首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ten-micrometer spectra of the North Tropical Zone, North Equatorial Belt, and Great Red Spot at a spectral resolution of 1.1 cm?1 are compared to synthetic spectra. These ground-based spectra were obtained simultaneously with the Voyager 1 encounter with Jupiter in March, 1979. The NH3 vertical distribution is found to decrease with altitude significantly faster than the saturated vapor pressure curve and is different for the three observed regions. Spatial variability in the NH3 mixing ratio could be caused by changes in the amount of NH3 condensation or in the degree of the NH3 photolysis. The C2H6 emission at 12 μm has approximately the same strength at the North Tropical Zone and North Equatorial Belt, but it is 30% weaker at the Great Red Spot. A cooler temperature inversion or a smaller abundance of C2H6 could explain the lower C2H6 emission over the Great Red Spot.  相似文献   

2.
Fabry-Perot interferometry of Comet Kohoutek (1973f) at 1.1 μm with a resolution of 1.2 Å showed emission features identified as OH and CN lines in addition to a strong Fraunhofer continuum. Central intensities have been derived for three cases (uniform, gaussian, and gaussian plus ??1 law) of brightness profiles in the comet coma. Limits for CH4, H2O, HeI, SiL and CrI are also derived.  相似文献   

3.
We present observations of Ceres over the 2.2-4.0 μm region taken using the SpeX instrument on the NASA IRTF in 2005. The observations cover Ceres’ entire longitude range and show evidence for a relatively uniform surface in terms of Ceres’ composition, however there is a subtle but consistently shallower band depth over longitudes associated with bright regions in HST maps, suggesting those areas are slightly less carbonate- and brucite-rich. We also find Ceres’ beaming parameter, a measure of its thermal properties, to have changed with its viewing aspect.  相似文献   

4.
Observations of the rings of Saturn at 2–4 μm reveal the presence of a 3.6-μm peak in the infrared reflectivity. This peak is consistent with a particle size of ? 50 μm, and a composition of pure H2O ice. The quoted size may only be indicative of the textural scale of frost on the surface of larger particles. The presence of small amounts of CH4 in the form of a clathrate, however, cannot be ruled out by our measurements.  相似文献   

5.
I. Vince  O. Vince 《New Astronomy》2010,15(8):669-677
The spectral region in the vicinity of 5394 Å contains three prominent photospheric spectral lines, which can be used as a solar plasma diagnostic tool. The occurrence of telluric lines in this region is a potential source of systematic and random errors in these solar spectral lines. The goal of our investigation was to determine the telluric line contamination of this interesting spectral region. Several series of high-resolution solar spectra within an interval of about 4 Å around the 5394 Å wavelength were observed at different zenith distances of the Sun. Comparison of these spectra has permitted identification of telluric lines in this spectral interval. The observations were carried out with the horizontal solar spectrograph of the Heliophysical Observatory in Debrecen. Telluric feature blending was identified in the blue and red wings of the Fe I 5393.2 Å line, and in the local continuum of the Mn I 5394.7 Å line. The blue wing of the Fe I 5395.2 Å line is contaminated by a weak telluric feature too. The red continuum of this line has a more prominent telluric contamination. A dozen of water vapor telluric lines that determined the observed telluric features were identified in this spectral interval. The profiles of three telluric lines that have a significant influence on both the profiles of solar spectral lines and the level of local continuum were derived, and the variation of their parameters (equivalent width and central depth) with air mass were analyzed.  相似文献   

6.
7.
Ground based high resolution (R ~ 120,000) spectra of the zenith day sky near 6300 Å were obtained with a PEPSIOS. When compared with the solar spectrum taken with the same spectrometer, the 6300.3 Å line of atomic oxygen was clearly present in emission. The apparent emission rate averaged 6 to 8 kR for solar zenith angles of 50 to 60 deg and decreased smoothly to about 1 kR as the solar zenith angle increased to 95 deg. The average emission line is somewhat different in width than the thermal line width expected with the Jacchia (1971) model for a 250 km altitude.  相似文献   

8.
The past decade has seen a dramatic improvement in the quality of data available at both high (HE: 100 MeV to 100 GeV) and very high (VHE: 100 GeV to 100 TeV) gamma-ray energies. With three years of data from the Fermi Large Area Telescope (LAT) and deep pointed observations with arrays of Cherenkov telescope, continuous spectral coverage from 100 MeV to ∼10 TeV exists for the first time for the brightest gamma-ray sources. The Fermi-LAT is likely to continue for several years, resulting in significant improvements in high energy sensitivity. On the same timescale, the Cherenkov Telescope Array (CTA) will be constructed providing unprecedented VHE capabilities. The optimisation of CTA must take into account competition and complementarity with Fermi, in particularly in the overlapping energy range 10–100 GeV. Here we compare the performance of Fermi-LAT and the current baseline CTA design for steady and transient, point-like and extended sources.  相似文献   

9.
Ground-based observations of Venus were made with a 5-cm drive Michelson interferometer during December 1970 and December 1973. The thermal emission spectrum of the central portion of the apparent disk was recorded from 450–1250 cm?1 with an apodized spectral resolution of 0.25 cm?1. All statistically significant sharp line absorption features in the spectrum have been identified with gaseous CO2. Comparison between the observed spectrum and a synthetic spectrum computed from a model atmosphere, assuming gaseous CO2 and a sulfuric acid haze as opacity sources, indicates good agreement. A broad diffuse absorption feature associated with the sulfuric acid haze is evident in the 870- to 930 cm?1 region. With the exception of the rotational lines of the 927-cm?1 CO2 band, the above feature appears as a continuum down to 0.25 cm?1 resolution. In the 750- to 1250-cm?1 range, the spectrum exhibits moderate thermal contrast with maximum brightness temperatures of 234–238°K occurring near 825 cm?1. These temperatures are in general agreement with previous measurements.  相似文献   

10.
Some results of observations of the spectrum of the spectroscopic-binary Ap star CrB in the region of the lithium line Li I 6708Å are presented. The observations were made at the Crimean Astrophysical Observatory over the period 1993–1995 with the coudé spectrograph equipped with a CCD camera on the 2.6-m telescope. Several factors which can affect the behavior of the lithium blend are examined: stellar rotation, magnetic field, isotopic shift, the binary system, and blending by unidentified elements. The principal result of this work is the detection of variability of the lithium blend Li I 6708Å over the period of rotation of the star. The variations of the radial velocity Vr, and the FWHM of the lithium blend are reported here for the first time. They indicate either a nonuniform distribution of lithium or a nonuniform distribution of conditions for excitation of the lithium resonance doublet in the complex structure of the strong surface magnetic field. Similar variations are also shown by the lines of the rare-earth elements Gd II 6702.10 Å, Gd II + Ce II 6704.3Å, and Ce II + Fe I 6706.0 Å.Translated fromAstrofizika, Vol. 39, No. 1, pp. 19–30, January–March, 1996.  相似文献   

11.
The abundance of HDO above the clouds in the dayside atmosphere of Venus was measured by ground-based 2.3 μm spectroscopy over 4 days. This is the first HDO observation above the clouds in this wavelength region corresponding to a new height region. The latitudinal distributions found show no clearly defined structure. The disk-averaged mixing ratio is 0.22 ± 0.03 ppm for a representative height region of 62–67 km. This is consistent with measurements found in previous studies. Based on previous H2O measurements, the HDO/H2O ratio is found to be 140 ± 20 times larger than the telluric ratio. This lies between the ratios of 120 ± 40 and 240 ± 25, respectively, reported for the 30–40 km region by ground-based nightside spectroscopy and for the 80–100 km region by solar occultation measurement on board the Venus Express.  相似文献   

12.
The spectroscopic observations of comet C/2009 R1 (McNaught) were carried out with the 2 m Zeiss-RCC Telescope of Pik Terskol Observatory operated by the International Center for Astronomical and Medico-Ecological Research (Ukraine, Russia). The Multi Mode Cassegrain spectrometer was used to obtain spectra of moderate spectral resolving power with a wavelength coverage from 4140 to 5240 Å. The spectrum is characterized by the extremely low continuum level and strong molecular features. 192 emission lines of C2, CN, CH, NH2, CO+, and CH+ have been identified by the comparison of the observed and theoretical spectra of the molecules. The ratios of the gas production rates of Q(C2)/Q(CN)=1.32, Q(CH)/Q(CN)=0.49, and Q(NH2)/Q(CN)=0.81 were derived using a Haser model.  相似文献   

13.
The 5–30 m spectrum of Comet P/Halley is modelled for various grain compositions on the basis of an observationally determined distribution of grain sizes. We compute the distribution function of grain temperatures and fluxes arising from (1) a mineral grain model, and (2) an organic grain model comprised of a diatom/POM mixture. The organic/POM model yields excellent accord with the cometary observations.  相似文献   

14.
For submicrometer-sized particles of the carbonaceous chondrite Nogoya and, for comparison purposes, also of terrestrial chamosite, the mass absorption coefficients have been derived from laboratory spectra for the wavenumber range 250–1300 cm–1. Using these data the expected spectrum of an infrared source has been calculated under simple model assumptions and compared with the observed flux from the infrared source OH 26.5+0.6. Although certain discrepancies are left in the 20-m region it is concluded that phyllosilicates, especially such occurring in carbonaceous chondrites, are interesting candidates for the material of interstellar grains.  相似文献   

15.
Recent observations of Halley's Comet show a broad absorption band centred at 3.4 m and which can be explained on the basis of a bacterial grain model.  相似文献   

16.
17.
The abundance of carbon monoxide in the Venus’ dayside atmosphere above the clouds was measured by ground-based 2.3 μm spectroscopy for 4 days. The hemispherical distributions found show no significant latitudinal or longitudinal structure. The disc-averaged mixing ratio of 58 ± 17 ppm found at a representative height of 62-67 km is consistent with previous measurements. Such a flat distribution of CO abundance above the clouds seems to be controlled by an efficient horizontal eddy diffusion with a time scale of 30 days or shorter although the CO distribution below the clouds seems to be controlled by the meridional circulation. The pole-ward wind speed of the meridional circulation above the clouds is estimated to be 0.2 m s−1 or less based on the difference between the CO mixing ratios above and below the clouds.  相似文献   

18.
A high-resolution (0.6 cm?1) spectrum of Jupiter at 5 μm recorded at the Kuiper Airborne Observatory is used to determine upper limits to the column density of 19 molecules. The upper limits to the mixing ratios of SiH4, H2S, HCN, and simple hydrocarbons are discussed with respect to current models of Jupiter's atmosphere. These upper limits are compared to expectations based upon the solar abundance of the elements. This analysis permits upper limit measurements (SiH4), or actual detections (GeH4), of molecules with mixing ratios with hydrogen as low as 10?9. In future observations at 5 μm the sensitivity of remote spectroscopic analyses should permit the study of constituents with mixing ratios as low as 10?10, which would include the hydrides of such elements as Sn and As as well as numerous organic molecules.  相似文献   

19.
High resolution scans were made of Comet Kohoutek (1973f) using the McMath solar telescope at Kitt Peak National Observatory. The data were taken on January 1 and 4, 1974 UT, just after the comet perihelion. Hα emission (~4.1 × 1027 photon sec?1) was observed from the head of the Comet. An upper limit on the He I(5015) radiation was determined to be less than 2% of the observed Hα emission. The Na D1/D2 line intensities on both nights were approximately 0.5, indicating an optically thin emission region.  相似文献   

20.
The nominal tour of the Cassini mission enabled the first spectra and solar phase curves of the small inner satellites of Saturn. We present spectra from the Visual Infrared Mapping Spectrometer (VIMS) and the Imaging Science Subsystem (ISS) that span the 0.25-5.1 μm spectral range. The composition of Atlas, Pandora, Janus, Epimetheus, Calypso, and Telesto is primarily water ice, with a small amount (∼5%) of contaminant, which most likely consists of hydrocarbons. The optical properties of the “shepherd” satellites and the coorbitals are tied to the A-ring, while those of the Tethys Lagrangians are tied to the E-ring of Saturn. The color of the satellites becomes progressively bluer with distance from Saturn, presumably from the increased influence of the E-ring; Telesto is as blue as Enceladus. Janus and Epimetheus have very similar spectra, although the latter appears to have a thicker coating of ring material. For at least four of the satellites, we find evidence for the spectral line at 0.68 μm that Vilas et al. [Vilas, F., Larsen, S.M., Stockstill, K.R., Gaffley, M.J., 1996. Icarus 124, 262-267] attributed to hydrated iron minerals on Iapetus and Hyperion. However, it is difficult to produce a spectral mixing model that includes this component. We find no evidence for CO2 on any of the small satellites. There was a sufficient excursion in solar phase angle to create solar phase curves for Janus and Telesto. They bear a close similarity to the solar phase curves of the medium-sized inner icy satellites. Preliminary spectral modeling suggests that the contaminant on these bodies is not the same as the exogenously placed low-albedo material on Iapetus, but is rather a native material. The lack of CO2 on the small inner satellites also suggests that their low-albedo material is distinct from that on Iapetus, Phoebe, and Hyperion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号