首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Recent calculations of electron impact excitation rates in He-like Alxii are used to derive the theoretical electron temperature and density sensitive emission line ratios G ( = (f + i)/r and R ( = f/i, where f, i, and r are the forbidden 1s 2 1 S ? 1s2s 3 S, intercombination 1s 2 1 S ? 1s2p 3 P and resonance 1s 2 1 S ? 1s2p 1 P transitions, respectively. These ratios are found to be significantly different from earlier calculations, and are in much better agreement with X-ray spectral data for two solar flares obtained with the SMM and P78-1 satellites.  相似文献   

2.
The electron collision excitation rates recently calculated for transitions in Si xiii by Keenan et al. (1987) are used to derive the electron temperature sensitive ratio G(=(f + i)/r and the density sensitive ratio R(=f/i), where i, f, and r are the intercombination (1s 2 1 S – 1s2p 3 P 1, 2) forbidden (1s 2 1 S – 1s2s 3 S), and resonance (1s 2 1 S – 1s2p 1 P), transitions respectively. Also estimated are the values of R in the low-density limit (R 0) as a function of electron temperature. The theoretical G ratio at the temperature of maximum emissivity for Si xiii, G(T m) = 0.70, is in much better agreement with the observed G for the 1985, May 5 flare determined by McKenzie et al. (G = 0.60 ± 0.07) than is the earlier calculation of Pradhan, who derived G(T m) = 0.85. The error in the observed R 0 ratio is so large that both our result and Pradhan's fall within the acceptable limits of uncertainty and hence one cannot estimate which of the two is the more accurate.  相似文献   

3.
Theoretical electron-density-sensitive C III emission line ratios are presented forR 1 =I(2s2p 3 P – 2p 2 3 P)/I(2s2p 1 P – 2p 2 1 S) =I(1176 Å)/I(1247 Å),R 2 =I(2s2p 3 P – 2p 2 3 P)/I(2s 2 1 S – 2s2p 3 P 1) =I(1176 Å)/I(1908 Å), andR 3 =I(2s2p 1 P – 2p 2 1 S)/I(2s 2 1 S – 2s2p 3 P 1) =I(1247 Å)/I(1908 Å). These are significantly different from those deduced previously, principally due to the adoption of improved electron impact excitation rates in the present analysis. Electron densities deduced from the present theoretical line ratios, in conjunction with observed values ofR 1,R 2, andR 3 measured from solar spectra obtained by the Naval Research Laboratory's S082B instrument on boardSkylab, are found to be generally compatible. In contrast, previous diagnostic calculations imply electron densities fromR 1,R 2, andR 3 that differ by up to two orders of magnitude. These results provide observational support for the accuracy of the atomic physics adopted in the present calculations, and the methods employed in the derivation of the theoretical line ratios.  相似文献   

4.
Theoretical line ratios involving 2s 2 S - 3p 2 P, 2p 2 P - 3s 2 S, and 2p 2 S - 3d 2 D transitions inCiv between 312 and 420 Å are presented. A comparison of these with solar active region observational data obtained during a rocket flight by the Solar EUV Rocket Telescope and Spectrograph (SERTS) reveals good agreement between theory and experiment, with discrepancies that average only 22%. This provides experimental support for the accuracy of the atomic data adopted in the line ratio calculations, and also resolves discrepancies found previously when the theoretical results were compared with solar data from the S082A instrument on boardSkylab. The potential usefulness of theCIV line ratios as electron temperature diagnostics for the solar transition region is briefly discussed.  相似文献   

5.
Theoretical populations of the 2s3l levels of Ne vii are presented for electron temperatures from 2.5 × 105 K to 4 × 106 K and electron densities from 108 cm–3 to 1012 cm–3. These, in conjunction with intensities of previously observed solar Ne vii lines and wavelengths and intensities observed in the laboratory, are used to identify further Ne vii lines in the solar spectrum. The dependence on temperature of intensity ratios such as I(2s2p 1 P – 2s3d 1 D)/I(2s2p 3 P – 2s3d 3 D) is demonstrated and the advantages of the small wavelength separation of such lines for solar electron temperature diagnostics are discussed.  相似文献   

6.
Results are presented for several theoretical line ratios in Nev involving transitions between multiplets in the 2s 22p 2 and 2s2p 3 configurations. A comparison of these with solar data from the S082A and S-055 instruments on board Skylab reveals generally good agreement between theory and experiment, especially in the case of the high-resolution (S082A) observations. However the 2s 22p 2 1 D – 2s2p 3 1 P (365.6 Å) and 2s 22p 2 3P – 2s2p 3 3 S (359 Å) lines appear to be blended, possibly with transitions in Fex and Fexi/Fexiii, respectively. We note that the intensity ratio I(365.6 Å)/I(416.2 Å) should be a valuable calibration check for a high-resolution extreme ultraviolet instrument in the spectral range 360–420 Å.  相似文献   

7.
New theoretical electron temperature sensitive emission line ratios in Siiv involving the 3d 2 D – 3p 2 P and 4s 2 S – 3p 2 P multiplets at 1125 and 816 Å, respectively, are derived using recent R-matrix electron excitation rate calculations. A comparison of these with observational data for a solar active region at the limb obtained with the Harvard S-055 spectrometer on board Skylab reveals that there is good agreement between theory and observation for ratios that include the 2 D 3/2, 5/22 P 3/2 transition at 1128.3 Å. This is in contrast to the findings of Keenan, Dufton, and Kingston (1986) and provides support for the atomic data adopted in the calculations. However, the 2 D 3/22 P 1/2 line at 1122.5 Å appears to be severely blended, as suggested previously by Burton and Ridgeley (1970) and Feldman and Doschek (1977), as it leads to electron temperature estimates that differ significantly from that expected in ionisation equilibrium. The fact that the I(1122.5 Å)/I(1128.3 Å) intensity ratios determined from several flare spectra are closer to theory than that for the active region indicates that the blending is probably due to species with relatively low ionization potentials, as noted by Flower and Nussbaumer (1975). Electron temperatures deduced for a sunspot are much lower than that predicted from ionisation balance calculations, in agreement with earlier results, and imply that a cooling flow may be present.  相似文献   

8.
Umbral spectra are shown to contain an absorption feature attributable to the Tl i transition 6p 2 P°3/2–7s 2 S 1/2 at 5350 Å. Analysis of the umbral spectrum suggests a solar abundance in the 0.72< log N(Tl)T<1.10 on the standard scale log N(H) = 12.00. Unidentified blends limit the accuracy of the abundance determination.  相似文献   

9.
Previously published solar abundances of oxygen and carbon can be corrected to be logN(O) = 8.93 and logN(C) = 8.60 on the hydrogen log-scale when new accurate forbidden electric quadrupole transition probabilities A Q(s–1) are used. Such A Q's, based on the new atomic structure and electron correlation theory, developed recently by Sinanolu and coworkers, are reported for the (1 S 0-1 D 2) lines of [C i], [N ii, [O i] and [O iii] and the (2 P-2 D) lines of [N i] and [O ii]. The available experimental values are also given for comparison.Work supported by Grant No. GP-29471 from the U.S. National Science Foundation.  相似文献   

10.
A comparison of Skylab S082A observations for several solar flares with calculations of the electron temperature sensitive emission line ratio R 1 = I(2s2p 1 P – 2s 2 1 S)/I(2s2p 3 P 1 - 2s 2 1 S) = = I(256.68 Å)/I(491.45 Å) in Be-like SXIII reveals good agreement between theory and experiment, which provides observational support for the accuracy of the adopted atomic data. However, observed values of the electron density sensitive ratio R 2 = I(2s2p 1 P – 2s 2 1 S)/I(2p 2 3 P 2 - 2s2p 3 P 2) = = I(256.68 Å)/I(308.96 Å) all lie below the theoretical high density limit, which is probably due to blending in the 308.96 Å line.  相似文献   

11.
WARREN  G. A.  KEENAN  F. P.  GREER  C. J.  PHILLIPS  K. J. H.  BRUNER  M. E.  BROWN  W. A.  McKENZIE  D. L. 《Solar physics》1997,171(1):93-102
We have calculated intensity ratios for emission lines of Fexviii in the 13–94 Å wavelength range at electron temperatures characteristic of the solar corona, T e = 2–10 x 106 K. Our model ion includes data for transitions among the 2s 22p 5 , 2s2p 6, 2s 22p 43l, and 2s2p 53l (l = s, p, and d) states. Test calculations which omit the 2s2p 53l levels show that cascades from these are important. We compare our results with observed ratios determined from four solar X-ray instruments, a rocket-borne spectrograph, and spectrometers on the P78–1, OV1–17 and Solar Maximum Mission (SMM) satellites. In addition, we have generated synthetic spectra which we compare directly with flare observations from SMM. Agreement between theory and observation is generally quite good, with differences that are mostly less than 30%, providing limited support for the accuracy of the atomic physics data used in our calculations. However, large discrepancies are found for ratios involving the 2s 22p 5 2P3/2- 2s2p 6 2S line at 93.84 Å, which currently remain unexplained. Our analysis indicates that the FeXVIII feature at 15.83 Å is the 2s 22p 5 2P3/2 - 2s 22p 4(3P)3s 4P3/2 transition, rather than 2s 22p 5 2P3/2 - 2s 22p 4(3P)3s 2P3/2, as suggested by some authors.  相似文献   

12.
The recent twelve-state R-matrix calculations of electron excitation rates in Ciii by Berrington are used to derive level populations applicable to the solar transition region. Line ratios R = I(2p 2 3 P e - 2s2p 3 P °)/I(2s2p 1 P ° - 2s 2 1 S e ) and R 2=I(2p 2 1 S e - 2s2p 1 P °)/I(2p 2 3 P e - 2s2p 3 P °) deduced from these data in conjunction with the relevent transition probabilities are found to be in much better agreement with the observed quiet Sun values than those determined from the level population calculations of Keenan et al.  相似文献   

13.
Extreme ultraviolet spectra of several active regions are presented and analyzed. Spectral intensities of 3 active regions observed with the NRL Skylab XUV spectroheliograph (170–630 Å) are derived. From this data density sensitive line ratios of Mg viii, Si x, S xii, Fe ix, Fe x, Fe xi, Fe xii, Fe xiii, Fe xiv, and Fe xv are examined and typically yield, to within a factor of 2, electron pressures of 1 dyne cm–2 (n e T = 6 × 1015 cm–3 K). The differential emission measure of the brightest 35 × 35 portion of an active region is obtained between 1.4 × 104 K and 5 × 106 K from HCO OSO-VI XUV (280–1370 Å) spectra published by Dupree et al. (1973). Stigmatic EUV spectra (1170–1710 Å) obtained by the NRL High Resolution Telescope and Spectrograph (HRTS) are also presented. Doppler velocities as a function of position along the slit are derived in an active region plage and sunspot. The velocities are based on an absolute wavelength scale derived from neutral chromospheric lines and are accurate to ±2 km s–1. Downflows at 105 K are found throughout the plage with typical velocities of 10 km s–1. In the sunspot, downflows are typically 5 to 20 km s–1 over the umbra and zero over the penumbra. In addition localized 90 and 150 km s–1 downflows are found in the umbra in the same 1 × 1 resolution elements which contain the lower velocity downflows. Spectral intensities and velocities in a typical plage 1 resolution element are derived. The velocities are greatest ( 10 km s–1) at 105 K with lower velocities at higher and lower temperatures. The differential emission measure between 1.3 × 104 K and 2 × 106 K is derived and is found to be comparable to that derived from the OSO-VI data. An electron pressure of 1.4 dynes cm–2 (n e T = 1.0 × 1016 cm–3 K) is determined from pressure sensitive line ratios of Si iii, O iv, and N iv. From the data presented it is shown that convection plays a major role in determining the structure and dynamics of the active region transition zone and corona.  相似文献   

14.
R-matrix calculations of electron impact excitation rates in N-like Mgvi are used to derive theoretical electron-density-sensitive emission line ratios involving 2s 22p 3–2s2p 4transitions in the 269–403 Å wavelength range. A comparison of these with observations of a solar active region, obtained during the 1989 flight of the Solar EUV Rocket Telescope and Spectrograph (SERTS), reveals good agreement between theory and observation for the 2s 22p 3 4 S–2s2p 4 4 Ptransitions at 399.28, 400.67, and 403.30 Å, and the 2s 22p 3 2 P–2s2p 4 2 Dlines at 387.77 and 387.97 Å. However, intensities for the other lines attributed to Mgvi in this spectrum by various authors do not match the present theoretical predictions. We argue that these discrepancies are not due to errors in the adopted atomic data, as previously suggested, but rather to observational uncertainties or mis-identifications. Some of the features previously identified as Mgvi lines in the SERTS spectrum, such as 291.36 and 293.15 Å, are judged to be noise, while others (including 349.16 Å) appear to be blended.  相似文献   

15.
We studied the EUV line spectra of three flare observed with the NRL slit spectrograph on Skylab. The electron densities in the flare transition-zone plasmas are determined from density-sensitive lines of Si iii and O iv. The electron densities in all three flares studied were greatest during the flare maximum with values of the order of 1012 cm–3. The density decreases by a factor of 2 to 3 in the decay phase of the flares. The intensities of EUV lines from the flare chromospheric and transition-zone plasmas all are greatly enhanced. In contrast to lines for Oi, Ci, Feii and other chromospheric ions, the lines of Oiv and Nv and other transition-zone lines are not only enhanced but also very much broadened.Fitting of the N v 1242 Å line with a two-gaussian model shows that for two of the flares studied, there is a red-shifted component in addition to an unshifted component. The shifted component in the N v line profiles is interpreted as due to a dynamic and moving plasma with a bulk motion velocity of 12 km s–1 for one flare and more than 70 km s–1 for the other. The broadened line profiles indicate that there are large turbulent mass motions with random velocities ranging from 30 to 80 km s–1.Ball Corporation. Now with NASA/Marshall Space Flight Center.  相似文献   

16.
We report some results of a rocket experiment flown on 29 April, 1971. A survey of the solar corona was carried out with a pair of collimated Bragg spectrometers to study the resonance, intersystem and forbidden line emission from the helium-like ions O vii (22 Å) and Ne ix (13 Å). In the direction of dispersion the collimator provided a field of view of 1.7. Also, the continuum radiation near 3 Å was monitored by a collimated proportional counter within a view angle of 4.2. The observed X-ray emission came from the general corona, seven plage regions, and one dynamic feature- the late stage of a small flare. From the intensity of the O vii and Ne ix resonance lines the electron temperature and emission measure of the individual emitting regions are derived on the basis of two models, one (a) in which the region is assumed to be isothermal and another (b) in which the emission measure decreases exponentially with increasing temperature. The latter model, which is the most adequate of the two, yields for the electron temperature of the time-varying feature 2–3 × 106 K, for the other active regions 1.5–2.5 × 106 K, and for the general corona 1.3–1.7 × 106 K. The Ne ix emitting regions are about 1.5 times as hot as the O vii regions. The emission measure ranges from 0.4–2.3 × 1048 cm–3 for all active regions and is about 2 × 1049 cm–3 for one hemisphere of the general corona above 106 K. From an analysis of the ratio, R, of the forbidden and intersystem lines of O vii we conclude that none of the regions producing these lines at the time of the rocket flight had electron densities exceeding about 3 × 109 cm–3. Our data demonstrate a dependence of R upon temperature in agreement with the theory of Blumenthal et al. (1971). The wavelengths for the intersystem, the 1s 22s 2 S e–1s2p2s 2 P 0 satellite, and the forbidden transition show in the case of Ne ix improved agreement with predictions. The observed strength of the satellite lines for both O vii and Ne ix agrees with the predictions of Gabriel's (1972) theory, which attributes their formation to dielectronic recombination.We are saddened to report the death of A. J. Meyerott on 13 November, 1971.  相似文献   

17.
Spectroheliograms in the L Mg xii line and in the Mg xi resonance (R) 1s 21 S 0-1s2p 1 P 1 line, intercombination (I) 1s 21 S 0-1s2p 3 P 1,2, line, and the forbidden (F) 1s 21 S 0-1s2s 3 S 1 line, have been obtained.Two Bragg crystal spectrometers were used mounted with mechanical collimators to obtain a spatial resolution of 1 × 3. The apparatus was launched on a sounding rocket on July 2nd, 1971. A particularly thorough study was made of the brightest active region (MC 11402).Variations in the F to I Mg xi line intensity ratio from one point to another in the active region did not reveal the presence of high electron densities.The observed intensities of the Mg xi R line, Mg xii L line and Mg x 1s 22s 2 S 1/2-1s2p 1 P 2s × × 2 P11/2, 3/2 S line are not well explained by an isothermal model. Good agreement between computed and observed intensities is obtained using the non-isothermal model proposed here.  相似文献   

18.
New theoretical emission line ratios for the Be-sequence ions Mgix and Sixi are presented. A comparison with observational data for two solar flares and an active region loop obtained with the Harvard EUV spectrometer and NRL XUV spectroheliograph aboard Skylab reveals that these plasmas are in ionization equilibrium at coronal temperatures. Unfortunately most of the density diagnostics are not particularly useful under solar plasma conditions, as they vary only slightly over the electron density range 108–1013cm–3. However the Sixi ratioI(3 P e 2 -3 P o 2)/I(3 P o 11 S e 0) is density sensitive in the range 108 to 1010cm–3, which is representative of electron densities found in solar active regions or small flares.  相似文献   

19.
Svensson  L. Å.  Ekberg  J. O.  Edlén  B. 《Solar physics》1974,34(1):173-179
The levels of the configuration 3s 23 p 53d of Fe ix have been experimentally determined from their combinations with 3s3 p 63d 3 D in the region 300–400 Å. Wavelengths can now be accurately predicted for all transitions within 3s 23 p 53d, and eight of these can be identified with coronal lines from 2042 to 4585 Å. Also, identifications of solar lines from 171 to 245 Å with electric-dipole and magnetic-quadrupole transitions to the ground state, 3s 23p 6 1 S, are confirmed and extended. Solar identifications with corresponding transitions in Ni xi, both within 3s 23 p 53d and to the ground state, are proposed on the basis of a short extrapolation.  相似文献   

20.
Using theR-matrix approach new calculations have been made for the electron impact excitation of the fine structure transitions within the 1s 22s 22p 2 ground configuration of Mgvii. The computations have been made at a large number of energies in order to account for the contribution of resonances. All partial waves withL 9 are included in the calculations which are considered to be sufficient for the convergence of collision strengths in the energy range below 65 Ry. From this collision strength data, excitation rate coefficients have been calculated at a series of electron temperatures which are employed in the computation of population of the five lowest levels of Mgvii. The line intensity ratios for the transitions3 P 1 1 D 2 and3 P 2 1 D 2 to3 P 1 1 S 0 are then calculated in the temperature range of 105 to 107 K at electron densities in the range 106 to 1010 cm–3. The calculated values are in good agreement with the earlier available results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号