首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We performed ion irradiation of mineral samples with 50 keV He+, aimed to investigate ion irradiation effects on diagnostic spectral features. Reflectance spectra of samples in 0.375–2.5 μm are measured before and after ion irradiation. Silicates, including Luobusha olivine, plagioclase and basaltic glass, have shown reddening and darkening of reflectance spectra at the VIS–NIR range. Olivine is more sensitive to ion irradiation than plagioclase and basaltic glass. Irradiated Panzhihua ilmenite exhibits higher reflectance and stronger absorption features, which is totally different from lunar soil and analog silicate materials in other experiments. Using continuum removal and MGM fit, we extracted and compared absorption features of olivine spectra before and after irradiation. Ion irradiation can induce band strength decrease of olivine but negligible band centers shift. We estimate band centers shift caused by ion irradiation are quite limited, even less than variations due to chemical composition in silicates. It provides one possible explanation for no systematic shift in band positions in lunar soil. Irradiated Luobusha olivine spectrum matches spectra of olivine-dominated asteroids. Our results suggest space weathering should be new clues to explain the subtle difference between A-type asteroid spectra and laboratory spectra of olivine.  相似文献   

2.
To ascertain the importance of sputtering by solar wind ions on the formation of a sodium exosphere around Mercury and the Moon, we have irradiated with 4 keV He ions, the Na bearing tectosilicates: albite, labradorite, and anorthoclase, as well as adsorbed Na layers deposited on albite and on olivine (a neosilicate that does not contain Na). Sodium at the surface and near surface (<40 Å) was quantified with X-ray photoelectron spectroscopy before and after each irradiation to determine the depletion cross section. We measured a cross section for sputtering of Na adsorbed on mineral surfaces, σs  1 × 10?15 cm2 atom?1. In addition, mass spectrometric analyses of the sputtered flux show that a large fraction of the Na is sputtered as ions rather than as neutral atoms. These results have strong implications for modeling the sodium population within the mercurian and the lunar exospheres.  相似文献   

3.
We report new nitrogen and argon isotope and abundance results for single breccia clasts and agglutinates from four different sections of the Luna 24 drill core in order to re-evaluate the provenance of N trapped in lunar regolith, and to place limits on the flux of planetary material to the Moon’s surface. Single Luna 24 grains with 40Ar/36Ar ratios <1 show δ15N values between ?54.5‰ and +123.3‰ relative to terrestrial atmosphere. Thus, low-antiquity lunar soils record both positive and negative δ15N signatures, and the secular increase of the δ15N value previously postulated by Kerridge (Kerridge, J.F. [1975]. Science 188(4184), 162–164. doi:10.1126/science.188.4184.162) is no longer apparent when the Luna and Apollo data are combined. Instead, the N isotope signatures, corrected for cosmogenic 15N, are consistent with binary mixing between isotopically light solar wind (SW) N and a planetary N component with a δ15N value of +100‰ to +160‰. The lower δ15N values of Luna 24 grains compared to Apollo samples reflect a higher relative proportion of solar N, resulting from the higher SW fluence in the region of Mare Crisium compared to the central near side of the Moon. Carbonaceous chondrite-like micro-impactors match well the required isotope characteristics of the non-solar N component trapped in low-antiquity lunar regolith. In contrast, a possible cometary contribution to the non-solar N flux is constrained to be ?3–13%. Based on the mixing ratio of SW to planetary N obtained for recently exposed lunar soils, we estimate the flux of micro-impactors to be (2.2–5.7) × 103 tons yr?1 at the surface of the Moon. Our estimate for Luna 24 agrees well with that for young Apollo regolith, indicating that the supply of planetary material does not depend on lunar location. Thus, the continuous influx of water-bearing cosmic dust may have represented an important source of water for the lunar surface over the past ~1 Ga, provided that water removal rates (i.e., by meteorite impacts, photodissociation, and sputtering) do not exceed accumulation rates.  相似文献   

4.
The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations measured the average radial velocity of sodium atoms moving down the lunar tail beyond Earth (i.e., near the anti-lunar point) to be ~12.5 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15° × 15 ° region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights bracketing new Moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 3° east along the ecliptic per night. Preliminary modeling results suggest the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution. Future observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days.  相似文献   

5.
To study the accretional growth of rimmed chondrules and their agglomerates in the solar nebula, we measured the restitution coefficients, ε, and the sticking velocities to a porous silica layer, vc, by impacting the silica layer with a glass ball at velocities from 0.1 to 80 m s?1. We used a porous silica layer covering a basalt block with thicknesses ranging from 1/5 of the glass ball radius to equal to the glass ball radius as a rimmed chondrule analogue, and the porosity of the silica layer was set to be 70%, 80%, 85%, and 90%. Collisional experiments were conducted by means of the free fall method or by the use of a spring gun or a gas gun, allowing us to vary the impact velocity. We used a laser displacement meter to estimate the impact and rebound velocities as well as the acceleration during the collision at impact velocities below 1 m s?1. As a result, the sticking velocity, vc, of 90%- and 85%- porosity layers with a thickness equal to 1/2 of the glass ball diameter was 0.44 and 2.4 m s?1, respectively. On the other hand, we found a distinct barrier to sticking for smaller-porosity layers: the silicate layer with a porosity smaller than 80% never exhibited sticking at any impact velocity below 1 m s?1. Instead, we observed a rebound effect with restitution coefficients larger than 0.2. In the case of a silica layer with a porosity smaller than 80%, we observed the sub-sticking condition defined by ε < 0.1 at velocities extending from 5 m s?1 to 70 m s?1.  相似文献   

6.
The formation of shocks and shock heating by radiatively damped longitudinal waves in solar magnetic flux tubes of different filling factors is studied. We consider three flux tubes of filling factors: 1%, 20%, and exponentially spreading which represent normal, enhanced network regions and the interior of supergranulation cells respectively. Monochromatic waves with periods 60 s and energy fluxes of 4.0 · 108 erg cm?2 s?1 are assumed to propagate in the tubes. We find that the H?-continuum losses and the Mg II line emission are much reduced in the tube of small filling factor while the mean temperatures are roughly similar in both tubes. The exponential flux tube shows little or no shock heating and no radiation damping. Shocks form earlier in the tube of high filling factor, and have larger strength.  相似文献   

7.
The ZrO molecule has been detected in sunspot umbrae through the identification of following laboratory molecular transitions: 1Σ+ ? X1Σ+ (0, 0), A3Φ2 ? X2Δ1 (0, 0), A3Φ3 ? X2Δ2 (0, 0), A3Φ4 ? X2Δ3 (0, 0), B3Π2 ? X3Δ3 (0, 0), B3Π1 ? X3Δ2 (0, 0) and B3Π0 ? X3Δ1 (0, 0) in red – infrared region using high resolution, visible range Fourier Transform Spectrum of sunspot umbra observed at the National Solar Observatory in Kitt Peak (NSO/KP). Much new identification has been made in the searched spectral wavenumber region from 16650 cm?1 to 18007 cm?1 of sunspot spectrum. Equivalent widths of well resolved lines, versus rotational quantum number J have been used to determine the effective rotational temperature for seven bands of the ZrO molecule. This result agrees well with the temperatures derived for other molecules’ presence in sunspot umbrae. It is evident that ZrO molecular lines are formed in higher layers of the atmosphere of relatively “cold” sunspots.  相似文献   

8.
Most phyllosilicates on Mars appear to be associated with ancient terrains. As such, they may have experienced shock heating produced by impacts and could have been significantly altered or melted. We characterized the effects of high temperatures on the mid-to-far-infrared (mid-to-far-IR) emission (100–1400 cm?1; 7.1–100 μm) and near-infrared (NIR) reflectance (1.2–2.5 μm) spectra of phyllosilicates by measuring experimentally calcined (100–900 °C) phyllosilicates and also two zeolites. Correlated differential scanning calorimetry (DSC) measurements were also performed on each sample to provide insight into the thermal activities of the phyllosilicates and natural zeolites. Our results indicate that all phyllosilicates exhibit characteristic degradations in both NIR and mid-to-far-IR spectral properties between 400 and 800 °C, mainly attributable to the dehydroxylation and recrystallization processes as temperature increases. Spectral features of natural zeolites persist to higher temperatures compared to features of phyllosilicates during heating treatments. The thermal behaviors of phyllosilicate infrared (IR) properties are greatly influenced by the compositions of the octahedral cations: (1) changes in both the NIR and mid-to-far-IR spectra of phyllosilicates tend to occur at lower temperatures (300–400 °C) in the Fe3+-rich samples as compared to the Al3+-rich types (400–600 °C); (2) Mg2+-trioctahedral phyllosilicates hectorite, saponite, and sepiolite all display major mid-to-far-IR spectral changes at 700 °C, corresponding to the formation of enstatite; (3) phyllosilicates that have minor replacement of Mg2+ for Al3+ in octahedral positions (e.g. cheto-type montmorillonite and palygorskite) show an absorption band at ~920 cm?1 that becomes strong at 900 °C. Inconsistency between spectral behaviors in the mid-to-far-IR and NIR regions is also discussed for phyllosilicates. Results from this study have provided suggestive evidence for the scenario that some phyllosilicates could lose all original spectral features in mid-to-far-IR region while maintaining their characteristic hydration bands in NIR region in the same temperature range.  相似文献   

9.
Spectral observations have detected methane within the martian atmosphere (Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M. [2004]. Science 306, 1758–1761; Mumma, M.J. et al. [2009]. Science 323, 1041–1045), however, the origin of the methane has not been determined. Methane clathrate (also referred to as methane hydrate) has been suggested as a potential subsurface reservoir, storing and releasing biologic and/or abiogenic methane. In this study, rates of methane hydrate formation and dissociation were measured experimentally at 234–264 K and 1.4–4.7 MPa to test the clathrate reservoir hypothesis. Initial formation rates range from 4.3 × 10?6 to 8.1 × 10?5 mol m?2 s?1. Results show decreasing rates of formation over time in individual experiments, indicating initial rapid clathration, followed by diffusion-limited transport of methane into the ice through the previously formed hydrate. These experiments indicate increased pressure results in increased formation rates, likely the result of higher concentration gradients, enhancing the methane diffusion flux into the solid phase. Experiments conducted at elevated temperatures produced faster initial rates of formation, resulting from increased kinetic energy of methane molecules and/or thickening of the Quasi-Liquid Layer. Based on this temperature dependence, the activation energy for methane hydrate formation from ice was determined to be 35.9 kJ/mol. Hydrate dissociation experiments initiated by depressurization or warming at conditions between 222 K and 265 K and 0.1–2.0 MPa were conducted following each formation experiment, yielding methane hydrate dissociation rates from 3.01 × 10?6 to 9.92 × 10?5 mol m?2 s?1. While both hydrate dissociation and formation showed decreasing instantaneous rates over the course of each experiment, the transition between the initial rate of dissociation and the interpreted diffusion-limited period of continued dissociation was more abrupt than that observed in formation experiments, supporting an ice shielding effect. The initial concentration of methane in the solid phase had a significant effect on hydrate dissociation rates. Higher methane concentrations in the solid phase produce faster initial rates, likely due to increased concentration gradients, thus increasing the diffusion component of dissociation. Increased temperatures also produced faster dissociation rates, yielding an activation energy for dissociation of 32.7 kJ/mol. The rates determined within this study suggest that small near-surface methane hydrate reservoirs are a feasible source for recent methane plumes detected on Mars. Rates of methane release from gas hydrates also indicate that gas hydrate dissociation may have played a role in forming ancient chaos terrain and associated outflow channels.  相似文献   

10.
Ultraviolet spectra from the International Ultraviolet Explorer (IUE) and from the Hubble Space Telescope (HST) of the symbiotic novae AG Peg during the period 1978–1996 are analyzed. Some spectra showing the modulations of spectral lines at different times are presented. We determined the reddening from the 2200 Å feature, finding that E(B−V) = 0.10 ± 0.02. We studied N IV] at 1486 Å, C IV 1550 Å, and O III] at 1660 Å, produced in the fast wind from the hot white dwarf. The mean wind velocity of the three emission lines is 1300 km s−1 (FWHM). The mean wind mass loss rate is ∼6 × 10−7 M yr−1. The mean temperature is ∼6.5 × 105 K. The mean ultraviolet luminosity is ∼5 × 1033 erg s−1. The modulations of line fluxes in the emitting region at different times are attributed to the variations of density and temperature of the ejected matter as a result of variations in the rate of mass loss.  相似文献   

11.
《New Astronomy》2007,12(6):446-453
Using reliable trigonometric measurements, we find that the absolute magnitude of cataclysmic variables depends on the orbital period and de-reddened (J  H)0 and (H  K s)0 colours of 2MASS (Two Micron All Sky Survey) photometric system. The calibration equation covers the ranges 0.032d < Porb  0.454d, −0.08 < (J  H)0  1.54, −0.03 < (H  Ks)0  0.56 and 2.0 < MJ < 11.7; It is based on trigonometric parallaxes with relative errors of (σπ/π)  0.4. By using the period-luminosity-colours (PLCs) relation, we estimated the distances of cataclysmic variables with orbital periods and 2MASS observations and compared them with distances found from other methods. We suggest that the PLCs relation can be a useful statistical tool to estimate the distances of cataclysmic variables.  相似文献   

12.
We present the two-dimensional distribution of the O2 a1Δ–X3Σ (0–0) band at 1.27 μm and the OH Δv = 1 Meinel airglow measured simultaneously with the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board Venus Express. We show that the two emissions present very similar spatial structures. A cross-correlation analysis indicates that the highest level of correlation is reached with only very small relative shifts of the pairs of images. In spite of the strong spatial correlation between the morphology of the bright spots in the two emissions, we also show that their relative intensity is not constant, in agreement with earlier statistical studies of their limb profiles. We conclude that the two emissions have a common precursor that controls the production of both excited species. We argue that atomic oxygen, which produces O2 (1Δ) molecules by three-body recombination and is the precursor of ozone formation, also governs to a large extent the OH airglow morphology through the H + O3  OH* + O2 reaction.  相似文献   

13.
The South Equatorial Belt (SEB) of Jupiter is known to alternate its appearance at visible wavelengths from a classical belt-like band most of the time to a short-lived zone-like aspect which is called a “fade” of the belt, hereafter SEBF. The albedo change of the SEB is due to a change in the structure and properties of the clouds and upper hazes. Recent works based on infrared observations of the last SEBF have shown that the aerosol density below 1 bar increased in parallel with the reflectivity change. However, the nature of the change in the upper clouds and hazes that produces the visible reflectivity change and whether or not this reflectivity change is accompanied by a change in the winds at the upper cloud level remained unknown. In this paper we focus in the near ultraviolet to near infrared reflected sunlight (255–953 nm) to address these two issues. We characterize the vertical cloud structure above the ammonia condensation level from Hubble Space Telescope images, and the zonal wind velocities from long-term high-quality images coming from the International Outer Planet Watch database, both during the SEB and SEBF phases. We show that reflectivity changes do not happen simultaneously in this wavelength range, but they start earlier in the most deep-sensing filters and end in 2010 with just minor changes in those sensing the highest particle layers. Our models require a substantial increase of the optical thickness of the cloud deck at 1.0 ± 0.4 bar from τcloud = 6 ± 2 in July 2009 (SEB phase) to semiinfinite at visual wavelengths in 2010 (SEBF). Upper tropospheric particles (~240–1400 mbar) are also required to become substantially reflectant and their single scattering albedo in the blue changes from ?0 = 0.905 ± 0.005 in November 2009 to ?0 = 0.95 ± 0.01 in June 2010. No significant changes were found in the cloud top heights or in the particle density of the tropospheric haze. The disturbance travels from the levels below ~3 bar to a level about 400 ± 100 mbar. We derive an upward velocity of 0.15 ± 0.05 cm/s, in agreement with a diffusive process in Jupiter’s upper troposphere requiring a mean eddy coefficient K  8 × 105 cm2 s?1. On the other hand, cloud tracking on the IOPW imaging showed no significant changes in the zonal wind profile between the SEB and SEBF stages. As in other visually huge changes in Jupiter’s cloud morphology and structure, the wind profile remains robust, possibly indicating a deeply rooted dynamical regime.  相似文献   

14.
The exosphere of an atmosphereless icy moon is the result of different surface release processes and subsequent modification of the released particles. At Europa icy moon, water molecules are directly released, but photolysis and radiolysis due to solar UV and Jupiter’s magnetospheric plasma, respectively, can result in OH, H, O and (possibly) H2 production. These molecules can recombine to reform water and/or new chemical species. As a consequence, Europa’s neutral environment becomes a mixture of different molecules, among which, H2O dominates in the highest altitudes and O2, formed mainly by radiolysis of ice and subsequent release of the produced molecules, prevails at lower altitudes. In this work, starting from a previously developed Monte Carlo model for the generation of Europa’s exosphere, where the only considered species was water, we make a first attempt to simulate also the H2 and O2 components of the neutral environment around Europa, already observed by the Hubble Space Telescope and the Ultraviolet Imaging Spectrograph on board Cassini, during its flyby of Jupiter. Considering a specific configuration where the leading hemisphere coincides with the sunlit hemisphere, we estimate along the Europa–Sun line an O2 column density of about 1.5 × 1019 m?2 at the dayside and 3 × 1018 m?2 at the nightside. In this work we also improve our previous estimation of the sputtered H2O exosphere of this moon, taking into consideration the trailing–leading asymmetry in the magnetospheric ion bombardment and the energy and temperature dependences of the process yields. We find that a density of 1.5 × 1012 H2O/m3 is expected at altitudes ~0.1RE above the surface of the trailing hemisphere. Additionally, we calculate the escape of H2O, O2 and H2. The total number of neutral atoms in Europa’s neutral torus, is estimated to be in the range 7.8 × 1032–3.3 × 1033.  相似文献   

15.
The analysis of Venus’ gravity field and topography suggests the presence of a small number of deep mantle plumes (~9). This study predicts the number of plumes formed at the core–mantle boundary, their characteristics, and the production of partial melt from adiabatic decompression. Numerical simulations are performed using a 3D spherical code that includes large viscosity variations and internal heating. This study investigates the effect of several parameters including the core–mantle boundary temperature, the amount of internal heating, and the mantle viscosity. The smallest number of plumes is achieved when no internal heating is present. However, scaling Earth’s radiogenic heating to Venus suggests a value of ~16 TW. Cases with internal heating produce more realistic lid thickness and partial melting, but produce either too many plumes or no plumes if a high mantle temperature precludes the formation of a hot thermal boundary layer. Mantle viscosity must be reduced to at least 1020 Pa s in order to include significant internal heating and still produce hot plumes. In all cases that predict melting, melting occurs throughout the upper mantle. Only cases with high core temperature (>1700 K) produce dry melting. Over time the upper mantle may have lost significant volatiles. Depending on the water content of the lower mantle, deep plumes may contribute to present-day atmospheric water via volcanic outgassing. Assuming 50 ppm water in mantle, 10 plumes with a buoyancy flux of 500 kg/s continuously erupting for 4 myr will outgas an amount of water on the order of that in the lower atmosphere. A higher level of internal heating than achieved to date, as well as relatively low mantle viscosity, may be required to achieve simulations with ~10 plumes and a thinner lid. Alternatively, if the mantle is heating up due to the stagnant lid, the effect is equivalent to having lower rates of internal heating. A temperature increase of 110 K/byr is equivalent to ?13 TW. This value along with the internal heating of 3 TW used in this study may represent the approximate heat budget of Venus’ mantle.  相似文献   

16.
We investigate the method by which nearby supernovae – within a few tens of pc of the solar system – can penetrate the solar system and deposit live radioactivities on earth. The radioactive isotopic signatures that could potentially leave an observable geological imprint are in the form of refractory metals; consequently, it is likely they would arrive in the form of supernova-produced dust grains. Such grains can penetrate into the solar system more easily than the bulk supernova plasma, which gets stalled and deflected near the solar system due to the solar wind plasma pressure. We therefore examine the motion of charged grains as they decouple from the supernova plasma and are influenced by the solar magnetic, radiation, and gravitational fields. We characterize the dust trajectories with analytical approximations which display the roles of grain size, initial velocity, and surface voltage. These results are verified with full numerical simulations for wide ranges of dust properties. We find that supernova dust grains traverse the inner solar system nearly undeflected, if the incoming grain velocity – which we take to be that of the incident supernova remnant – is comparable to the solar wind speeds and much larger than the escape velocity at 1 AU. Consequently, the dust penetration to 1 AU has essentially 100% transmission probability and the dust capture onto the earth should have a geometric cross section. Our results cast in a new light the terrestrial deposition of radioisotopes from nearby supernovae in the geological past. For explosions beyond ~10 pc from earth, dust grains can still deliver supernova ejecta to earth, and thus the amount of supernova material deposited is set by the efficiency of dust condensation and survival in supernovae. Turning the problem around, we use observations of live 60Fe in both deep-ocean and lunar samples to infer a conservative lower bound iron condensation efficiency of Mdust,Fe/Mtot,Fe ? 4  × 10?4 for the supernova which apparently produced these species 2–3 Myr ago.  相似文献   

17.
Metamorphic CK carbonaceous chondrites display matrix textures that are best explained by a transient thermal event with temperatures in the 550–950 K range and durations in the order of days to years, longer than what is commonly admitted for shock events but shorter than what is required for nuclide decay. We propose that radiative heating of small carbonaceous meteoroids with perihelia close to the Sun could account for the petrological features observed in CK chondrites. Numerical thermal modeling, using favorable known NEOs orbital parameters (perihelion distances between 0.07 and 0.15 AU) and physical properties of CV and CK chondrites (albedo in the range 0.01–0.1, 25% porosity, thermal diffusivity of 0.5–1.5 W m?1 K?1), shows that radiative heating can heat carbonaceous meteoroids in the meter size range to core temperatures up to 1050 K, consistent with the metamorphic temperatures estimated for CK chondrites. Sizes of known CV and CK chondrites indicate that all these objects were small meteoroids (radii from a few cm to 2.5 m) prior to their atmospheric entry. Simulations of dynamic orbits for NEO objects suggest that there are numerous such bodies with suitable orbits and properties, even if they are only a small percentage of all NEOs. Radiative heating would be a secondary process (superimposed on parent-body processes) affecting meteoroids formed by the disruption of an initially homogeneous CV3-type parent body. Different petrologic types can be accounted for depending on the sizes and heliocentric distances of the objects in such a swarm.  相似文献   

18.
《Planetary and Space Science》2007,55(12):1741-1756
The dynamics of Venus’ mesosphere (70–110 km) is characterized by the superposition of two different wind regimes: (1) Venus’ retrograde superrotation; (2) a sub-solar to anti-solar (SS–AS) flow pattern, driven by solar EUV heating on the sunlit hemisphere. Here, we report on new ground-based velocity measurements in the lower part of the mesosphere. We took advantage of two essentially symmetric Venus elongations in 2001 and 2002 to perform high-resolution Doppler spectroscopy (R=120,000) in 12C16O2 visible lines of the 5ν3 band and in a few solar Fraunhofer lines near 8700 Å. These measurements, mapped over several points on Venus’ illuminated hemisphere, probe the region of cloud tops. More precisely, the solar Fraunhofer lines sample levels a few kilometers below the UV features (i.e. near ∼67 km), while the CO2 lines probe an altitude higher by about 7 km. The wind field over Venus’ disk is retrieved with an rms uncertainty of 15–25 m s−1 on individual measurements. Kinematical fit to a one- or two-component circulation model indicates the dominance of the zonal retrograde flow with a mean equatorial velocity of ∼75 m s−1, exhibiting very strong day-to-day variations (±65 m s−1). Results are very consistent for the two kinds of lines, suggesting a negligible vertical wind shear over 67–74 km. The SS–AS flow is not detected in single-day observations, but combining the results from all data suggests that this component may invade the lower mesosphere with a ∼40 m s−1 velocity.  相似文献   

19.
The European Space Agency’s Rosetta spacecraft is the first Solar System mission to include instrumentation capable of measuring planetary thermal fluxes at both near-IR (VIRTIS) and submillimeter–millimeter (smm–mm, MIRO) wavelengths. Its primary mission is a 1 year reconnaissance of Comet 67P/Churyumov–Gerasimenko beginning in 2014. During a 2010 close fly-by of Asteroid 21 Lutetia, the VIRTIS and MIRO instruments provided complementary data that have been analyzed to produce a consistent model of Lutetia’s surface layer thermal and electrical properties, including a physical model of self-heating. VIRTIS dayside measurements provided highly resolved 1 K accuracy surface temperatures that required a low thermal inertia, I < 30 J/(K m2 s0.5). MIRO smm and mm measurements of polar night thermal fluxes produced constraints on Lutetia’s subsurface thermal properties to depths comparable to the seasonal thermal wave, yielding a model of I < 20 J/(K m2 s0.5) in the upper few centimeters, increasing with depth in a manner very similar to that of Earth’s Moon. Subsequent MIRO-based model predictions of the dayside surface temperatures reveal negative offsets of ~5–30 K from the higher VIRTIS-measurements. By adding surface roughness in the form of 50% fractional coverage of hemispherical mini-craters to the MIRO-based thermal model, sufficient self-heating is produced to largely remove the offsets relative to the VIRTIS measurements and also reproduce the thermal limb brightening features (relative to a smooth surface model) seen by VIRTIS. The Lutetia physical property constraints provided by the VIRTIS and MIRO data sets demonstrate the unique diagnostic capabilities of combined infrared and submillimeter/millimeter thermal flux measurements.  相似文献   

20.
Determining the optical constants of Titan aerosol analogues, or tholins, has been a major concern for the last three decades because they are essential to constrain the numerical models used to analyze Titan’s observational data (albedo, radiative transfer, haze vertical profile, surface contribution, etc.). Here we present the optical constant characterization of tholins produced with an RF plasma discharge in a (95%N2–5%CH4) gas mixture simulating Titan’s main atmospheric composition, and deposited as a thin film on an Al–SiO2 substrate. The real and imaginary parts, n and k, of the tholin complex refractive index have been determined from 370 nm to 900 nm wavelength using spectroscopic ellipsometry. The values of n decrease from n = 1.64 (at 370 nm) to n = 1.57 (at 900 nm) as well as the values of k which feature two behaviors: an exponential decay from 370 nm to 500 nm, with k = 12.4 × e?0.018λ (where λ is expressed in nm), followed by a plateau, with k = (1.8 ± 0.2) × 10?3. The trends observed for the PAMPRE tholins optical constants are compared to those determined for other Titan tholins, as well as to the optical constants of Titan’s aerosols retrieved from observational data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号