首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Gold-bearing quartz veins of the Taihua Group consisting of Archean metavolcanic rocks are a main gold deposit type in the Xiao Qinling area,one of the three biggest gold production areas in China.The quartz veins experienced strong alteration characterized by a typical mesothermal hydrothermal altered mineral assemblage.The grade of gold is affected by the contents of sulphides,e.g.galena,pyrite and chalcopyrite.Results of minor elements analysis for the of gold-bearing quartz veins indicate higher contents of Au and high contents of Ag,Pb,Cu,Cd,W,and Mo.Abundant fluid inclusions were found in the gold-bearing quartz veins.Three types of fluid inclusions were identified:(1) aqueous inclusions;(2) CO 2-bearing inclusions;and(3) daughter crystal-bearing fluid inclusions.Homogenization temperatures ranged from 110 to 670℃ with low and high peaks appearing at 160 180℃ and 280 300℃,respectively.The salinity of aqueous inclusions varies between 1.8 wt% and 38.2 wt% NaCl.The homogenization temperature and salinity show a positive correlation.The H and O isotopes of fluid inclusions in the gold-bearing quartz veins indicate that magmatic solution and metamorphic hydrothermal solution,together with meteoric water,were involved in the formation of gold-bearing fluid.Mesozoic magma activities related to granite intrusions should be the main source of CO 2 fluid with higher temperature and salinity.  相似文献   

2.
Saishitang Cu-polymetallic deposit is located in the southeast section of Late Paleozoic arcfold in the southeastern margin of Qaidam platform. Accoring to the geological process of the deposit,four mineralization episodes were identified: melt/fluid coexisting period(O),skarn period(A),first sulfide period(B) and second sulfide period(C),and 10 stages were finally subdivided. Three types of inclusions were classified in seven stages,namely crystal bearing inclusions(type I),aqueous inclusions(type II) and pure liquid inclusions(type III). Type I and II inclusions were observed in stage O1,having homogenization temperature from 252 to 431°C,and salinities ranging from 24.3% to 48.0%. Type I inclusion was present in stage A1,having homogenization temperature from 506 to 548°C,and salinities ranging from 39.4% to 44.6%. In stage B1,type II and III inclusions were observed,with homogenization temperature concentrating between 300–400°C,and salinities from 0.4% to 4.3%. Type II inclusions were present in stage B2,with homogenization temperature varying from 403 to 550°C. In stage C1,type I and II inclusion commonly coexisted,and constituted a boiling inclusion group,having homogenization temperatures at 187–463°C,and salinities in a range of 29.4%–46.8% and 2.2%–11.0%. Type II and III inclusions were developed in stage C2,having homogenization temperature at 124–350°C,and salinities ranging between 1.6% and 15.4%. In stage C3,type II and III inclusions were presented,with a homogenization temperature range of 164–360°C,and salinities varying from 4.0% to 11.0%. The results of micro-thermal analysis show that fluids are characterized by high temperature and high salinity in stage O1 and A1,and experienced slight decrease in temperature and dramatic decrease in salinity in stage B1 and B2. In stage C1,the salinity of fluid increased greatly and a further decrease of temperature and salinity occurred in stage C2 and C3. Fluids boiled in stage C1. With calculated pressure of 22 MPa from the trapping temperature of 284–289°C,a mineralization depth of 2.2 km was inferred. Results of Laser Raman Spectroscopy show high density of H2 O,CH4 and CO2 were found as gas composition. H-O isotope study indicates the oreforming fluids were the mixture of magmatic water and meteoric water. Physicochemical parameters of fluids show oxygen and sulfur fugacity experienced a decrease,and redox state is weakly reducing. Along with fluid evolution,oxidation has increased slightly. Comprehensive analysis shows that melt exsolution occurred during the formation of quartz diorite and that metal elements existed and migrated in the form of chlorine complex. Immiscible fluid separation and boiling widely occurred after addition of new fluids,bringing about dissociation of chlorine-complex,resulting in a great deal of copper precipitation. In conclusion,Saishitang deposit,controlled by regional tectonics,is formed by metasomatism between highly fractionated mineralization rock body and wall rock,and belongs to banded skarn Cu-polymetallic deposit.  相似文献   

3.
Fluid inclusion studies of 5 gold deposits connected with alkaline rocks show that quartz separated from auriferous quartz veins contains abundant three-phase CO2-NaCl-H2O inclusions and two-phase CO2-dominated ones,measuring 5-20um in diameter,Homogenization temperatures of the fluid inclusions are mostly within the range of 150-300℃,and the salinities,mainly 0.2wt%-12 wt%(NaCl),Gold mineralizations occurred at depths of 1.4-2.8km,The most striking character of fluid composition is that among the cations,Na^ in dominant,followed by K^ ,Ca^2 ,among the anions,Cl^- is slightly higher than SO4^2-,In the evaporate,H2O is dominant,followed by CO2,The pH values are mainly within the range of 6.5-8.5,indicating that the ore-forming solutions are alkaline in nature.The hydrogen and oxygen isotopic ratios indicate that the ore fluid is composed mainly of magmatic water.With the dropping of temperature in the ore fluid,the contents of CO2 decreased while the salinity increased.The relations between Au and other components of the ore fluid are discussed in the paper,and it is concluded that in these deposits,Chlorides,H2S,SiO2,CO2,etc.in the fluid all are involved in the migration and concentration of Au.  相似文献   

4.
Melt and fluid inclusions were studied in the minerals of Cenozoic olivine melanephelinites from the Chukchi Peninsula, Russia.The rock contain several generations of olivine phenocrysts varying in composition at mg=0.88~0.77.The phenocrysts bear fluid and melt inclusions recording various stages of melt crystallization in volcanic conduits and shallow magma chambers.Primary fluid inclusions are CO_2-dominated with a density of up to O.93 g/cm~3.All fluid inclusions are partially leaked,which is indicated by haloes of tiny fluid bubbles around large fluid inclusions in minerals.Melt inclusions contain various daughter crystals,which were completely resorbed in thermometric experiments at about 1230℃.Assuming that this temperature corresponds to the entrapment conditions of the CO_2 fluid inclusions,the minimum pressure of the beginning of magma degassing is estimated as 800MPa.Variations in the compositions of homogenized silicate melt inclusions indicate that olivine was the earliest crystalline phase followed by clinopyroxene,nepheline and orthoclase.This sequence is in agreement with the mineralogy of the rocks.The melts are strongly enriched in incompatible trace elements and volatiles(in addition to CO_2,high C1,F,and S contents were detected).There are some differences between the compositions of melts trapped in minerals from different samples.Variations in SiO_2,FeO,and incompatible element contents are probably related to melt generations at various levels in a homogeneous mantle reservoir.  相似文献   

5.
The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming fluids shows that fluid inclusions in quartz from altered stockwork rocks that represent the pipe facies have a wide range of temperature and salinity. The intense fluid activities are characteristics of the pipe facies of the exhalative system. Fluid inclusions in carbonates near the unstratified ore bodies hosted in the thick-bedded marble which represents vent-proximal facies are large in size and have moderate to high temperatures. They represent unerupted sub-seafloor fluid activity. Fluids in altered stockwork rocks and carbonates have similar H2O-NaCl-CO2 system, both belonging to the sedimentary-exhalative system. The fluids migrate from the pipe facies to the unstratified ore bodies. Boiling of the fluids causes the separation of CO2 vapor and liquid H2O. When the fluids migrate into the unconsolidated thick-bedded marble, the escape of CO2, decreasing temperature and pressure as well as some involvement of seawater into the fluids result in the unmixing of fluids with high and low salinity and deposition of ore-forming materials. The two unmixed fluids were trapped in unconsolidated carbonates and the ore-forming materials were deposited in the unconsolidated carbonates to form the sedimentary-exhalative type unstratified ore bodies. The ore-forming temperature of unstratified ore bodies is up to high temperature indicating that there is a huge ore-forming potential in its deep.  相似文献   

6.
The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming fluids shows that fluid inclusions in quartz from altered stockwork rocks that represent the pipe facies have a wide range of temperature and salinity. The intense fluid activities are characteristics of the pipe facies of the exhalative system. Fluid inclusions in carbonates near the unstratified ore bodies hosted in the thick-bedded marble which represents vent-proximal facies are large in size and have moderate to high temperatures. They represent unerupted sub-seafloor fluid activity. Fluids in altered stockwork rocks and carbonates have similar H2O-NaCl-CO2 system, both belonging to the sedimentary-exhalative system. The fluids migrate from the pipe facies to the unstratified ore bodies. Boiling of the fluids causes the separation of CO2 vapor and liquid H2O. When the fluids migrate into the unconsolidated thick-bedded marble, the escape of CO2, decreasing temperature and pressure as well as some involvement of seawater into the fluids result in the unmixing of fluids with high and low salinity and deposition of ore-forming materials. The two unmixed fluids were trapped in unconsolidated carbonates and the ore-forming materials were deposited in the unconsolidated carbonates to form the sedimentary-exhalative type unstratified ore bodies. The ore-forming temperature of unstratified ore bodies is up to high temperature indicating that there is a huge ore-forming potential in its deep.  相似文献   

7.
The Kekesayi gold deposit is located in the Buergen ductile shear zone in the southern margin of Altay, Qinghe County, Xinjiang. The deposit consists of altered mylonite type and gold-bearing quartz veins type ores. The main ore-bearing rocks are gray metamorphic tuffs of the Tuoranggekuduke Formation. The ores are mostly lenticular and vein, and are strictly controlled by shear bands. Through field investigation, sample collection and laboratory identification, the structural alteration characteristics are studied in detail. The microstructure of quartz is analyzed by SEM cathodoluminescence (SEM-CL). The fluid inclusions of the deposit were studied by means of micro-temperature measurement and laser Raman analysis, and the tectonic-fluid evolution characteristics were discussed. Our results showed that: (1) The gold mineralization is closely related to the structural alteration of the ductile shear zone. The mylonitization, subgrain deformation and fluid structure are developed in the mining area. The recrystallized texture, dissolution structure and multistage composite shear structure characteristics of SEM-CL show that the deformation and metamorphism are very strong. The tectonic-hydrothermal activity resulted in strong silicification and pyritization and closely related to gold mineralization. (2) The fluid inclusions of quartz veins in the mineralized rocks are distributed in groups and the morphology of the fluid inclusions are mostly oval and tadpole in shape. The primary fluid inclusions are distributed in disorder, and the secondary fluid inclusions distribute linearly along the fissures mostly elongated owing to the strong tectonic deformation. Fluid inclusions are not of uniform size, generally are 8-20 μm. The types of inclusions can be classified according to the petrography and micro temperature measurement: two phase aqueous solution type (LH2O-VH2O), carbon-rich type (LH2O-LH2O) and single phase aqueous solution type (LH2O). The evolution of the fluid is characterized by high temperature, low salinity and rich CO2 in the early stage. As the deformation of the shear zone increases in the middle and late stages, the fluid evolved into low temperature, low salinity rich H2O. (3) The Kekesayi gold deposit has the characteristics of orogenic gold deposit, and the evolutionary characteristics of tectonic-ore forming fluids are consistent with the evolution of shear zones. Structural alteration of shear zone is the main controlling factor of mineralization. And magmatic hydrothermal alteration may also play an important role in mineralization. © 2018, Science Press. All right reserved.  相似文献   

8.
Archean greenstone belts and Proterozoic granulite mobile belts are products of fundamentally different tectonic processes that culminated in different levels of crustal incision.The present study focuses on graphite-bearing fluid inclusions from two such terrains in India,the Angul domain of Eastern Ghats Mobile Belt and Hutti-Maski schist belt of the eastern Dharwar greenstone-granite belt.In beth cases,a high population of such inclusions within the fluid inclusion assemblage rules out the possibility of graphite being a captive phase,and instead confirms that it was deposited by the fluid within the inclusion cavity.Graphite is usually observed to be occurring with either pure water or a pure carbonic( CO_2 only)liquid,or with a CH_4 dominated carbonic liquid without vapor at room temperature.Graphite precipitation in inclusions is brought about by reaction of the CO2 and CH4 trapped as a homogeneous fluid to give rise to H_2O and C(graphite).Molar volume calculations for the CO_2-CH_4 mixture assuming an appropriate PVTX relationship indicates that there is a substantial increase in volume with decreasing pressure at a given temperature.The reaction producing graphite and H_2O from CH_4 and CO_2 involves substantial volume reduction,and hence would be favored when the rock undergoes rapid exhumation.Graphite-beating inclusions in quartz in a late-stage leucosome from migmatites in the Angul domain of the EGMB are accompanied by other fluid inclusion evidence for isothermal decompression.In the Hutti-Maski schist belt of the eastern Dharwar Craton,graphite-bearing inclusions occur in structurally controlled quartz veins(often auriferous)within metamorphosed mafic volcanics(schists and amphibolites).The Raman spectra indicate that graphites in fluid inclusions from the Hutti-Maski schist belt have both ordered(O)and the disordered(D)peaks,whereas those from the Angul area of EGMB lack the disordered(D)peaks, with both having perfectly symmetrical‘S’peak.This implies that in both belts,exhumation from the burial depth maxima was a rapid process.However,the Hutti-Maski schist belt experienced a lower amount of uplift than the Angul domain,where the driving mechanism led to a deeper level of incision.This difference in the extent and rate of exhumation is speculated to be related to a fundamental difference in the nature of tectonism.A more detailed comparative study of the fluid inclusion characteristics would possibly throw more light on the changing tectonic style from the Archean to the Proterozoic,a topic that is extensively debated.  相似文献   

9.
The Hetai ductile shear zone-hosted gold deposit occurs in the deep-seated fault mylonite zone of the Sinian-Silurian metamorphic rock series. In this study there have been discovered melt inclusions, fluid-melt inclusions and organic inclusions in ore-bearing quartz veins of the ore deposit and mylonite for the first time. The homogenization temperatures of the various types of inclusions are 160℃, 180 - 350℃, 530℃ and 870℃ for organic inclusions, liquid inclusions, two-phase immiscible liquid inclusions and melt inclusions, respectively. Ore fluid is categorized as the neutral to basic K+ -Ca2+ -Mg2+ -Na+ - SO2- 4-HCO3-Cl- system. The contents of trace gases follow a descending order of H2O>CO2>CH4>(or < ) H2>CO>C2H2>C2I-I6>O2>N2.The concentrations of K , Ca2 + ,SO2-4,HCO3-,Cl- H2O and C2H2 in fluid inclusions are related to the contents of gold and the Au/Ag ratios in ores from different levels of the gold deposit. This is significant for deep ore prospecting in the region. Daughter minerals in melt inclusions were analyzed using SEM. Quartz, orthoclase, wollastonite and other silicate minerals were identified. They were formed in different mineral assemblages.This analysis further proves the existence of melt inclusions in ore veins. Sedimentary metamorphic rocks could form silicate melts during metamorphic anatexis and dynamic metamorphism, which possess melt-solution characteristics. Ore formation is related to the multi-stage forming process of silicate melt and fluid.  相似文献   

10.
Systematic microthermometric measurements of fluid inclusions in the PGE-polymetallic deposits hosted in the Lower Cambrian black rock series in southern China were performed, and the results suggest: (1) there exist two types of fluid inclusions. TypeⅠis of NaCl-H2O system with low-medium salinity, and its homogenization temperatures (Th) and salinities are 106.9- 286.4℃ and ( 0.8- 21.8) wt%NaCl eq. respectively; TypeⅡ is of CaCl2-NaCl-H2O system with medium-high salinities, and its homogenization temperatures and salinities range from 120.1℃ to 269.6℃ and ( 11.4- 31.4) wt%NaCl eq., respectively. The typeⅡ fluid inclusions have been discovered for the first time in this kind of deposits; (2) two generations of ore-forming fluids were recognized. Characteristics of fluid inclusions in the PGE-polymetallic ores and carbonate-quartz stockworks in the underlying phosphorites are almost of no difference, they may represent ore-forming fluids at the main metallogenic stage. The peak value of homogenization temperature of those fluid inclusions is about 170℃, while their salinities possess a remarkable bimodal distribution pattern with two peak values of (27-31) wt%NaCl eq. and (4-6) wt%NaCl eq. On the contrary, fluid inclusions in the carbonate-quartz veins in the hanging wall may represent ore-forming fluids at the post-metallogenetic stage. The homogenization temperatures and the peak values of salinities are mostly 130-170℃ and (12-14) wt%NaCl eq., respectively; (3) nobel gas isotopic composition analyses in combination with the microthermometric measurements of fluid inclusions suggest that the ore-forming fluids at the main metallogenetic stage were probably derived from mixing of basinal hot brines with the CaCl2-NaCl-H2O system and seawater with the NaCl-H2O system; (4) in the Early Cambrian, the basinal hot brines were trapped in the Caledonian basins, which were distributed along the southern margin of the Yangtze Craton, and where giant thick sediments were accumulated, and expelled and migrated laterally along the strata because of the pressure caused by overlying sediments. The basinal hot brines absorbed Ni, Mo, V, PGE from the surrounding rocks and were transformed into ore-bearing hydrothermal fluids with the CaCl2-NaCl-H2O system and medium-high salinities, then ascended along faults and mixed with seawater of the NaCl-H2O system, and finally PGE-polymetallic deposits or occurrences were formed in the black rock series.  相似文献   

11.
The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discovered ore field,and probably represents the largest tungsten mineralization district in the world.The Shimensi deposit is one of the mineral deposits in the Dahutang ore field,and is associated with Yanshanian granites intruding into a Neoproterozoic granodiorite batholith.On the basis of geologic studies,this paper presents new petrographic,microthermometric,laser Raman spectroscopic and hydrogen and oxygen isotopic studies of fluid inclusions from the Shimensi deposit.The results show that there are three types of fluid inclusions in quartz from various mineralization stages:liquid-rich two-phase fluid inclusions,vapor-rich two-phase fluid inclusions,and three-phase fluid inclusions containing a solid crystal,with the vast majority being liquid-rich two-phase fluid inclusions.In addition,melt and melt-fluid inclusions were also found in quartz from pegmatoid bodies in the margin of the Yanshanian intrusion.The homogenization temperatures of liquid-rich two-phase fluid inclusions in quartz range from 162 to 363℃ and salinities are 0.5wt%-9.5wt%NaCI equivalent.From the early to late mineralization stages,with the decreasing of the homogenization temperature,the salinity also shows a decreasing trend.The ore-forming fluids can be approximated by a NaCl-H_2O fluid system,with small amounts of volatile components including CO_2,CH_4 and N_2,as suggested by Laser Raman spectroscopic analyses.The hydrogen and oxygen isotope data show that δ5D_(V-smow) values of bulk fluid inclusions in quartz from various mineralization stages vary from-63.8‰ to-108.4‰,and the δ~(18)O_(H2O) values calculated from the δ~(18)O_(V-)smow values of quartz vary from-2.28‰ to 7.21‰.These H-O isotopic data are interpreted to indicate that the ore-forming fluids are mainly composed of magmatic water in the early stage,and meteoric water was added and participated in mineralization in the late stage.Integrating the geological characteristics and analytical data,we propose that the ore-forming fluids of the Shimensi deposit were mainly derived from Yanshanian granitic magma,the evolution of which resulted in highly differentiated melt,as recorded by melt and melt-fluid inclusions in pegmatoid quartz,and high concentrations of metals in the fluids.Cooling of the ore-forming fluids and mixing with meteoric water may be the key factors that led to mineralization in the Dahutang tungsten polymetallic ore field.  相似文献   

12.
The Dayingezhuang gold deposit, hosted mainly by Late Jurassic granitoids on Jiaodong Peninsula in eastern China, contains an estimated 170 t of gold and is one of the largest deposits within the Zhaoping fracture zone. The orebodies consist of auriferous altered pyrite–sericite–quartz granites that show Jiaojia-type (i.e., disseminated and veinlet) mineralization. Mineralization and alteration are structurally controlled by the NE- to NNE-striking Linglong detachment fault. The mineralization can be divided into four stages: (K-feldspar)–pyrite–sericite–quartz, quartz–gold–pyrite, quartz–gold–polymetallic sulfide, and quartz–carbonate, with the majority of the gold being produced in the second and third stages. Based on a combination of petrography, microthermometry, and laser Raman spectroscopy, three types of fluid inclusion were identified in the vein minerals: NaCl–H2O (A-type), CO2–H2O–NaCl (AC-type), and pure CO2 (PC-type). Quartz crystals in veinlets that formed during the first stage contain mainly AC-type fluid inclusions, with rare PC-type inclusions. These fluid inclusions homogenize at temperatures of 251°C–403°C and have low salinities of 2.2–9.4 wt% NaCl equivalent. Quartz crystals that formed in the second and third stages contain all three types of fluid inclusions, with total homogenization temperatures of 216°C–339°C and salinities of 1.8–13.8 wt% NaCl equivalent for the second stage and homogenization temperatures of 195°C–321°C and salinities of 1.4–13.3 wt% NaCl equivalent for the third stage. In contrast, quartz crystals that formed in the fourth stage contains mainly A-type fluid inclusions, with minor occurrences of AC-type inclusions; these inclusions have homogenization temperatures of 106°C–287°C and salinities of 0.5–7.7 wt% NaCl equivalent. Gold in the ore-forming fluids may have changed from Au(HS)0 as the dominant species under acidic conditions and at relatively high temperatures and fO2 in the early stages, to Au(HS)2– under neutral-pH conditions at lower temperatures and fO2 in the later stages. The precipitation of gold and other metals is inferred to be caused by a combination of fluid immiscibility and water–rock interaction.  相似文献   

13.
The Zhawulong granitic pegmatite lithium deposit is located in the Ganzi-Songpan orogenic belt. Fluid inclusions in spodumene and coexisting quartz were studied to understand the cooling path and evolution of fluid within albite–spodumene pegmatite. There are three distinguishable types of fluid inclusions: crystal-rich, CO2–NaCl–H2O, and NaCl–H2O. At more than 500°C and 350~480 MPa, crystal-rich fluid inclusions were captured during the pegmatitic magma-hydrothermal transition stage, characterized by a dense hydrous alkali borosilicate fluid with a carbonate component. Between 412°C and 278°C, CO2–NaCl–H2Ofluid inclusions developed in spodumene (I) and quartz (II) with a low salinity (3.3–11.9 wt%NaCl equivalent) and a high volatile content, which represent the boundary between the transition stage and the hydrothermal stage. The subsequentNaCl–H2Ofluid inclusions from the hydrothermal stage, between 189°C and 302°C, have a low salinity (1.1–13.9 wt%NaCl equivalent). The various types of fluid inclusions reveal the P–T conditions of pegmatite formation, which marks the transition process from magmatic to hydrothermal. The ore-forming fluids from the Zhawulong deposit have many of the same characteristics as those from the Jiajika lithium deposit. The ore-forming fluid provided not only materials for crystallization of rare metal minerals, such as spodumene and beryl, but also the ideal conditions forthe growth of ore minerals. Therefore, this area has favorable conditions for lithium enrichment and excellent prospecting potential.  相似文献   

14.
The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected from the level-610 adit in the deposit, were analysed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results show that the brine is of the Na-K-Mg-Ca-Cl type and has K concentrations that are distinctly higher than those of Mg and Ca, unlike normal brines associated with Cretaceous halite. The high K concentrations indicate that the degree of evaporation of the ancient Mengyejing saline lake was very high, reaching the sylvite deposition stage but rarely reaching the carnallite deposition stage. The trajectory of the H and O isotopic compositions of the brines in the halite-hosted fluid inclusions corresponds to intense evaporation, indicating that the net evaporation exceeded the net inflow of brines. These brine compositions in halite-hosted fluid inclusions were likely formed by the dissolution of previously deposited K-bearing minerals by fresh continental and/or seawater, forming a type of modified seawater, with deep hydrothermal fluids potentially supplying additional potassium. The basin likely experienced multiple seawater incursion, dissolution and redeposition events in a high-temperature environment with high evaporation rates.  相似文献   

15.
On the basis of detailed geological studies of the Wulong gold deposit, three metallogenic stages can be identified. With quartz fluid inclusions as an object of study, the authors investigated phase characteristics, compositional variations, temperature and pressure changes, fluid evolution, Pb isotope tracing and Rb-Sr isotopic dating of fluid inclusions entrapped in the above three metallogenic stages. The results show that Na+ is decreased obviously with metallogenic evolution, while K+ and other cations and gas compositions (H2, CO, CH4 and CO2) are increased slightly, and that the temperature and salinity vary in a pulsating manner along with the metallogenic evolution. Inverse calculation of hydrogen and oxygen isotopes indicate that at the first metallogenic stage the fluids were magmatic water, at the second stage they were dominated by magmatic water with a minor amount of meteoric water involved, and at the third stage, i.e., the final stage of metallogenesis, the fluids were composed complete  相似文献   

16.
This paper presents the general situation and key techniques of the drilling well M-1 in Matouying dry hot rock exploration hole, Leting, Tangshan, Hebei Province. A series of problems have been studied on the sea water drilling fluid, high temperature resistant fresh water drilling fluid, screw composite drilling technique, screw hole coring technology, and high temperature, thus solving the difficulty of sea water drilling fluid well protection, poor stability of drilling fluid under high temperature, and low efficiency in hot dry rock drilling and coring drilling to ensure the safety of the borehole and improve drilling efficiency. The high temperature resistant double condensation and double density cement slurry system and relevant technical measures are adopted to ensure the quality of cementing in the high temperature environment. Through the understanding and analysis of the strata in this area, this work provides valuable experience for drilling in the same strata in the future. The final hole depth of the M-1 well in Matouying is 4502. 11m, and hot dry rock with a temperature of 150t is found at 3965 m, which is the first hot dry rock well with a temperature of more than 150°C in the Beijing-Tianjin-Hebei region so far. © 2022 Editorial Board of Geology and Exploration. All rights reserved.  相似文献   

17.
Fluid inclusions in olivine and orthopyroxene of mantle peridotites from the Yushigou ophiolite can be divided into three types based on decrepitation temperature,shape and distribution.Type-1 fluid inclusions are characterized by oval or negative crystal shapes and small size(<5μm across).They occur in the cores and mantles of the host crystals,and decrepitated at>840℃.Type- 2 fluid inclusions have irregular or tabular shapes with relatively large size(10~100μm in length).They occur in irregular or circular healed micro-fractures in the host crystals,and decrepitated at 612~710℃.Type-3 fluid inclusions have size and shape,similar to type-2 fluid inclusions but occur in micro-fractures restricted to the margins of the host crystals,and decrepitated at much lower temperature from 190℃to 340℃.The three different types of fluid inclusions are interpreted to represent primary,metasomatic (pseudo-secondary)and secondary inclusions,respectively.Stepwise heating reveals three concentration peaks of volatiles at 200~400℃,400~800℃and 800~1200℃released from olivine and orthopyroxene in harzburgite and dunite from the Yushigou ophiolite, which are considered to correspond to the decrepitation of secondary,metasomatic and primary fluid inclusions at similar temperature ranges.CO2 is a major constituent in the volatiles released at three different temperature intervals.Trace amounts of H_2 and N_2 are present in the volatiles released at<800℃and trace amounts of H_2O and SO_2 are mainly present in the volatiles at 400~800℃.TheδD(-95.2‰,-306.3‰)of H_2O and theδ~(13)C(-15.5~-12.5‰)andδ~(18)O values(1.4~1.9‰)of CO_2 released at<800℃are lower than normal mantle values and suggest the mixing origin of crustal fluids( sedimentary organic)with ocean water,implying that Yushigou AOLM had undergone an intensive metasomatism by a fluid composed of CO_2.H_2O and SO_2,and followed by degassing. In contrast,the volatiles released at 800~1200℃are characterized by trace amounts of H_2 and CO in dunite and SO_2 in harzburgite, much lighterδ~(13)C(-29.1‰~-19.5‰),heavierδ~(13)O(8.8‰)of CO_2 and positive relationship between these isotopic ratios and the concentration of CO_2.Such features can be best explained by mixing of significant terrestrial crustal(organic)and minor mantle volatiles.We proposed that the Yishigou peridotites are more likely to have derived from a continental lithosphere instead of an oceanic lithosphere comprising the Yishigou gabbros and pillowed basalts.A supra-subduction tectonic setting is thus inferred for the Yushigou ophiolite.  相似文献   

18.
Qiongdongnan Basin has a tectonic geological background of high temperature and high pressure in a deep reservoir setting,with mantle-derived CO2.A water-rock reaction device was used under high temperature and high pressure conditions,in conjunction with scanning electron microscope(SEM)observations,to carry out an experimental study of the diagenetic reaction between sandstone at depth and CO2-rich fluid,which is of great significance for revealing the dissolution of deep clastic rock reservoirs and the developmental mechanism of secondary pores,promoting deep oil and gas exploration.In this study,the experimental scheme of the water-rock reaction system was designed according to the parameters of the diagenetic background of the deep sandstone reservoir in the Qiongdongnan Basin.Three groups of single mineral samples were prepared in this experiment,including K-feldspar samples,albite samples and calcite samples.Using CO2 as a reaction solution,a series of diagenetic reaction simulation experiments were carried out in a semi-closed high temperature and high pressure simulation system.A field emission scanning electron microscope(SEM)was used to observe the microscopic appearance of the mineral samples after the water-rock reaction,the characteristics of dissolution under high temperature and high pressure,as well as the development of secondary pores.The experimental results showed that the CO2-rich fluid has an obvious dissolution effect on K-feldspar,albite and calcite under high temperature and high pressure.For the three minerals,the main temperature and pressure window for dissolution ranged from 150℃to 300℃and 45 MPa to 60 MPa.Scanning electron microscope observations revealed that the dissolution effect of K-feldspar is most obvious under conditions of 150℃and 45 MPa,in contrast to conditions of200℃and 50 MPa for albite and calcite.Through the comparative analysis of experimental conditions and procedures,a coupling effect occurred between the temperature and pressure change and the dissolution strength and calcite.Under high temperature and high pressure,pressure changed the solubility of CO2,furthermore,the dissolution effect and strength of the sandstone components were also affected.The experiment revealed that high temperature and high pressure conditions with CO2-rich fluid has a significant dissolution effect on aluminosilicate minerals and is conducive to the formation of secondary pores and effective reservoirs.Going forward with the above understanding has important implications for the promotion of deep oil and gas exploration.  相似文献   

19.
Fluid inclusions have recorded the history of degassing in basalt. Some fluid inclusions in olivine and pyroxene phenocrysts of basalt were analyzed by micro-thermometry and Raman spectroscopy in this paper. The experimental results showed that many inclusions are present almost in a pure CO2 system. The densities of some CO2 inclusions were computed in terms of Raman spectroscopic characteristics of CO2 Fermi resonance at room temperature. Their densities change over a wide range, but mainly between 0.044 g/cm3 and 0.289 g/cm3. Their micro-thermometric measurements showed that the CO2 inclusions examined reached homogenization between 1145.5℃ and 1265℃ . The mean value of homogenization temperatures of CO2 inclusions in basalts is near 1210℃. The trap pressures (depths) of inclusions were computed with the equation of state and computer program. Distribution of the trap depths makes it know that the degassing of magma can happen over a wide pressure (depth) range, but mainly at the depth of 0.48 km to 3.85 km. This implicates that basalt magma experienced intensive degassing and the CO2 gas reservoir from the basalt magma also may be formed in this range of depths. The results of this study showed that the depth of basalt magma degassing can be forecasted from CO2 fluid inclusions, and it is meaningful for understanding the process of magma degassing and constraining the inorganogenic CO2 gas reservoir.  相似文献   

20.
The quartz in the Haigou gold deposit contains a great abundance of three-phase CO2-NaCl-H2O and two-phase CO2-rich inclusions, which are associated with two-phase NaCl-H2O ones. The ore-forming fluids, which were rich in CO2, are classified into two types with two different sources: the high-salinity CO2-rich NaCl-H2O fluid derived from magmatic hydrothermal solution, and the low-salinity NaCl-H2O fluid from ancient meteoric water. The optimum conditions for gold mineralization are 220-300℃ for the temperature, 4-20 MPa for the fluid static pressure, 1-3 km for the mineralization depth, 2-7 w (NaCl)/10-2 for the fluid salinity, and 0.644 g/cm3 for the total density. The fluid was in a critical or supercritical state at the initial stage of mineralization, and it boiled and was unmixed with CO2 and NaCl-H2O in the climax of mineralization, leading to the decomposition of Au-chlorine complexes and the bulk precipitation of Au.The type, association, homogenization temperature and composition (CO2/H2O val  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号