichiometric proportions and is a critical factor governing the stability of secondary minerals, with attendant effects on fluid chemistry.Magnetite and talc-fluid equilibria were used to calculate fluid pH at elevated temperatures and pressures. In general, pH is relatively low in the orthopyroxene- and clinopyroxene-bearing experiments due to constraints imposed by talc-fluid and talc-tremolite-fluid equilibria, respectively. Even in experiments where the olivine/pyroxene ratio is as great as 3, which is typical for abyssal peridotite, the low pH and high Fe concentrations are maintained. This is in sharp contrast to theoretical predictions assuming full equilibrium in the MgO-CaO-FeO-Fe2O3-SiO2-Na2O-H2O-HCl system at 400°C, 500 bars.Ultramafic-hosted hydrothermal systems, such as the recently discovered Rainbow system at 36°13.80′N, 33°54.12′W on the Mid-Atlantic Ridge, indicate reaction processes in keeping with results of the present experiments, as suggested by vent fluid chemistry and temperature. In particular, relatively high SiO2, Ca, H2, and Fe concentrations characterize the Rainbow vent fluids. Indeed, Fe concentrations are the highest of any vent system yet discovered and require a relatively low pH in the subseafloor reaction zone from which the fluids are derived. This, together with the SiO2 concentrations of the vent fluids, strongly indicates fluid buffering by silica-rich phases produced during pyroxene dissolution, the likely abundant presence of olivine notwithstanding. Time-series observations at Rainbow are clearly needed to better constrain the temporal evolution of hydrothermal alteration processes of ultramafic rocks in subseafloor reaction zones. In the absence of events permitting fluid continuous access to fresh rock, pyroxene will ultimately be consumed and vent fluids may then reflect changes imposed by bulk compositional constraints characteristic of ultramafic bodies at depth, which would be in better agreement with theoretical phase relations for the fully equilibrated system.  相似文献   

6.
Experiments were conducted to investigate the partitioning of Li, Br, Rb, Cs and B between vapor, brine and halite during subcritical and supercritical phase separation in the NaCl-H2O system (388-550 °C, 250-350 bars). Results indicate that Li and Br partition preferentially into the low-salinity vapor fluids, while Rb and Cs become more enriched in the coexisting brines. Under more extreme conditions of pressure and temperature in the two-phase region, especially near the vapor-brine-halite boundary, strong salting-out effects imposed on neutral aqueous species enhance significantly partitioning of all trace elements into the low-salinity fluid. Dissolved boron is strongly affected by this and a particularly strong enrichment into vapors is observed, a trend that can be effectively correlated with changes in reduced density. Exclusion of Li, Br, Rb, Cs and B from halite, when precipitated, further increases the solubility of these species in the coexisting Cl-poor fluid. In general, the lack of distortion in the partitioning behavior of trace elements between vapor, brine and/or halite with the transition from subcritical to supercritical conditions in the NaCl-H2O system precludes the need for special reference to the critical point of seawater when interpreting phase relations in submarine hydrothermal systems. The combination of experimentally determined trace element partitioning data with constraints imposed by mineral solubility provides a means to better understand the origin and evolution of hot spring vent fluids. For example, in Brandon hydrothermal system (21°S EPR) supercritical phase separation and subseafloor mixing appear to be the main heat and mass transport mechanisms fueled by a shallow magmatic intrusion, with boron systematics ruling out major contributions from magmatic degassing processes accompanying the near-seafloor volcanism.  相似文献   

7.
Dissolved iron profiles along a north-south transect along 158°W in the tropical Pacific show evidence of two deepwater anomalies. The first extends from Station ALOHA (22.78°N) to the equator at ∼1000-1500 m and lies below the maximum apparent oxygen utilization and nutrient (N, P) concentrations. The feature is not supported by vertical export processes, but instead corresponds with the lateral dilution field of δ3He derived from the Loihi seamount, Hawaii, though a sediment source associated with the Hawaiian Island Chain cannot be entirely ruled out. The second, deeper (2000-3000 m) anomaly occurs in tropical South Pacific waters (7°S) and also does not correlate with the depths of maximum nutrient concentrations or apparent oxygen utilization, but it does coincide closely with δ3He emanating from the East Pacific Rise, more than 5000 km to the east. We hypothesize that these anomalies represent the long-range (>2000 km) transport of hydrothermal iron residuals, stabilized against scavenging by complexation with excess organic ligands in the plume source regions. Such trace leakage of hydrothermal iron to distal plume regions would have been difficult to identify in most hydrothermal vent mapping studies because low analytical detection limits were not needed for the proximal plume regions. These findings suggest that hydrothermal activity may represent a major source of dissolved iron throughout the South Pacific deep basin today, as well as other regions having high mid-ocean spreading rates in the geologic past. In particular, we hypothesize that high spreading rates along the South Atlantic and Southern Ocean mid-oceanic ridges, combined with the upwelling ventilation of these distal hydrothermal plumes, may have increased ocean productivity and carbon export in the Southern Ocean. Assessing the magnitude and persistence of dissolved hydrothermal iron in basin scale deep waters will be important for understanding the marine biogeochemistry of iron and, potentially, on ocean productivity and climate change during the geologic past.  相似文献   

8.
Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or near-arc crustal settings remain poorly constrained despite growing evidence for extensive magmatic-hydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273-285 °C) and major element compositions, low dissolved CO2 concentrations (4.4 mmol/kg) and high measured pH (4.2-4.9 at 25 °C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358 °C) fluid. All PACMANUS fluids are characterized by negative δDH2O values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25 °C) values (∼2.6-2.7), high endmember CO2 (up to 274 mmol/kg) and negative δ34SH2S values (down to −2.7‰) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO2 at PACMANUS is more enriched in 13C (−4.1‰ to −2.3‰) than Vienna Woods (−5.2‰ to −5.7‰), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus Spreading Center. Variations in alkali and dissolved gas abundances with Cl at PACMANUS and NE Pual suggest that phase separation has affected fluid chemistry despite the low temperatures of many vents. In further contrast to Vienna Woods, substantial modification of PACMANUS/NE Pual fluids has taken place as a result of seawater ingress into the upflow zone. Consistently high measured Mg concentrations as well as trends of increasingly non-conservative SO4 behavior, decreasing endmember Ca/Cl and Sr/Cl ratios with increased Mg indicate extensive subsurface anhydrite deposition is occurring as a result of subsurface seawater entrainment. Decreased pH and endmember Fe/Mn ratios in higher Mg fluids indicate that the associated mixing/cooling gives rise to sulfide deposition and secondary acidity production. Several low temperature (?80 °C) fluids at PACMANUS/NE Pual also show evidence for anhydrite dissolution and water-rock interaction (fixation of B) subsequent to seawater entrainment. Hence, the evolution of fluid compositions at Pual Ridge reflects the cumulative effects of water/rock interaction, admixing and reaction of fluids exsolved from silicic magma, phase separation/segregation and seawater ingress into upflow zones.  相似文献   

9.
We present a detailed study of the co-diagenesis of Fe and P in hydrothermal plume fallout sediments from ∼19°S on the southern East Pacific Rise. Three distal sediment cores from 340-1130 km from the ridge crest, collected during DSDP Leg 92, were analysed for solid phase Fe and P associations using sequential chemical extraction techniques. The sediments at all sites are enriched in hydrothermal Fe (oxyhydr)oxides, but during diagenesis a large proportion of the primary ferrihydrite precipitates are transformed to the more stable mineral form of goethite and to a lesser extent to clay minerals, resulting in the release to solution of scavenged P. However, a significant proportion of this P is retained within the sediment, by incorporation into secondary goethite, by precipitation as authigenic apatite, and by readsorption to Fe (oxyhydr)oxides. Molar P/Fe ratios for these sediments are significantly lower than those measured in plume particles from more northern localities along the southern East Pacific Rise, and show a distinct downcore decrease to a depth of ∼12 m. Molar P/Fe ratios are then relatively constant to a depth of ∼35 m. The Fe and P speciation data indicate that diagenetic modification of the sediments is largely complete by a depth of 2.5 m, and thus depth trends in molar P/Fe ratios can not solely be explained by losses of P from the sediment by diffusion to the overlying water column during early diagenesis. Instead, these sediments are likely recording changes in dissolved P concentrations off the SEPR, possibly as a result of redistribution of nutrients in response to changes in oceanic circulation over the last 10 million years. Furthermore, the relatively low molar P/Fe ratios observed throughout these sediments are not necessarily solely due to losses of scavenged P by diffusion to the overlying water column during diagenesis, but may also reflect post-depositional oxidation of pyrite originating from the volatile-rich vents of the southern East Pacific Rise. This study suggests that the molar P/Fe ratio of oxic Fe-rich sediments may serve as a proxy of relative changes in paleoseawater phosphate concentrations, particularly if Fe sulfide minerals are not an important component during transport and deposition.  相似文献   

10.
Two submarine hydrothermal vent fields at 5°S, Mid-Atlantic Ridge (MAR) - Turtle Pits and Comfortless Cove - emanate vapor-phase fluids at conditions close to the critical point of seawater (407 °C, 298 bars). In this study, the concentration and distribution of rare earth element (REE) and yttrium (Y) has been investigated. Independent of the major element composition, the fluids display a strong temporal variability of their REE + Y concentrations and relative distributions at different time scales of minutes to years. Chondrite-normalized distributions range from common fluid patterns with light REE enrichment relative to the heavy REE, accompanied by positive Eu anomalies (type I), to strongly REE + Y enriched patterns with a concave-downward distribution with a maximum enrichment of Sm and weakly positive or even negative Eu anomalies (type II). The larger the sum of REE, the smaller CeCN/YbCN and Eu/Eu∗. We also observed a strong variability in fluid flow and changing fluid temperatures, correlating with the compositional variability.As evident by the positive correlation of total REE, Ca, and Sr concentrations in Turtle Pits and Comfortless Cove fluids, precipitation/dissolution of hydrothermal anhydrite controls the variability in REE concentrations and distributions in these fluids and the transformation of one fluid type to the other. The variable distribution of REE can be explained by the accumulation of particulate anhydrite (with concave-downward REE distribution and negative Eu anomaly) into a fluid with common REE distribution (type I), followed by the modification of the REE fluid signature due to dissolution of incorporated anhydrite. A second model, in which the type II fluids represent a primary REE reaction zone fluid pattern, which is variably modified by precipitation of anhydrite, can also explain the observed correlations of total REE, fractionation of LREE/HREE and size of Eu anomaly as well as Ca, Sr. The emanation of such a fluid may be favored in a young hydrothermal system in its high-activity phase with short migration paths and limited exchange with secondary minerals. However, this model is not as well constrained as the other and requires further investigations.The strongly variable REE fluid signature is restricted to the very hot, actively phase-separating hydrothermal systems Turtle Pits and Comfortless Cove at 5°S and has not been observed at the neighboring Red Lion vent field, which continuously emanates 350 °C hot fluid and displays a stable REE distribution (type I).  相似文献   

11.
The geochemical partitioning of bromine between hydrous haplogranitic melts, initially enriched with respect to Br and aqueous fluids, has been continuously monitored in situ during decompression. Experiments were carried out in diamond anvil cells from 890 °C to room temperature and from 1.7 GPa to room pressure, typically from high P, T conditions corresponding to total miscibility (presence of a supercritical fluid). Br contents were measured in aqueous fluids, hydrous melts and supercritical fluids. Partition coefficients of bromine were characterized at pressure and temperature between fluids, hydrous melts and/or glasses, as appropriate: DBrfluid/melt = (Br)fluid/(Br)melt, ranges from 2.18 to 9.2 ± 0.5 for conditions within the ranges 0.66-1.7 GPa, 590-890 °C; and DBrfluid/glass = (Br)fluid/(Br)glass ranges from 60 to 375 at room conditions. The results suggest that because high pressure melts and fluids are capable of accepting high concentrations of bromine, this element may be efficiently removed from the slab to the mantle source of arc magmas. We show that Br may be highly concentrated in subduction zone magmas and strongly enriched in subduction-related volcanic gases, because its mobility is strongly correlated with that of water during magma degassing. Furthermore, our experimental results suggest that a non negligible part of Br present in the subducted slab may remain in the down-going slab, being transported toward the transition zone. This indicates that the Br cycle in subduction zones is in fact divided in two related but independent parts: (1) a shallower one where recycled Br may leave the slab with a water and silica-bearing “fluid” leading to enriched arc magmas that return Br to the atmosphere. (2) A deeper cycle where Br may be recycled back to the mantle maybe to the transition zone, where it may be present in high pressure water-rich metasomatic fluids.  相似文献   

12.
The solubility of nantokite (CuCl(s)) and the structure of the predominant copper species in supercritical water (290-400 bar at 420 °C; 350-450 °C at 290 bar; 500 °C at 350 bar; density = 0.14-0.65 g/cm3) were investigated concurrently using synchrotron X-ray absorption spectroscopy (XAS) techniques. These conditions were chosen as they represent single phase solutions near the critical isochore, where the fluid density is intermediate of typical values for vapour and brine and is highly sensitive to even small changes in pressure. X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption spectroscopy (EXAFS) analyses show that aqueous copper occurs in a slightly distorted linear coordination in the solutions studied, with an average of 1.35(±0.3) Cl and 0.65(±0.3) O neighbours. The solubility of CuCl(s) decreases exponentially with decreasing water density (i.e., decreasing pressure at constant temperature), in a manner similar to the solubility behaviour of salts such as NaCl in water vapour. Based on this similarity, an apparent equilibrium constant for the dissolution reaction of 0.5 ± 0.4 was calculated from a regression of the data at 420 °C, and it was determined that each Cu atom is solvated by approximately three water molecules. This indicates that under these conditions, copper solubility is controlled mainly by the structure of the second-shell hydration, which is essentially invisible to the XAS techniques used in this study.These results demonstrate that for a supercritical fluid near the critical isochore, decreasing pressure may initiate precipitation of copper even before boiling or phase separation. Such a process could be responsible for near-surface ore deposition in seafloor hydrothermal systems, where supercritical fluids experience rapid pressure changes during the transition between lithostatic and hydrostatic domains.  相似文献   

13.
Chemical analyses yielding elemental concentrations of major and minor elements of four hot springs on the East Pacific Rise at 21°N and 10 hot springs from the southern trough of the Guaymas Basin, Gulf of California provide a basis for thermodynamic modeling of conductive cooling of the hydrothermal endmembers, mixing of the hydrothermal endmember with seawater, and reaction of an EPR-type fluid with sediment of bulk chemical composition corresponding to unaltered sediment from DSDP hole 477 in the Guaymas Basin. Results of the calculations indicate that conductive cooling of endmember fluids within closed chimneys and conduits accounts for the solution composition of one vent on the East Pacific Rise and several vents in Guaymas Basin. Mixing of the hydrothermal fluids with seawater yields a prediction of mineral assemblages closely approximating those observed in samples of chimneys from the East Pacific Rise and drill cores in Guaymas Basin. The hypothesis that Guaymas Basin hydrothermal fluids result from interaction of an EPR-type fluid with sediment cover in Guaymas Basin is supported by calculations which predict an increase in pH to a value similar to Guaymas Basin fluids, an order-of-magnitude decrease in metal concentrations, and an excellent agreement between predicted mineral assemblages as a function of extent of interaction with sediment, and observed mineral assemblage distribution with depth.  相似文献   

14.
The structure of silicate melts in the system Na2O·4SiO2 saturated with reduced C-O-H volatile components and of coexisting silicate-saturated C-O-H solutions has been determined in a hydrothermal diamond anvil cell (HDAC) by using confocal microRaman and FTIR spectroscopy as structural probes. The experiments were conducted in-situ with the melt and fluid at high temperature (up to 800 °C) and pressure (up to 1435 MPa). Redox conditions in the HDAC were controlled with the reaction, Mo + H2O = MoO+ H2, which is slightly more reducing than the Fe + H2O = FeO + H2 buffer at 800 °C and less.The dominant species in the fluid are CH4 + H2O together with minor amounts of molecular H2 and an undersaturated hydrocarbon species. In coexisting melt, CH3 - groups linked to the silicate melt structure via Si-O-CH3 bonding may dominate and possibly coexists with molecular CH4. The abundance ratio of CH3 - groups in melts relative to CH4 in fluids increases from 0.01 to 0.07 between 500 and 800 °C. Carbon-bearing species in melts were not detected at temperatures and pressures below 400 °C and 730 MPa, respectively. A schematic solution mechanism is, Si-O-Si + CH4?Si-O-CH3+H-O-Si. This mechanism causes depolymerization of silicate melts. Solution of reduced (C-O-H) components will, therefore, affect melt properties in a manner resembling dissolved H2O.  相似文献   

15.
The geochemical effects of brine and supercritical CO2 (SCCO2) on reservoir rocks from deep (1500–2000 m) saline aquifers were examined via experimental simulation at in situ conditions. Dry sandstone samples were mounted in a triaxial cell and autoclave system, evacuated, and saturated with 1 M NaCl solution. The brine-rock system was allowed to react at 30 MPa confining pressure, 15 MPa pore fluid pressure, and 60 °C while SCCO2 was injected at a pressure gradient of 1–2 MPa. The experiment was conducted for a period of 1496 h, during which fluids were periodically sampled and analyzed. The pH measured in partially degassed fluid samples at 25 °C decreased from a starting value of 7.0–4.3 (9 days) and finally 5.1 after saturation with SCCO2.  相似文献   

16.
In the spring of 1979, 350°C springs precipitating hydrothermal sulphides and sulphates directly on to the sea-floor were discovered on the crest of the East Pacific Rise (EPR) at 21°N by the astonished scientific party of the RISE submersible expedition. These hot springs are within a linear field of active and inactive hydrothermal vents extending 6 km along the rise axis. Typically the mineral deposits at EPR, 21°N consist of basal sulphide mounds surmounted by mineralized sulphide-sulphate edifices, or “chimneys”, reaching heights up to 13 m above the sea floor. The mounds rest directly on fresh basalt and cover areas up to 450 m2. Chimneys atop mounds may be active or dead. The hottest active chimneys (350°C) spew forth fluids blackened by fine-grained sulphide precipitates, dominantly hexagonal pyrrhotite and iron-rich sphalerite. These “black smokers” are distinguished from cooler “white smoker” chimneys which are encrusted by worm tubes and emit milky fluids bearing amorphous silica, barite, and pyrite.  相似文献   

17.
Hydrothermal vent fluids from Middle Valley, a sediment-covered vent field located on the northern Juan de Fuca Ridge, were sampled in July, 2000. Eight different vents with exit temperatures of 186-281 °C were sampled from two areas of venting: the Dead Dog and ODP Mound fields. Fluids from the Dead Dog field are characterized by higher concentrations of ΣNH3 and organic compounds (C1-C4 alkanes, ethene, propene, benzene and toluene) compared with fluids from the ODP Mound field. The ODP Mound fluids, however, are characterized by higher C1/(C2 + C3) and benzene:toluene ratios than those from the Dead Dog field. The aqueous organic compounds in these fluids have been derived from both bacterial processes (methanogenesis in low temperature regions during recharge) as well as from thermogenic processes in higher temperature portions of the subsurface reaction zone. As the sediments undergo hydrothermal alteration, carbon dioxide and hydrocarbons are released to solution as organic matter degrades via a stepwise oxidation process. Compositional and isotopic differences in the aqueous hydrocarbons indicate that maximum subsurface temperatures at the ODP Mound are greater than those at the Dead Dog field. Maximum subsurface temperatures were calculated assuming that thermodynamic equilibrium is attained between alkenes and alkanes, benzene and toluene, and carbon dioxide and methane. The calculated temperatures for alkene-alkane equilibrium are consistent with differences in the dissolved Cl concentrations in fluids from the two fields, and confirm that subsurface temperatures at the ODP Mound are hotter than those at the Dead Dog field. Temperatures calculated assuming benzene-toluene equilibrium and carbon dioxide-methane equilibrium are similar to observed exit temperatures, and do not record the hottest subsurface conditions. The difference in subsurface temperatures estimated using organic geochemical thermometers reflects subsurface cooling processes via mixing of a hot, low salinity vapor with a cooler, seawater salinity fluid. Because of the disparate temperature dependence of alkene-alkane and benzene-toluene equilibria, the mixed fluid records both the high and low temperature equilibrium conditions. These calculations indicate that vapor-rich fluids are presently being formed in the crust beneath the ODP Mound, yet do not reach the surface due to mixing with the lower temperature fluids.  相似文献   

18.
High-pressure liquids in the MgO-SiO2-H2O (MSH) system have been investigated at 11 and 13.5 GPa and between 1000 and 1350 °C. A bulk composition more magnesian than the tie-line forsterite-H2O was employed for the study. Rocking multi-anvil experiments were combined with a diamond trap set-up. After termination of the experiments, the liquid trapped in the diamond layer was analysed by laser ablation ICP-MS using the ‘freezing’ technique. At 11 GPa, liquids coexist with one or two of phase A, clinohumite, chondrodite, and forsterite. A marked discontinuity in the evolution of liquid compositions near 1100 °C is observed at 11 GPa. A step of ∼13 wt% H2O and 13 wt% MgO is interpreted to result from overstepping the fluid-saturated solidus reaction mass balanced to 1.00(18) phase A + 1.07(4) fluid = 0.63(15) chondrodite + 1.44(2) melt. At 13.5 GPa liquids coexist with one or two of hydrous wadsleyite, clinohumite, superhydrous B, phase B, and forsterite. The discontinuity in liquid composition is no longer present, indicating that the second critical endpoint of the solidus has been overstepped. Thus, hydrous melts in the Mg-rich part of the MSH system (molar bulk Mg/Si > 2) are chemically distinct from aqueous fluids at pressure up to 11 GPa. Convergence of fluid and melt compositions along the solidus resulting in a supercritical liquid occurs between 11 and 13.5 GPa, at which pressure the entire MSH system becomes supercritical.  相似文献   

19.
The structure of H2O-saturated silicate melts and of silicate-saturated aqueous solutions, as well as that of supercritical silicate-rich aqueous liquids, has been characterized in-situ while the sample was at high temperature (to 800 °C) and pressure (up to 796 MPa). Structural information was obtained with confocal microRaman and with FTIR spectroscopy. Two Al-bearing glasses compositionally along the join Na2O•4SiO2-Na2O•4(NaAl)O2-H2O (5 and 10 mol% Al2O3, denoted NA5 and NA10) were used as starting materials. Fluids and melts were examined along pressure-temperature trajectories of isochores of H2O at nominal densities (from PVT properties of pure H2O) of 0.85 g/cm3 (NA10 experiments) and 0.86 g/cm3 (NA5 experiments) with the aluminosilicate + H2O sample contained in an externally-heated, Ir-gasketed hydrothermal diamond anvil cell.Molecular H2O (H2O°) and OH groups that form bonds with cations exist in all three phases. The OH/H2O° ratio is positively correlated with temperature and pressure (and, therefore, fugacity of H2O, fH2O) with (OH/H2O°)melt > (OH/H2O°)fluid at all pressures and temperatures. Structural units of Q3, Q2, Q1, and Q0 type occur together in fluids, in melts, and, when outside the two-phase melt + fluid boundary, in single-phase liquids. The abundance of Q0 and Q1 increases and Q2 and Q3 decrease with fH2O. Therefore, the NBO/T (nonbridging oxygen per tetrahedrally coordination cations), of melt is a positive function of fH2O. The NBO/T of silicate in coexisting aqueous fluid, although greater than in melt, is less sensitive to fH2O.The melt structural data are used to describe relationships between activity of H2O and melting phase relations of silicate systems at high pressure and temperature. The data were also combined with available partial molar configurational heat capacity of Qn-species in melts to illustrate how these quantities can be employed to estimate relationships between heat capacity of melts and their H2O content.  相似文献   

20.
Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different Δ33S (≡δ33S-0.515 δ34S) values of up to 0.04‰ even if δ34S values are identical. Detection of such small Δ33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006‰ (2σ).Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10°N, 13°N, and 21°S and Mid-Atlantic Ridge (MAR) 37°N yield Δ33S values ranging from −0.002 to 0.033 and δ34S from −0.5‰ to 5.3‰. The combined δ34S and Δ33S systematics reveal that 73 to 89% of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27% from seawater-derived sulfate. Pyrite from EPR 13°N and marcasite from MAR 37°N are in isotope disequilibrium not only in δ34S but also in Δ33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low Δ33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among seawater, oceanic crust and microbes in subseafloor hydrothermal sulfur cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号