首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater samples were collected from Mettur taluk of Salem district, Tamilnadu, India for two different seasons (pre-monsoon and post-monsoon) and analyzed for fluoride ion along with other chemical parameters. The major litho units of the study area are Charnockites, peninsular gneiss, and calc gneiss of meta-sedimentary group. The fluoride concentration ranges from 0.1 to 2.8?mg/L and 0.4 to 4.0?mg/L during pre-monsoon (PRM) and post-monsoon (POM) seasons, respectively. Results showed that collected water samples were contaminated by the presence of fluoride ion. During PRM and POM, 21% and 56% of samples recorded higher fluoride when compared with Indian Drinking Water Standard (1?mg/L) and (9% and 35%) of samples recorded higher fluoride when compared with World Health Organization tolerance limit (1.5?mg/L). The ratio of Na/Ca indicates high sodium content in groundwater enhances the dissolution of fluoride at higher pH. Hydrogeochemical facies indicates water-rock interaction as main source for high fluoride in groundwater. A positive correlation between pH, Mg, and F indicates high alkaline nature of water promotes fluoride leaching from source rocks into ground water. Factor analysis indicates hydro-geochemical processes like weathering, ion exchange, and anthropogenic contributes to groundwater chemistry. The saturation index indicates dissolution and precipitation contributes fluoride dissolution along with mixing.  相似文献   

2.
The fluoride level in groundwater is controlled by the distribution of Ca2+ and SO42?, ionic strength and the presence of complex ions in its composition. In the study area, situated in the Ranga Reddy district, Andhra Pradesh, India, the concentrations of fluoride in the groundwater vary from 0.7 to 4.80 mg/l and from 0.4 to 4.20 mg/l during the pre- and post-monsoon seasons respectively. From the correlation coefficient studies, it is observed that fluoride is inversely related with Ca2+ and positively related with HCO3?, whereas the correlation coefficient between fluoride and other ions is very poor during both seasons. The difference in F? concentrations between pre- and post-monsoon seasons could be because the ionic concentrations in the groundwater during the post-monsoon period were generally less than their counterparts during the pre-monsoon period, because of dilution by rainwater. By contrast, the fluoride concentration in many places was relatively high during the post-monsoon period. This indicates contamination of groundwater from surface pollutants.  相似文献   

3.
In the management of water resources, quality of water is just as important as its quantity. In order to know the quality and/or suitability of groundwater for domestic and irrigation in upper Gunjanaeru River basin, 51 water samples in post-monsoon and 46 in pre-monsoon seasons were collected and analyzed for various parameters. Geological units are alluvium, shale and quartzite. Based on the analytical results, chemical indices like percent sodium, sodium adsorption ratio, residual sodium carbonate, permeability index (PI) and chloroalkaline indices were calculated. The pre-monsoon waters have low sodium hazard as compared to post-monsoon season. Residual sodium carbonate values revealed that one sample is not suitable in both the seasons for irrigation purposes due the occurrence of alkaline white patches and low permeability of the soil. PI values of both seasons revealed that the ground waters are generally suitable for irrigation. The positive values of Chloroalkaline indices in post-monsoon (80%) and in pre-monsoon (59%) water samples indicate absence of base-exchange reaction (chloroalkaline disequilibrium), and remaining samples of negative values of the ratios indicate base-exchange reaction (chloroalkaline equilibrium). Chadha rectangular diagram for geochemical classification and hydrochemical processes of groundwater for both seasons indicates that most of waters are Ca–Mg–HCO3 type. Assessment of water samples from various methods indicated that majority of the water samples in both seasons are suitable for different purposes except at Yanadipalle (sample no. 8) that requires precautionary measures. The overall quality of groundwater in post-monsoon season in all chemical constituents is on the higher side due to dissolution of surface pollutants during the infiltration and percolation of rainwater and at few places due to agricultural and domestic activities.  相似文献   

4.
Lack of proper reclamation strategy and indiscriminate mining of various economic resources, particularly coal from Permo-carboniferous Gondwana coalfields affects the groundwater quality of the concerned regions. Leaching from mine-tailings along with seasonal fluctuation of water table caused a significant change in groundwater geochemistry of Raniganj coalfield area. Gondwana sequences, developed in intracratonic rift basin, are characterized by numerous longitudinal and cross faults. This results in the formation of many small aquifer systems which may be interconnected laterally as well as vertically providing the conduit for homogenization of aquifers. Although the predominance of major cations (Ca>Na>Mg>K) and anions (HCO3>Cl>SO4>NO3) remain same irrespective of season, the dominance of Na and SO4 have significantly increased in post-monsoon season. The types of groundwater in pre-monsoon and postmonsoon seasons are CaMgCl and CaHCO3 respectively. Leaching of SO4 from surface sources (mine tailings) has increased TDS in post-monsoon. Base exchange (direct and reverse) reactions have taken place between aquifer materials and groundwater.  相似文献   

5.
Water samples collected from the six reservoirs of Damodar River basin in pre- and post-monsoon, have been analysed, to study the major ion chemistry and the weathering and geochemical processes controlling the water composition. Ca, Na and HCO3 dominate the chemical composition of the reservoir water. The seasonal data shows a minimum concentration of most of the ions in post-monsoon and a maximum concentration in pre-monsoon seasons, reflecting the concentrating effects due to elevated temperature and increased evaporation during the low water level period of the pre-monsoon season. Water chemistry of the reservoirs strongly reflects the dominance of continental weathering aided by atmospheric and anthropogenic activities in the catchment area. Higher concentration of SO4 and TDS in Panchet, Durgapur and Tenughat reservoirs indicate mining and anthropogenic impact on water quality. The high contribution of (Ca+Mg) to the total cations, high concentration of dissolved silica, relatively high (Na+K)/TZ+ ratio (0.3) and low equivalent ratio of (Ca+Mg)/(Na+K) suggests combined influence of carbonate and silicate weathering. Kaolinite is the possible mineral that is in equilibrium with the water, implying that the chemistry of reservoir water favours kaolinite formation. The calculated values of SAR, RSC and sodium percentage indicate the ‘excellent to good quality’ of water for irrigation uses.  相似文献   

6.
Hydrochemical studies were carried out in Mulugu-Venkatapur Mandals of Warangal district, Telangana state, India to find out the causes of high fluorides in groundwater and surface water causing a widespread incidence of fluorosis in local population. The fluoride concentration in groundwater ranges from 0.28 to 5.48 mg/l with a mean of 1.26 mg/l in pre-monsoon and 0.21 to 4.43 mg/l with a mean 1.45 mg/l in post-monsoon. About 32% and 34% of samples in pre and post-monsoon containing fluoride concentrations that exceed the permissible limit. The Modified Piper diagram reflects that, water belong to Ca+2-Mg+2-HCO3 - to Na+-HCO3 - facies. Negative chloroalkali indices in both the seasons prove that ion exchange took place between Na+ & K+ with Ca+2 and Mg+2 in aquatic solution in host rock. Different plots for major ions and molar ratios suggest that weathering of silicate rocks and water-rock interaction is responsible for major ion chemistry of water. High fluoride content in groundwater attributed to continuous water-rock interaction during the process of percolation with fluorite bearing country rocks under arid, low precipitation, and high evaporation conditions. The low calcium content in rocks and soils, and the presence of high content of sodium bicarbonate in soils and waters are important factors favouring high levels of fluoride in waters. The basement rocks provide abundant mineral sources of fluoride in the form of amphibole, biotite, fluorite, mica and apatite.  相似文献   

7.
The contamination of aquifers by fluoride and arsenic is a major cause of concern in several parts of India. A study has thus been conducted to evaluate the extent and severity of fluoride contamination and also its seasonal variability. Two blocks (Purulia-1 and Purulia-2) were considered for this purpose. Twenty groundwater samples (in each season) were collected from tube wells during the pre-monsoon and post-monsoon seasons. In addition to fluoride, groundwater samples were also analyzed for major cations, anions, and other trace elements. The concentration of fluoride shows significant seasonal variation and ranges between 0.94–2.52 and 0.25–1.43 mg/l during the pre-monsoon and post-monsoon seasons, respectively. In pre-monsoon season, more than 40% of the water samples show fluoride concentrations higher than the WHO limit. However, during the post-monsoon season, none of the groundwater sample shows fluoride concentrations higher than the WHO limit. Lesser concentration during the post-monsoon season is attributed to the dilution effect by the percolating rainwater, which has also been reflected in the form of a decrease in concentrations of other elements. The petrographic studies of the rock samples collected from the study area show that the rocks are mainly composed of plagioclase, orthoclase, and quartz with abundant biotite. The weathering and dissolution of biotite plays an important role in controlling the fluoride concentrations in the groundwater of the study area.  相似文献   

8.
Arsenic (As) and fluoride (F?) in groundwater are increasing global water quality and public health concerns. The present study provides a deeper understanding of the impact of seasonal change on the co-occurrence of As and F?, as both contaminants vary with climatic patterns. Groundwater samples were collected in pre- and post-monsoon seasons (n = 40 in each season) from the Brahmaputra flood plains (BFP) in northeast India to study the effect of season on As and F? levels. Weathering is a key hydrogeochemical process in the BFP and both silicate and carbonate weathering are enhanced in the post-monsoon season. The increase in carbonate weathering is linked to an elevation in pH during the post-monsoon season. A Piper diagram revealed that bicarbonate-type water, with Na+, K+, Ca2+, and Mg2+ cations, is common in both seasons. Correlation between Cl? and NO3 ? (r = 0.74, p = 0.01) in the post-monsoon indicates mobilization of anthropogenic deposits during the rainy season. As was within the 10 µg L?1 WHO limit for drinking water and F? was under the 1.5 mg L?1 limit. A negative correlation between oxidation reduction potential and groundwater As in both seasons (r = ?0.26 and ?0.49, respectively, for pre-monsoon and post-monsoon, p = 0.05) indicates enhanced As levels due to prevailing reducing conditions. Reductive hydrolysis of Fe (hydr)oxides appears to be the predominant process of As release, consistent with a positive correlation between As and Fe in both seasons (r = 0.75 and 0.73 for pre- and post-monsoon seasons, respectively, at p = 0.01). Principal component analysis and hierarchical cluster analysis revealed grouping of Fe and As in both seasons. F? and sulfate were also clustered during the pre-monsoon season, which could be due to their similar interactions with Fe (hydr)oxides. Higher As levels in the post-monsoon appears driven by the influx of water into the aquifer, which drives out oxygen and creates a more reducing condition suitable for reductive dissolution of Fe (hydr)oxides. An increase in pH promotes desorption of As oxyanions AsO4 3? (arsenate) and AsO3 3? (arsenite) from Fe (hydr)oxide surfaces. Fluoride appears mainly released from F?-bearing minerals, but Fe (hydr)oxides can be a secondary source of F?, as suggested by the positive correlation between As and F? in the pre-monsoon season.  相似文献   

9.
Groundwater is being used for drinking and irrigation purposes in the agricultural dominated Indian state of Punjab. Fifty-six groundwater samples were collected from Bathinda, a south-western district of Punjab, during the pre-monsoon (March 2010) and post-monsoon (October 2011) seasons. These samples were tested for major cations, anions and contaminants. Various classification systems were used to study the groundwater quality with respect to drinking as well as irrigation purposes. Total dissolved solids (TDS) and total hardness (TH) are generally used to determine the suitability of groundwater for drinking purpose. Considering TDS as a parameter, 54 and 57 % groundwater samples were found to be unsuitable for use during the pre- and post-monsoon seasons. A wide range of TH values were observed in the pre-monsoon and post-monsoon waters samples (mean 250 and 270 mgL?1). About 75 % of pre-monsoon and 79 % of post-monsoon samples exceeded the maximum permissible limit (MPL) of TH (150 mg L?1) proposed by WHO. In terms of contaminant ions, 40 % and 55 % of the pre- and post-monsoon water samples were unfit for drinking purposes w.r.t. fluoride (MPL 1.5 mg F L?1), 29 and 36 % were unfit w.r.t arsenic (MPL 10 μg L?1) and 33 and 45 % were unfit w.r.t nitrate (MPL 45 mg NO3 ? L?1), respectively. To determine the suitability of groundwater of Bathinda for irrigation purpose, three classification systems proposed by different research workers were used. The parameters electrical conductivity (EC), sodium adsorption ratio, and residual sodium carbonate (RSC) were calculated on the basis of chemical data. Considering EC and RSC together, 32 % samples collected during pre-monsoon season were fit, 19 % were marginal and 49 % were unfit for use. However, during post-monsoon, samples fit for irrigation decreased to 17 % and samples unfit for irrigation increased to 70 %. Increases in the percentage of unfit samples for irrigation after monsoon indicates addition of salts along with the rain water percolated into the groundwater. The other two classification systems, i.e. US Salinity diagram and Wilcox diagram also showed the similar results.  相似文献   

10.
The study reported here is a part of an attempt to establish a comprehensive hydrochemical and isotopic baseline for a tropical wetland system as background data for a range of applications. Surface water samples of Vembanad Lake were collected from 20 stations in three seasons during the period 2007–2009. The analytical results were subjected to different chemical classification techniques to understand processes affecting the chemical concentration of waters. The Piper diagram classified the water samples as 100% alkali group in pre-monsoon followed by 15% in monsoon and 85% in post-monsoon, and for anions 100% samples were of strong acids followed by 90% in monsoon and 100% in post-monsoon season. The plot to decipher the mechanism controlling water chemistry placed the Vembanad Lake in the region of precipitation and rock dominance in the monsoon season and in the field of saline water dominance in pre-monsoon and post-monsoon season. The positive values for the chloro-alkaline indices in pre and post-monsoon season promoted cation exchange in the system. The stable isotopes of water samples ranged from ?20.21 to +17.0‰ and ?5.6 to +3.34‰ for δ 2H and δ 18O, respectively. The most depleted δ values observed in the monsoon are due to the amount effect. The high enrichment observed in pre-monsoon is primarily due to evaporation and salinity mixing. The variation of isotopes in the whole system point toward the fact that salinity mixing can be indicated by the δ 18O variation and δ 2H indicates the evaporation effect. The plot of δ 18O with chloride concentration showed precipitation dominance in the monsoon season, mixing of saline water and evaporation in pre-monsoon season, whereas the post-monsoon samples plot in both fresh and saline region.  相似文献   

11.
High fluoride and arsenic concentrations in groundwater have led to serious health problems to local inhabitants at Yuncheng basin, Northern China. In this study, groundwater with high fluoride and arsenic concentration at Yuncheng basin was investigated. A majority of the samples (over 60%) belong to HCO3 type water. The predominant water type for the shallow groundwater collected from southern and eastern mountain areas was Ca/Mg-Ca-HCO3 types. For the shallow groundwater from flow through and discharge area it is Na-HCO3/SO4-Cl/SO4/Cl type. The predominant water type for the intermediate and deep groundwater is of Na/Ca/Mg-Ca-HCO3 type. According to our field investigation, fluoride concentration in groundwater ranges between 0.31 and 14.2 mg/L, and arsenic concentration ranges between 0.243 and 153.7 μg/L. Out of seventy collected groundwater samples, there are 31 samples that exceed the World Health Organization (WHO) standard of 1.5 mg/L for fluoride, and 15 samples exceeds the WHO standard of 10 μg/L for arsenic. Over 40% of high fluoride and arsenic groundwater are related to the Na-HCO3 type water, and the other fifty percent associated with Na-SO4-Cl/HCO3-SO4-Cl type water; little relation was found in calcium bicarbonate type water. A moderate positive correlation between fluoride and arsenic with pH were found in this study. It is due to the pH-dependent adsorption characteristics of F and As onto the oxide surfaces in the sediments. The observed negative correlation between fluoride and calcium could stem from the dissolution equilibrium of fluorite. The high concentration of bicarbonate in groundwater can serve as a powerful competitor and lead to the enrichment of fluoride and arsenic in groundwater. Most of the groundwater with high fluoride or arsenic content has nitrate content about or over 10 mg/L which, together with the observed positive correlations between nitrate and fluoride/arsenic, are indicative of common source of manmade pollution and of prevailing condition of leaching in the study area.  相似文献   

12.
Hydrogeochemistry of groundwater is important for sustainable development and effective management of the groundwater resource. Fifty-six groundwater samples were collected from shallow tube wells of the intensively cultivated southern part of district Bathinda of Punjab, India, during pre- and post-monsoon seasons. Conventional graphical plots were used to define the geochemical evaluation of aquifer system based on the ionic constituents, water types, hydrochemical facies and factors controlling groundwater quality. Negative values of chloroalkaline indices suggest the prevalence of reverse ion exchange process irrespective of the seasons. A significant effect of monsoon is observed in terms chemical facies as a considerable amount of area with temporary hardness of Ca2+–Mg2+–HCO3 ? type in the pre-monsoon switched to Ca2+–Mg2+–Cl? type (18%) followed by Na+–HCO3 ? type (14%) in the post-monsoon. Evaporation is the major geochemical process controlling the chemistry of groundwater process in pre-monsoon; however, in post-monsoon ion exchange reaction dominates over evaporation. Carbonate weathering is the major hydrogeochemical process operating in this part of the district, irrespective of the season. The abundance of Ca2+ + Mg2+ in groundwater of Bathinda can be attributed mainly to gypsum and carbonate weathering. Silicate weathering also occurs in a few samples in the post-monsoon in addition to the carbonate dissolution. Water chemistry is deteriorated by land-use activities, especially irrigation return flow and synthetic fertilisers (urea, gypsum, etc.) as indicted by concentrations of nitrate, sulphate and chlorides. Overall, results indicate that different natural hydrogeochemical processes such as simple dissolution, mixing, weathering of carbonate minerals locally known as ‘‘kankar’’ and silicate weathering are the key factors in both seasons.  相似文献   

13.
 This paper examines the results of R-mode factor analysis performed on major ion data from a hydrogeochemical survey over the coastal Quaternary deltaic aquifer of the Cauvery Basin, Tamil Nadu, India. Seven major ions (Ca, Mg, Na, K, HCO3, Cl, and NO3) were analyzed from each of the 126 water samples collected in two seasons (pre- and post-monsoon 63 each). A set of factors was found both in pre-monsoon and post-monsoon data which explained the source of the dissolved ions and the chemical processes which accompany the intrusion of seawater. Received: 4 March 1996 · Accepted: 28 August 1996  相似文献   

14.
Groundwater quality of the Tiruppur district in Tamil Nadu was investigated in this study to develop a Water Quality Index (WQI) model. Hydrochemical parameters showed tremendous variation in certain location over the seasons. Ionic chemistry of groundwater suggested that textile industries and rock-water interaction are major threats to the water quality. Analysis of Na and Ca concentration indicates that direct as well as the inverse cation exchange controls the natural cation chemistry. NO3 concentration shows that the pre-monsoon samples were affected by the fertilizer usage in agricultural fields. Na-Cl type of the water was dominant throughout the study area except few locations. WQI showed that 55% of the pre-monsoon samples and the 47% of the post monsoon samples were classified as poor/very poor/unsuitable for drinking category. Leaching of the textile waste and their transport to the downstream was well observed during the post-monsoon season. The specific contribution of river Noyyal in the transport of the solutes to the discharge zones was proved by the hydrochemistry of the samples.  相似文献   

15.
Analyses of 72 samples from Upper Panjhara basin in the northern part of Deccan Plateau, India, indicate that geochemical incongruity of groundwater is largely a function of mineral composition of the basaltic lithology. Higher proportion of alkaline earth elements to total cations and HCO3>Cl + SO4 reflect weathering of primary silicates as chief source of ions. Inputs of Cl, SO4, and NO3 are related to rainfall and localized anthropogenic factors. Groundwater from recharge area representing Ca + Mg–HCO3 type progressively evolves to Ca + Na–HCO3 and Na–Ca–HCO3 class along flow direction replicates the role of cation exchange and precipitation processes. While the post-monsoon chemistry is controlled by silicate mineral dissolution + cation exchange reactions, pre-monsoon variability is attributable chiefly to precipitation reactions + anthropogenic factors. Positive correlations between Mg vs HCO3 and Ca + Mg vs HCO3 supports selective dissolution of olivine and pyroxene as dominant process in post-monsoon followed by dissolution of plagioclase feldspar and secondary carbonates. The pre-monsoon data however, points toward the dissolution of plagioclase and precipitation of CaCO3 supported by improved correlation coefficients between Na + Ca vs HCO3 and negative correlation of Ca vs HCO3, respectively. It is proposed that the eccentricity in the composition of groundwater from the Panjhara basin is a function of selective dissolution of olivine > pyroxene followed by plagioclase feldspar. The data suggest siallitization (L < R and R k) as dominant mechanism of chemical weathering of basalts, stimulating monosiallitic (kaolinite) and bisiallitic (montmorillonite) products. The chemical denudation rates for Panjhara basin worked out separately for the ground and surface water component range from 6.98 to 36.65 tons/km2/yr, respectively. The values of the CO2 consumption rates range between 0.18 × 106 mol//km2/yr (groundwater) and 0.9 × 106 mol/km2/yr (surface water), which indicates that the groundwater forms a considerable fraction of CO2 consumption, an inference, that is, not taken into contemplation in most of the studies.  相似文献   

16.
A hydrochemical study has been carried out on the fresh groundwater resources of Potharlanka, Krishna Delta, India. Groundwater samples were collected at 58 sites and analyzed in June and December 2001. The groundwater is mildly alkaline with a pH of 7.2–8.2, electrical conductivity (EC) varies from 645–4,700 µS/cm in June 2001 (pre-monsoon) and from 605–5,770 µS/cm in December 2001 (post-monsoon). More than 75% of the samples have >1000 mg/l TDS which is higher than the maximum permissible limit for potable water. Na and Cl are the dominating cations and these are directly proportional to TDS. Extremely low HCO 3/Cl and variable high Mg/Ca (molar ratios) indicated the transformation of the fresh groundwater aquifer systems to saline. Groundwater of this island is classified as Na–Cl, Na–Ca–Cl–HCO 3, Na–Mg–Cl–SO 4 and mixed types. A high percentage of mixed water types indicates the possibility of simultaneous fresh groundwater dilution activity along with a seawater ingression/intrusion process. Low rainfall and excessive withdrawal of groundwater has caused the increase of saline water intrusion.  相似文献   

17.
The present study deals with the hydrogeochemistry and water quality of shallow aquifers in two important river basins—the Ithikkara and Kallada river basins—draining the south western flanks of Western Ghats in Kerala, South West India. Well water samples were collected from 20 dug wells with a depth range of 1 m below ground level (mbgl) to 18.2 mbgl during pre-monsoon, monsoon, and post-monsoon seasons of the year 2011–2012. These samples were analyzed for various physico-chemical parameters following standard methods and were evaluated for their interrelations and drinking water suitability. The pH of the water samples shows wide variation from highly acidic to highly alkaline water. About 80% of pre-monsoon samples recorded Fe2+ concentration above the permissible limit of drinking water standard. Water Quality Index (WQI) shows that majority of the well water samples fall in the category of excellent–good for drinking purpose. The results of the irrigation suitability assessment using the procedures like Percent Sodium, Sodium Absorption Ratio, Residual Sodium Carbonate, Kelly Index, Permeability Index, and Magnesium Hazard reveal that the well waters of the study area are fit for irrigation purpose. Na+/Cl? ratio reflects the release of sodium to water due to silicate weathering. The samples have a Ca2+/Mg2+ ratio equal or greater than 2 indicating the effect of silicate minerals in contributing Ca2+ and Mg2+ ions to the well water. The saturation indices reveal that groundwater is supersaturated with SiO2. Among the causative factors that determine the hydrochemical quality of well water samples, silicate weathering plays a pivotal role with significant input of ions from anthropogenic sources.  相似文献   

18.
India has an increasing incidence of fluorosis, dental and skeletal, with nearly about 62 million people at risk. High fluoride groundwaters are present especially in the hard rock areas of the country. This paper analyzes the most extensive database on fluoride and other chemical constituent distribution in the coastal hard rock aquifers of Thoothukudi district. A total of 135 samples were collected and analyzed for major cations and anions to assess the geochemical process. The fluoride concentration in drinking waters varied from BDL to 3.2 mg?l?1 in the study area. Majority of the samples do not comply with WHO standards for most of the water quality parameters. The saturation index of fluorite saturation index was used to correlate with F? to identify their relationship to increase of fluoride levels. The correlation between the F? concentration and the water type was also attempted. Spatial distribution of fluoride in groundwater was studied to understand the influencing factors. The relationship of F? with HCO? 3, Na+ and pH concentrations were studied and found that HCO? 3, has good correlation with F? than the other parameters.  相似文献   

19.
20.
《Applied Geochemistry》2006,21(3):528-545
High mean As concentrations of up to 26.6 μmol/L (1990 μg/L) occur in ground water collected from a fractured-bedrock system composed of sulfidic schist with granitic to dioritic intrusions. Sulfides in the bedrock are the primary source of the As in the ground water, but the presence of arsenopyrite in rock core retrieved from a borehole with As concentrations in the ground water barely above the detection limit of 2.0 μmol/L, shows that there are complicating factors. Chemical analyses of water from 35 bedrock wells throughout a small watershed reveal spatial clustering of wells with high As concentrations. Stiff diagrams and box plots distinguish three distinct types; calcium-bicarbonate-dominated water with low As concentrations (CaHCO3 type), sodium-bicarbonate-dominated water with moderately high As concentrations (NaHCO3 type), and calcium-bicarbonate-dominated water with very high As concentrations (High-As type). It is proposed that differences in recharge area and ground-water evolution, and possible bedrock composition difference are responsible for the chemical distinctions within the watershed. Lack of correlation of As concentrations with pH indicates that desorption of As is an insignificant control on As concentration. Correlations of As concentrations with Fe and redox parameters indicates that reductive dissolution of Fe(III) oxyhydroxides may play a role in the occurrence of high As concentrations in the NaHCO3 and High-As type water. The oxidation of sulfide minerals occurs within the ground-water system and is ultimately responsible for the existence of As in the ground water, but there is no correlation between As and SO4 concentrations, probably due to precipitation of Fe(III) oxyhydroxides and adsorption of As under oxidizing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号