首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photometric elements of the Algol type binary TT Hydrae derived by the authors from theirUBV observations during 1973–77 have been combined with the spectroscopic elements given by Sanford (1937) and Sahade and Cesco (1946) to obtain the absolute dimensions of the system. It is found that the spectroscopic orbital elements given by Sanford represent the evolutionary status of the secondary component better than those of Sahade and Cesco. The primary appears to be an Al v main sequence star of mass and radius ∼2.3R . The secondary fills its Roche lobe; it can be represented by a K0iii star of mass and radius ∼6.0R . Better spectroscopic data are needed for confirmation of these results.  相似文献   

2.
Pulsar emission     
  相似文献   

3.
We present the results of spectroscopic and photometric observations for the B star StHα62 with an IR excess, a post-AGB candidate identified with the IR source IRAS 07171+1823. High-resolution spectroscopy has allowed the λ4330–7340 Å spectrum of the star to be identified: it contains absorption lines of an early B star and emission lines of a gaseous shell. The residual line intensities have been measured. The heliocentric radial velocities measured from absorption lines of the star and emission lines of the shell are 〈V r 〉 = +45 ± 1 and +52 ± 1 km s?1, respectively. The line-of-sight velocities of gas-dust clouds determined from the interstellar Na I lines are 12 and 33 km s?1. The He I λ5876 Å line exhibits a P Cyg profile, which is indicative of an ongoing mass loss by the star. The expansion velocity of the outer shell estimated from forbidden lines is 12–13 km s?1. Quantitative classification gives the spectral type B0.51 for the star. The parameters of the gaseous shell have been determined: N e = 3.1 × 103 cm?3 and T e ~ 21 000 K. Over 4 years of its observations, the star showed rapid irregular light variations with the amplitudes ΔV = We present the results of spectroscopic and photometric observations for the B star StHα62 with an IR excess, a post-AGB candidate identified with the IR source IRAS 07171+1823. High-resolution spectroscopy has allowed the λ4330–7340 ? spectrum of the star to be identified: it contains absorption lines of an early B star and emission lines of a gaseous shell. The residual line intensities have been measured. The heliocentric radial velocities measured from absorption lines of the star and emission lines of the shell are 〈V r 〉 = +45 ± 1 and +52 ± 1 km s−1, respectively. The line-of-sight velocities of gas-dust clouds determined from the interstellar Na I lines are 12 and 33 km s−1. The He I λ5876 ? line exhibits a P Cyg profile, which is indicative of an ongoing mass loss by the star. The expansion velocity of the outer shell estimated from forbidden lines is 12–13 km s−1. Quantitative classification gives the spectral type B0.51 for the star. The parameters of the gaseous shell have been determined: N e = 3.1 × 103 cm−3 and T e ∼ 21 000 K. Over 4 years of its observations, the star showed rapid irregular light variations with the amplitudes ΔV = , ΔB = , and ΔU = and no color-magnitude correlation. We estimate the total extinction for the star from our photometric observations as A v = . Near-IR observations have revealed dust radiation with a temperature of ∼1300 K. We estimate the distance to StHα62 to be r = 5.2 ± 1.2 kpc by assuming that the star is a low-mass (M = 0.55 ± 0.05 M ) protoplanetary nebula. Original Russian Text ? V.P. Arkhipova, V.G. Klochkova, E.L. Chentsov, V.F. Esipov, N.P. Ikonnikova, G.V. Komissarova, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 10, pp. 737–747.  相似文献   

4.
Using Damour-Ruffini’s and Hamilton-Jacobi’s methods, Hawking radiation from a Vaidya black hole is investigated. Due to non-stationary black holes, the event horizon r H and the entropy S are all related to both the mass m(υ) and . When the back-reaction of particles’s energy to space-time is considered, we get the emission probability. It is found that the result is different from that of the stationary Schwarzschild black hole, because is the function of mass m(υ).   相似文献   

5.
A new orbital period analysis for U Geminorum is made by means of the standard O–C technique based on 187 times of light minima including the three newest CCD data from our observation. Although there are large scatter near 70,000 cycles in its O–C diagram, there is strong evidence (>99.9% confidence level) to show the secular increase of orbital period with a rate  s−1. Using the physical parameters recently derived by Echevarría et al. (Astron. J. 134:262, 2007), the range of mass transfer rate for U Geminorum is estimated as from −3.5(5)×10−9 M  yr−1 to −1.30(6)×10−8 M  yr−1. Moreover, the data before 60,000 cycles shows the obvious quasi-period variations. The least square estimation of a ∼17.4 yr quasi-periodic variation superimposed on secular orbital period increase is derived. Considering the possibility that solar-type magnetic activity cycles in the secondary star of U Geminorum may produce the quasi-period variations of the orbital period, Applegate’s mechanism is discussed and the results indicate such mechanism has difficulty explaining the quasi-period variation for U Geminorum. Hence, we attempted to apply the light-travel time effect to interpret the quasi-period variation and found the perturbation of ∼17.4 yr quasi-period may result from a brown dwarf. If the orbital inclination is assumed as i∼15°, corresponding to the upper limit of mass of a brown dwarf, then its orbital radii is ∼7.7 AU.  相似文献   

6.
7.
Closely spaced microphotometer tracings parallel to the dispersion of one excellent frame of a K-line time sequence have been utilized for a study of the nature of the K2v , K2R intensities in the case of the solar chromosphere. The frequency of occurrence of the categories of intensity ratio are as follows: per cent; per cent; per cent; per cent; per cent. Two types of absorbing components are postulated to explain the pattern of observed K2v , k2R intensity ratios. One component with minor Doppler displacements acting on the normal K232 profile, where K2V >K2R , produces the cases K2v K2R , K2v = K2R , K2v <K2R . The other component arises from dark condensations which are of size 3500 kms as seen in K2R . They have principally large down flowing velocities in the range 5–8 km/sec and are seen on K3 spectroheliograms with sizes of about 5000 kms, within the coarse network of emission. These dark condensations give rise to the situation K2R = 0.K2-line widths are measured for all tracings where K2v , K2R are measurable simultaneously. The distribution curve of these widths is extremely sharp. The K2 emission source is identified with the bright fine mottles visible on the surface. Evidence for this interpretation comes from the study of auto-correlation functions of K2 intensity variations and the spacing between the bright fine mottles from both spectrograms and spectroheliograms. The life time of the fine mottling is 200 sec.The supergranular boundaries which constitute the coarse network come in two intensity classes. A low intensity network has the fine mottles as its principal contributor to the K emission. When the network is bright, the enhancement is caused by increased K emission due to the accumulation of magnetic fields at the supergranule boundary. The K2 widths of the low intensity supergranular boundary agree with the value found for the bright mottles. Those for the brighter network are lower than this value, similar to the K2 widths as seen in the active regions.It is concluded that bright fine mottling is responsible for the relation, found by Wilson and Bappu, between K emission line widths and absolute magnitudes of the stars.The paper discusses the solar cycle equivalents that stellar chromospheres can demonstrate and indicates a possible line of approach for successful detection of cyclic activity in stellar chromospheres.  相似文献   

8.
Hα luminosities of a sample of galaxies in nearby compactgroups are presented. Our purpose is to study the influence of thegroup environment on the star formation rates (SFRs) of the galaxies in thegroups, provided that the Hα luminosity is a good tracer of theSFR of disc galaxies. Measuring the global L /L B of the groups – including early-type galaxies – we find that the average value of the Hα emission is not significantly different from thatmeasured for field galaxies, and that most of the groups that show thehighest level of L /L B, with respect to a set of synthetic groups built out of field galaxies, show tidal features in at least one of their members. Finally, we have exploredthe relationship between the ratio L /L B and severalrelevant dynamical parameters of the groups (velocity dispersion, crossingtime, radius and mass-to-luminosity ratio) and have found no clearcorrelation. This suggests that the exact dynamical state of a groupdoes not appear to control the SFR of the group as a whole. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
10.
11.
12.
We have investigated the influence of X-ray irradiation on the vertical structure of the outer accretion disk in low-mass X-ray binaries by performing a self-consistent calculation of the vertical structure and X-ray radiation transfer in the disk. Penetrating deep into the disk, the field of scattered X-ray photons with energy E ≳ 10 keV exerts a significant influence on the vertical structure of the accretion disk at a distance R ≳ 1010 cm from the neutron star. At a distance R ∼ 1011 cm, where the total surface density in the disk reaches Σ0 ∼ 20 g cm−2, X-ray heating affects all layers of an optically thick disk. The X-ray heating effect is enhanced significantly in the presence of an extended atmospheric layer with a temperature T atm ≈ (2–3) × 106 K above the accretion disk. We have derived simple analytic formulas for the disk heating by scattered X-ray photons using an approximate solution of the transfer equation by the Sobolev method. This approximation has a ≲10% accuracy in the range of X-ray photon energies E < 20 keV.  相似文献   

13.
We present the results of our photoelectric observations of HD 51585 (OY Gem), a B[e] star with an infrared excess and a candidate for protoplanetary nebulae, obtained with a 60-cm telescope at the Crimean Station of the Sternberg Astronomical Institute in 1992–2005. The star exhibited rapid irregular brightness variations with amplitudes from We present the results of our photoelectric observations of HD 51585 (OY Gem), a B[e] star with an infrared excess and a candidate for protoplanetary nebulae, obtained with a 60-cm telescope at the Crimean Station of the Sternberg Astronomical Institute in 1992–2005. The star exhibited rapid irregular brightness variations with amplitudes from in the V band to in U band within the observing season as well as slow systematic variations with amplitudes from in the V band to in the U band and with a quasi-period of ∼2800 days. The B-V color index varied within and did not follow the slow systematic brightness variations, while U-B correlated with the U brightness and varied between at maximum light and at minimum light. Our low-resolution spectroscopy performed in 1994–2005 has revealed significant variability of the Balmer and Paschen hydrogen emission lines as well as the He I and O I lines. Equivalent widths are given for the H I, He I, O I, and Fe II lines; a correlation has been found between the star’s photometric variability and the hydrogen line intensities. Our joint analysis of the photometric and spectroscopic data suggests that variations in a strong stellar wind are responsible for the variability of the star. Original Russian Text ? V.P. Arkhipova, N.P. Ikonnikova, G. V. Komissarova, V. F. Esipo, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 9, pp. 662–671.  相似文献   

14.
The motion of Hyperion is an almost perfect application of second kind and second genius orbit, according to Poincaré’s classification. In order to construct such an orbit, we suppose that Titan’s motion is an elliptical one and that the observed frequencies are such that 4n H−3n T+3n ω=0, where n H, n T are the mean motions of Hyperion and Titan, n ω is the rate of rotation of Hyperion’s pericenter. We admit that the observed motion of Hyperion is a periodic motion such as . Then, .N H, N T, kN +. With that hypothesis we show that Hyperion’s orbit tends to a particular periodic solution among the periodic solutions of the Keplerian problem, when Titan’s mass tends to zero. The condition of periodicity allows us to construct this orbit which represents the real motion with a very good approximation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Due to the recent all-sky, high-precision measurement of microwave background anisotropies by WMAP, a value for baryon-to-photon ratio η was obtained. At the WMAP value for η, the 4HE abundance was predicted. In this article we use a simple semi-analytical method with 4He predicted and measured values to place a limit on the variation of the gravitational constant G. We find using a conservative range for the measured values for Y p , that ΔG/G is constrained between −0.26 and 0.15. If we assume a monotonic power law time dependence Gt β then β values is constrained between −0.008 and 0.0038, which translate into . This compares well with results obtained by others using full numerical analysis.   相似文献   

16.
We present two new luminous blue variable (LBV) candidate stars discovered in the M33 galaxy. We identified these stars as massive star candidates at the final stages of evolution, presumably with a notable interstellar extinction. The candidates were selected from the Massey et al. catalog based on the following criteria: emission in H α , V<18./m 5 and 0.m 35 < (B - V) < 1.m 2. The spectra of both stars reveal a broad and strong H α emission with extended wings (770 and 1000 kms−1). Based on the spectra we estimated the main parameters of the stars. Object N45901 has a bolometric luminosity log(L/L) = 6.0–6.2 with the value of interstellar extinction A V = 2.3 ± 0.1. The temperature of the star’s photosphere is estimated as T⋆ ∼ 13000–15000 K, its probable mass on the Zero Age Main Sequence is M∼ 60–80 M. The infrared excess in N 45901 corresponds to the emission of warm dust with the temperature Twarm ∼ 1000 K, and amounts to 0.1%of the bolometric luminosity. A comparison of stellar magnitude estimates from different catalogs points to the probable variability of the object N45901. Bolometric luminosity of the second object, N125093, is log(L/L) = 6.3 − 6.6, the value of interstellar extinction is A V = 2.75 ± 0.15. We estimate its photosphere’s temperature as T⋆∼ 13000–16000K, the initial mass as M ∼ 90–120 M. The infrared excess in N125093 amounts to 5–6% of the bolometric luminosity. Its spectral energy distribution reveals two thermal components with the temperatures Twarm ∼ 1000K and Tcold ∼ 480 K. The [Ca II] λλ7291, 7323 lines, observed in LBV-like stars Var A and N93351 in M33 are also present in the spectrum of N 125093. These lines indicate relatively recent gas eruptions and dust activity linked with them. High bolometric luminosity of these stars and broad H α emissions allow classifying the studied objects as LBV candidates.  相似文献   

17.
18.
We report XMM-Newton observations of the isolated neutron star RBS1774 and confirm its membership as an XDINS. The X-ray spectrum is best fit with an absorbed blackbody with temperature kT=101 eV and absorption edge at 0.7 keV. No power law component is required. An absorption feature in the RGS data at 0.4 keV is not evident in the EPIC data, but it is not possible to resolve this inconsistency. The star is not seen in the UV OM data to m AB ∼21. There is a sinusoidal variation in the X-ray flux at a period of 9.437 s with an amplitude of 4%. The age as determined from cooling and magnetic field decay arguments is 105–106 yr for a neutron star mass of 1.35–1.5 M.   相似文献   

19.
We have investigated Bianchi type III non-static magnetized cosmological model for perfect fluid distribution in general relativity. We assume that F 12 is the only non-vanishing component of F ij . Maxwell’s equation
leads to
where K and α are constants. To get a deterministic model, we assume that σ 11 θ which leads to A=C n where n is a constant, σ 11 the x-component of shear tensor σ ij and theta is the expansion in the model. The behaviour of the model in absence of magnetic field is discussed. The other physical and geometrical aspects of the model are also discussed.  相似文献   

20.
Recently, Bijalwan (Astrophys. Space Sci., doi:, 2011a) discussed charged fluid spheres with pressure while Bijalwan and Gupta (Astrophys. Space Sci. 317, 251–260, 2008) suggested using a monotonically decreasing function f to generate all possible physically viable charged analogues of Schwarzschild interior solutions analytically. They discussed some previously known and new solutions for Schwarzschild parameter u( = \fracGMc2a ) £ 0.142u( =\frac{GM}{c^{2}a} ) \le 0.142, a being radius of star. In this paper we investigate wide range of u by generating a class of solutions that are well behaved and suitable for modeling Neutron star charge matter. We have exploited the range u≤0.142 by considering pressure p=p(ω) and f = ( f0(1 - \fracR2(1 - w)a2) +fa\fracR2(1 - w)a2 )f = ( f_{0}(1 - \frac{R^{2}(1 - \omega )}{a^{2}}) +f_{a}\frac{R^{2}(1 - \omega )}{a^{2}} ), where w = 1 -\fracr2R2\omega = 1 -\frac{r^{2}}{R^{2}} to explore new class of solutions. Hence, class of charged analogues of Schwarzschild interior is found for barotropic equation of state relating the radial pressure to the energy density. The analytical models thus found are well behaved with surface red shift z s ≤0.181, central red shift z c ≤0.282, mass to radius ratio M/a≤0.149, total charge to total mass ratio e/M≤0.807 and satisfy Andreasson’s (Commun. Math. Phys. 288, 715–730, 2009) stability condition. Red-shift, velocity of sound and p/c 2 ρ are monotonically decreasing towards the surface while adiabatic index is monotonically increasing. The maximum mass found to be 1.512 M Θ with linear dimension 14.964 km. Class of charged analogues of Schwarzschild interior discussed in this paper doesn’t have neutral counter part. These solutions completely describe interior of a stable Neutron star charge matter since at centre the charge distribution is zero, e/M≤0.807 and a typical neutral Neutron star has mass between 1.35 and about 2.1 solar mass, with a corresponding radius of about 12 km (Kiziltan et al., [astro-ph.GA], 2010).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号