首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The intracratonic, 2.06 Ga volcanic rocks of the Rooiberg Group of southern Africa consist of nine magma types, varying in composition from basalt to rhyolite. Basalts and andesites, intercalated with dacites and rhyolites, are found towards the base; rhyolite is the chief magma composition in the upper succession. The absence of compositions intermediate to the magma types and variations in major and trace element concentrations suggest that fractional crystallization was not prominent in controlling magma compositions. REE patterns are comparable for all magma types and concentrations increase for successively younger magmas; LREE show enriched patterns and HREE are flat. Elevated Sri-ratios and high concentrations of elements characteristically enriched in the crust suggest that the Rooiberg magmas were crustally contaminated or derived from crustal material. Some Rooiberg features are related to the intrusive events of the Bushveld complex.Petrogenesis of both the Rooiberg Group and the mafic intrusives of the Bushveld complex is linked to a mantle plume, melting at progressively higher crustal levels. The basal Rooiberg magmas have undergone a complex history of partial melting, magma mixing and crustal contamination. Crustal melts extruded as siliceous volcanic flows to form the Upper Rooiberg Group, simultaneously intruding at shallow levels as granophyres. Crustally contaminated plume magma synchronously intruded beneath the Rooiberg Group to produce the mafic rocks of the Rustenburg Layered Suite. Granite intrusions terminated the Bushveld event. The Bushveld plume was short-lived, which conforms, together with other features, with younger, voluminous plume environments.  相似文献   

2.
The post-orogenic Yzerfontein pluton, in the Saldania Belt of South Africa was constructed through numerous injections of shoshonitic magmas. Most magma compositions are adequately modelled as products of fractionation, but the monzogranites and syenogranites may have a separate origin. A separate high-Mg mafic series has a less radiogenic mantle source. Fine-grained magmatic enclaves in the intermediate shoshonitic rocks are autoliths. The pluton was emplaced between 533 ± 3 and 537 ± 3 Ma (LA-SF-ICP-MS U–Pb zircon), essentially synchronously with many granitic magmas of the Cape Granite Suite (CGS). Yzerfontein may represent a high-level expression of the mantle heat source that initiated partial melting of the local crust and produced the CGS granitic magmas, late in the Saldanian Orogeny. However, magma mixing is not evident at emplacement level and there are no magmatic kinships with the I-type granitic rocks of the CGS. The mantle wedge is inferred to have been enriched during subduction along the active continental margin. In the late- to post-orogenic phase, the enriched mantle partially melted to produce heterogeneous magma batches, exemplified by those that formed the Yzerfontein pluton, which was further hybridised through minor assimilation of crustal materials. Like Yzerfontein, the small volumes of mafic rocks associated with many batholiths, worldwide, are probably also low-volume, high-level expressions of crustal growth through the emplacement of major amounts of mafic magma into the deep crust.  相似文献   

3.
We present a first overview of the synplutonic mafic dykes (mafic injections) from the 2.56–2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC). The host plutons comprise voluminous intrusive facies (dark grey clinopyroxene-amphibole rich monzodiorite and quartz monzonite, pinkish grey porphyritic monzogranite and grey granodiorite) located in the central part of individual pluton, whilst subordinate anatectic facies (light grey and pink granite) confined to the periphery. The enclaves found in the plutons include highly angular screens of xenoliths of the basement, rounded to pillowed mafic magmatic enclaves (MME) and most spectacular synplutonic mafic dykes. The similar textures of MME and adjoining synplutonic mafic dykes together with their spatial association and occasional transition of MME to dismembered synplutonic mafic dykes imply a genetic link between them. The synplutonic dykes occur in varying dimension ranging from a few centimeter width upto 200 meters width and are generally dismembered or disrupted and rarely continuous. Necking of dyke along its length and back veining of more leucocratic variant of the host is common feature. They show lobate as well as sharp contacts with chilled margins suggesting their injection during different stages of crystallization of host plutons in magma chamber. Local interaction, mixing and mingling processes are documented in all the studied crustal corridors in the EDC. The observed mixing, mingling, partial hybridization, MME and emplacement of synplutonic mafic dykes can be explained by four stage processes: (1) Mafic magma injected during very early stage of crystallization of host felsic magma, mixing of mafic and felsic host magma results in hybridization with occasional MME; (2) Mafic magma introduced slightly later, the viscosities of two magmas may be different and permit only mingling where by each component retain their identity; (3) When mafic magma injected into crystallizing granitic host magma with significant crystal content, the mafic magma is channeled into early fractures and form dismembered synplutonic mafic dykes and (4) Mafic injections enter into largely crystallized (>80% crystals) granitic host results in continuous dykes with sharp contacts. The origin of mafic magmas may be related to development of fractures to mantle depth during crystallization of host magmas which results in the decompression melting of mantle source. The resultant hot mafic melts with low viscosity rise rapidly into the crystallizing host magma chamber where they interact depending upon the crystallinity and viscosity of the host. These hot mafic injections locally cause reversal of crystallization of the felsic host and induce melting and resultant melts in turn penetrate the crystallizing mafic body as back veining. Field chronology indicates injection of mafic magmas is synchronous with emplacement of anatectic melts and slightly predates the 2.5 Ga metamorphic event which affected the whole Archaean crust. The injection of mafic magmas into the crystallizing host plutons forms the terminal Archaean magmatic event and spatially associated with reworking and cratonization of Archaean crust in the EDC.  相似文献   

4.
Recent detailed field studies in several anorthosite complexes have shown that anorthosites are frequently associated with weakness zones in the crust which may have favoured their emplacement at mid-crust levels. Recent experimental data have shown that the parent magma compositions of various anorthosite massifs lie on thermal highs in the relevant phase diagrams at 10–13 kbar, indicating that these magmas cannot be derived by fractionation of peridotitic mantle melts but by melting of gabbronoritic sources in the lower crust at 40–50 km depths. In the Sveconorwegian Province terne boundaries have been traced in deep seismic profiles to Moho offsets or to tongues of lower crustal material underthrust to depths higher than 40 km. In Southern Norway, we suggest that a lithospheric-scale weakness zone (the Feda transition zone?) has channelled the Rogaland anorthosites through linear delamination, asthenospheric uprise and melting of a mafic lower crustal tongue.  相似文献   

5.
The A-type Mayurbhanj Granite Pluton (3.09 Ga), occurring along the eastern margin of the Singhbhum-Orissa Craton, eastern India, represents the final phase of acid plutonism in this crustal block of Archean age. The granite shows a bimodal association with a voluminous gabbroid body, exposed mainly along its western margin, and is associated with the Singhbhum Shear zone. The granite pluton is composed mainly of a coarse ferrohastingsite–biotite granite phase, with an early fine-grained granophyric microgranitic phase and a late biotite aplogranitic phase. Petrogenetic models of partial melting, fractional crystallisation and magma mixing have been advocated for the evolution of this pluton. New data, combined with earlier information, suggest that two igneous processes were responsible for the evolution of the Mayurbhanj Granite Pluton: partial melting of the Singhbhum Granite; followed by limited amount of mixing of acid and basic magmas in an anorogenic extensional setting. The necessary heat for partial melting was provided by the voluminous basaltic magma, now represented by the gabbroid body, emplaced at a shallow crustal level and showing a bimodal association with the Mayurbhanj Granite Pluton. The Singhbhum Shear Zone provided a possible channel way for the emplacement of the basic magma during crustal extension. It is concluded that all three phases of the Mayurbhanj Granite Pluton were derived from the same parent magma, generated by batch partial melting of the Singhbhum Granite at relatively high temperatures (980 °C) and low pressures (4 to <2 kbar) under anhydrous conditions. The coarse ferrohastingsite biotite granite phase shows evidence of limited and heterogeneous assimilation of country rock metasediments. However, the early microgranite phase and late aplogranite phase have not assimilated any metasediments. Compositional irregularities observed along the western margin of the Mayurbhanj Granite Pluton in contact with the gabbro body including a continuous fractionating sequence from quartz diorite to alkali-feldspar granite in the Notopahar area. Gradational contacts between the gabbro and the Mayurbhanj Granite Pluton in the Gorumahisani area etc., may be attributed to a limited amount of mixing between the gabbroid magma and the newly generated Mayurbhanj Granite magma. The mixing was mainly of liquid–liquid diffusive type, with a subordinate amount of mixing of solid–liquid type. Although A-type granites are commonly described as having high total REE (e.g. 270–400 ppm), studies on the late aplogranite phase of the Mayurbhanj Granite show that total REE values (100 ppm) are low. This low REE abundance may be attributed to the progressive residual nature of the Singhbhum Granite source during continued partial melting, when the magmas of the microgranite and coarse granite phases had already been removed from the source region.  相似文献   

6.
The Xuhe mafic rocks, located in Ziyang county of Shaanxi Province, are dominated by diabase-porphyrite, gabbro–diabase, diabase, and pyroxene diorite. Primitive mantle-normalized multi-element patterns show that, the Xuhe mafic rocks are enriched in large ion lithophile elements(LITE), such as Ba and Pb, depleted in K and Sr for basic rocks, and are depleted in Sr, P and Ti for pyroxene diorite. Chondrite-normalized REE patterns display LREE enrichment(LaN/YbN = 9.34–13.99) and have normalized patterns for trace element and REE similar to that of typical OIB. Detailed SIMS zircon U–Pb dating yields emplacement ages of 438.4 ± 3.1 Ma for Xuhe mafic rocks. The relatively low Mg O(basic rock: 3.11–7.21 wt%; pyroxene diorite: 0.89–1.21 wt%) and Mg#(0.20–0.49) for Xuhe mafic rocks suggest that they were possibly originated from an extremely evolved magma. The rising parental mafic magmas underwent pyroxene and plagioclase fractionation. Crustal contamination of pyroxene diorite before emplacement occurred at a higher crustal level compared to other lithology in Xuhe mafic rocks. The degree of partial melt was low(5%–10%) and in garnetspinel transition facies. Sr-Nd isotope of pyroxene diorite and enrichment mantle characteristics for Xuhe mafic rocks suggest that mafic rocks in the North Daba Mountains were derived from a mixture of HIMU, EMII and small amount of EMI components. Furthermore, this study discusses mantle geodynamic significance of Xuhe mafic rocks in the Silurian, which indicates subduction and uplift of magma caused back-arc extension.  相似文献   

7.
The Quérigut mafic–felsic rock association comprisestwo main magma series. The first is felsic comprising a granodiorite–tonalite,a monzogranite and a biotite granite. The second is intermediateto ultramafic, forming small diorite and gabbro intrusions associatedwith hornblendites and olivine hornblendites. A U–Pb zirconage of 307 ± 2 Ma was obtained from the granodiorite–tonalites.Contact metamorphic minerals in the thermal aureole providea maximum emplacement pressure of between 260 and 270 MPa. Petrographiccharacteristics of the mafic and ultramafic rocks suggest crystallizationat <300 MPa, demonstrating that mantle-derived magmas ascendedto shallow levels in the Pyrenean crust during Variscan times.The ultramafic rocks are the most isotopically primitive components,with textural and geochemical features of cumulates from hydrousbasaltic magmas. None of the mafic to ultramafic rocks havedepleted mantle isotope signatures, indicating crustal contaminationor derivation from enriched mantle. Origins for the dioritesinclude accumulation from granodiorite–tonalite magma,derivatives from mafic magmas, or hybrids. The granitic rockswere formed from broadly Proterozoic meta-igneous crustal protoliths.The isotopic signatures, mineralogy and geochemistry of thegranodiorite–tonalites and monzogranites suggest crystallizationfrom different magmas with similar time-integrated Rb/Sr andSm/Nd isotope ratios, or that the granodiorite–tonalitesare cumulates from a granodioritic to monzogranitic parent.The biotite granite differs from the other felsic rocks, representinga separate magma batch. Ages for Quérigut and other Pyreneangranitoids show that post-collisional wrenching in this partof the Variscides was under way by 310 Ma. KEY WORDS: Variscan orogeny; Pyrenees; Quérigut complex; epizonal magmatism; post-thickening; mafic–felsic association  相似文献   

8.
The end of an orogenic Wilson cycle corresponds to amalgamation of terranes into a Pangaea and is marked by widespread magmatism dominated by granitoids. The post-collision event starts with magmatic processes still influenced by subducted crustal materials. The dominantly calc-alkaline suites show a shift from normal to high-K to very high-K associations. Source regions are composed of depleted and later enriched orogenic subcontinental lithospheric mantle, affected by dehydration melting and generating more and more K- and LILE-rich magmas. In the vicinity of intra-crustal magma chambers, anatexis by incongruent melting of hydrous minerals may generate peraluminous granitoids bearing mafic enclaves. The post-collision event ends with emplacement of bimodal post-orogenic (PO) suites along transcurrent fault zones. Two suites are defined, (i) the alkali-calcic monzonite–monzogranite–syenogranite–alkali feldspar granite association characterised by [biotite+plagioclase] fractionation and moderate [LILE+HFSE] enrichments and (ii) the alkaline monzonite–syenite–alkali feldspar granite association characterised by [amphibole+alkali feldspar] fractionation and displaying two evolutionary trends, one peralkaline with sodic mafic mineralogy and higher enrichments in HFSE than in LILE, and the other aluminous biotite-bearing marked by HFSE depletion relative to LILE due to accessory mineral precipitation. Alkali-calcic and alkaline suites differ essentially in the amounts of water present within intra-crustal magma chambers, promoting crystallisation of various mineral assemblages. The ultimate enriched and not depleted mantle source is identical for the two PO suites. The more primitive LILE and HFSE-rich source rapidly replaces the older orogenic mantle source during lithosphere delamination and becomes progressively the thermal boundary layer of the new lithosphere. Present rock compositions are a mixture of major mantle contribution and various crustal components carried by F-rich aqueous fluids circulating within convective cells created around magma chambers. In favourable areas, PO suites pre-date a new orogenic Wilson cycle.  相似文献   

9.
The paper reports results of petrological-geochemical, isotope, and geochronological studies of the Preobrazhenka gabbro–granitoid massif located in the Altai collisional system of Hercynides, Eastern Kazakhstan. The massif shows evidence for the interaction of compositionally contrasting magmas during its emplacement. Mineralogical–petrological and geochemical studies indicate that the gabbroid rocks of the massif were formed through differentiation of primary trachybasaltic magma and its interaction with crustal anatectic melts. Origin of the granitoid rocks is related to melting of crustal protoliths under the thermal effect of mafic melts. The mantle–crust interaction occurred in several stages and at different depths. A model proposed here to explain the intrusion formation suggests subsequent emplacement of basite magmas in lithosphere and their cooling, melting of crustal protolith, emplacement at the upper crustal levels and cooling of the granitoid and basite magmas. It was concluded that the formation of gabbro-granitoid intrusive massifs serves as an indicator of active mantle–crust interaction at the late evolutionary stages of accretionary–collisional belts, when strike-slip pull-apart deformations causes the high permeability of lithosphere.  相似文献   

10.
Geological observations in combination with previously published and new isotopic data allowed us to reconstruct the history of geological events that eventually gave rise to the formation of the Berdyaush pluton situated on the western slope of the South Urals: (1) emplacement of gabbro into Lower Riphean sedimentary rocks (1410–1390 Ma); an enriched mantle source of gabbro arising in the Archean or Paleoproterozoic; (2) formation of granitic melt in the lower crust; Archean TTG association subsequently enriched in K and correlative elements as a result of interaction with enriched mantle-derived magmas and related fluids was a magma source; mixing of mantle and crustal magmas in the course of their synchronous ascent with formation of hybrid intrusive rocks; injections of mafic and hybrid melts into incompletely solidified granite; fragmentation of such injections with the formation of melanocratic nodules; emplacement of basic dikes into the cooled granite—all these events took place 1410–1360 Ma ago; (3) discrete episodes of partial melting of enriched mantle source with waning intensity; formation of minor volumes of melt, which solidified under auto- and paraautochthonous conditions as local domains highly enriched in incompatible elements (1360–1270 Ma); (4) partial melting of those domains resulting in the formation of minor nepheline syenite intrusions (915–800 Ma), containing relict zircon grains dated at >1270 Ma; (5) injections of mantle-derived alkaline melt contaminated with crustal granitic material as microsyenite and syenite porphyry dikes (700–500 Ma ?). Thus, the Berdyaush pluton is a projection of a local domain of mantle and crustal magma generation, which periodically resumed its activity over almost a billion years.  相似文献   

11.
康定杂岩Rb-Sr、Sm-Nd同位素系统及其意义   总被引:1,自引:0,他引:1  
通过对康定—冕宁地区出露的英云闪长岩、黑云角闪斜长片麻岩、角闪变粒岩全岩及其中所分离出的角闪石、黑云母、斜长石、钾长石的Rb-Sr、Sm-Nd同位素的系统测定,结合岩石的锆石U-Pb年龄结果,确定这些变质杂岩由于经历了复杂的形成过程与变质历史,Rb-Sr、Sm-Nd同位素体系难以确定其结晶年龄。由单矿物与全岩Rb-Sr、Sm-Nd体系拟合的~700 M a的等时线年龄反映了角闪岩相-高角闪岩相的变质作用年龄。Sm-Nd同位素体系由于在变质作用过程中的部分开放性,很容易给出无意义的较老的混合年龄。康定杂岩结晶后并没有经历麻粒岩相变质作用,区域上所含的麻粒岩透镜体可能是新元古代(773~721 M a)期间由Rod in ia超大陆裂解产生的新生洋壳向扬子克拉通陆块俯冲消减过程的变质产物。俯冲到一定深度后,由于板片被拉断,软流圈上涌导致变质洋壳板片岩石、先前底侵变质的镁铁质岩石及扬子陆块长英质基底岩石发生部分熔融,以镁铁质岩石熔融产生的熔浆为主(>70%),与长英质基底岩石熔融产生的熔浆混合形成w(Na2O)/w(K2O)>1的TTG组合。  相似文献   

12.
 The Mesoproterozoic Rivard minette dyke provides a case example of dyke-parallel fracturing induced by propagation of low-viscosity melts at deep crustal levels. The dyke constitutes a xenolith-choked intrusion breccia and provides samples of an extensive section of the lithosphere underlying the southwestern Grenville Province of Québec at 1.08 Ga. The xenoliths occupy approximately 50% of the volume of the breccia. They are extremely diverse and include pyroxenites and mafic granulites from the upper mantle and lower crust, and Grenvillian gabbroids, gneisses and quartzites. Wall-rock fragments are detached to various extents along dyke-parallel fractures and apophyses. The host lamprophyre magma has a calculated viscosity of ca. 40 Pa·s. Rapid ascent of magma and turbulence are suggested by the presence of large dense fragments and the brittle-to-ductile deformation at the margins of some xenoliths. A minimum ascent velocity of ca. 50 cm·s–1 is estimated from the settling velocity of a 40 cm long pyroxenite xenolith. The progressive addition of xenoliths increased the effective viscosity of the liquid-solid mixture to 103 Pa·s during emplacement. This favoured Bingham behaviour and laminar flow of the magma, and xenolith suspension. Field evidence suggests that xenoliths were formed through (1) early fracturing of wall rock by inelastic deformation during dyke propagation, and (2) continuous delamination of wall rock by intrusion of magma along the dyke-parallel fractures. This led to removal of chilled margins, and to fluid infiltration, partial melting and microbrecciation in the wall rock. Pre-existing discontinuities played a minor role in the fracturing process. Xenoliths may thus be abundant in alkaline magmas not only because these magmas ascend rapidly and can transport xenoliths, but possibly also, because their low viscosities promote intense fracturing of wall rock. Received: 10 June 1995 / Accepted: 10 February 1996  相似文献   

13.
The crust ≈ 10–20 km under the Eifel is composed of amphibolite-facies metasediments and meta-igneous rocks of tonalitic to granodioritic composition; mafic granulites occupy the base of the crust down to a Moho depth between about 29 and 34 km. The meta-granodiorites and meta-tonalites have I-type chemical characteristics and appear to have formed approximately 400 Myr ago by partial melting of a lower crustal source. Amphibolite-facies metamorphism probably followed within the same orogeny. During the Quaternary, many amphibolite-facies rocks were subjected to contact heating in crustal magma chambers and/or during transport to the earth's surface. Contact heating is also recorded in radiogenic isotope compositions of minerals from one xenolith. A genetic link between meta-igneous amphibolites and the deeper crustal mafic granulites can neither be proven nor discounted by the isotope data. If there is a genetic relationship, it requires fractionation of a mafic magma in the lower crust and assimilation of metasediments and separation of a highly evolved melt.  相似文献   

14.
We present field and petrographic data on Mafic Magmatic Enclaves (MME), hybrid enclaves and synplutonic mafic dykes in the calc-alkaline granitoid plutons from the Dharwar craton to characterize coeval felsic and mafic magmas including interaction of mafic and felsic magmas. The composite host granitoids comprise of voluminous juvenile intrusive facies and minor anatectic facies. MME, hybrid enclaves and synplutonic mafic dykes are common but more abundant along the marginal zone of individual plutons. Circular to ellipsoidal MME are fine to medium grained with occasional chilled margins and frequently contain small alkali feldspar xenocrysts incorporated from host. Hybrid magmatic enclaves are intermediate in composition showing sharp to diffused contacts with adjoining host. Spectacular synplutonic mafic dykes commonly occur as fragmented dykes with necking and back veining. Similar magmatic textures of mafic rocks and their felsic host together with cuspate contacts, magmatic flow structures, mixing, mingling and hybridization suggest their coeval nature. Petrographic evidences such as disequilibrium assemblages, resorption, quartz ocelli, rapakivi-like texture and poikilitically enclosed alkali feldspar in amphibole and plagioclase suggest interaction, mixing/mingling of mafic and felsic magmas. Combined field and petrographic evidences reveal convection and divergent flow in the host magma chamber following the introduction of mafic magmas. Mixing occurs when mafic magma is introduced into host felsic magma before initiation of crystallization leading to formation of hybrid magma under the influence of convection. On the other hand when mafic magmas inject into host magma containing 30–40% crystals, the viscosities of the two magmas are sufficiently different to permit mixing but permit only mingling. Finally, if the mafic magmas are injected when felsic host was largely crystallized (~70% or more crystals), they fill early fractures and interact with the last residual liquids locally resulting in fragmented dykes. The latent heat associated with these mafic injections probably cause reversal of crystallization of adjoining host in magma chamber resulting in back veining in synplutonic mafic dykes. Our field data suggest that substantial volume of mafic magmas were injected into host magma chamber during different stages of crystallization. The origin of mafic magmas may be attributed to decompression melting of mantle associated with development of mantle scale fractures as a consequence of crystallization of voluminous felsic magmas in magma chambers at deep crustal levels.  相似文献   

15.
Field and petrographic studies are carried out to characterize the interactions of mafic and felsic magmas from Pithora region of the northeastern part of the Bastar Craton. The MMEs, syn-plutonic mafic dykes, cuspate contacts, magmatic flow textures, mingling and hybridization suggest the coeval emplacement of end member magmas. Petrographic evidences such as disequilibrium assemblages, resorption textures, quartz ocelli, rapakivi and poikilitic textures suggest magma mingling and mixing phenomena. Such features of mingling and mixing of the felsic and mafic magma manifest the magma chamber processes. Introduction of mafic magmas into the felsic magmas before initiation of crystallization of the latter, results in hybrid magmas under the influence of thermal and chemical exchange. The mechanical exchange occurs between the coexisting magmas due to viscosity contrast, if the mafic magma enters slightly later into the magma chamber, then the felsic magma starts to crystallize. Blobs of mafic magma form as MMEs in the felsic magma and they scatter throughout the pluton due to convection. At a later stage, if mafic magma enters the system after partial crystallization of felsic phase, mechanical interaction between the magmas leads to the formation of fragmented dyke or syn-plutonic mafic dyke. All these features are well-documented in the study area. Field and petrographic evidences suggest that the textural variations from Pithora region of Bastar Craton are the outcome of magma mingling, mixing and hybridization processes.  相似文献   

16.
为加深对中亚造山带东段晚古生代构造背景的认识,选取内蒙古索伦山蛇绿岩中较新鲜的玄武岩和辉长岩开展岩相学、年代学和地球化学研究。结果表明,玄武岩和辉长岩的LA-ICP-MS锆石U-Pb谐和年龄分别为(276.4±1.4) Ma和(273.9±3.3) Ma,形成于早二叠世。二者均为亚碱性拉斑系列,Mg#分别变化于41~50和62~65之间,均低于幔源原生岩浆值;主量元素与SiO2含量之间具有一定的线性关系,反映岩浆演化过程中分离结晶占主要地位。两种岩石的Th/La、Th/Ce和Lu/Yb值均低于大陆地壳的平均值,而与幔源岩浆的比值接近,推测岩浆演化过程中地壳混染的影响不大。稀土元素组成上,玄武岩表现为轻稀土亏损的N-MORB特征,可能起源于尖晶石二辉橄榄岩亏损地幔的5%~10%部分熔融;辉长岩具有轻稀土略亏损、整体平坦的稀土特征,但稀土元素总量明显比N-MORB更亏损,是源区熔融程度更大所致。此外,二者都富集K、Sr、Ba和Pb等大离子亲石元素而亏损Nb、Ta等高场强元素,具有岛弧岩浆特征,指示它们遭受了俯冲板片含水流体或者俯冲沉积物熔体的影响...  相似文献   

17.
ABSTRACT

Appinite complexes preserve evidence of mantle processes that produce voluminous granitoid batholiths. These plutonic complexes range from ultramafic to felsic in composition, deep to shallow emplacement, and from Neo-Archean to Recent in age. Appinites are a textural family characterized by idiomorphic hornblende in all lithologies, and spectacular textures including coarse-grained mafic pegmatites, fine-grained ‘salt-and-pepper’ gabbros, as well as planar and linear fabrics. Magmas are bimodal (mafic-felsic) in composition; ultramafic rocks are cumulates, intermediate rocks are hybrids. Their geochemistry is profoundly influenced by a mantle wedge extensively metasomatized by fluids/magmas produced by subduction. Melting of spinel peridotite sub-continental lithospheric mantle (SCLM) produces appinites whose geochemistry is indistinguishable from coeval low-K calc-alkalic arc magmatism. Coeval felsic rocks within appinite complexes and adjacent granitoid batholiths are crustal magmas. When subduction terminates, asthenospheric upwelling (e.g. in a slab window, or in the aftermath of slab failure) induces melting of metasomatized garnet SCLM to produce K-rich sho shonitic magmas enriched in large ionic lithophile and light relative to heavy rare earth elements, whose asthenospheric component can be identified by Sm-Nd isotopic signatures. Coeval late-stage Ba-Sr granitoid magmas have a ‘slab failure’ geochemistry, resemble TTG and adakitic suites, and are formed either by fractionation of an enriched (shoshonitic) mafic magma, or high pressure melting of a meta-basaltic protolith either at the base of the crust or along the upper portion of the subducted slab. Appinite complexes may be the crustal representation of mafic magma that underplated the crust for the duration of arc magmatism. They were preferentially emplaced along fault zones around the periphery of the granitoid batholiths (where their ascent is not blocked by overlying felsic magma), and as enclaves within granitoid batholiths. When subduction ceases, appinite complexes with a more pronounced asthenospheric component are preferentially emplaced along active faults that bound the periphery of the batholiths.  相似文献   

18.
Geological studies on saturated to oversaturated and subsolvus aegirine-riebeckite syenite bodies of the Pulikonda alkaline complex and Dancherla alkaline complex were carried out. The REE distribution of the Dancherla syenite shows a high fractionation between LREE and HREE. The absence of Eu anomaly suggests source from garnet peridotite. The Pulikonda syenite shows moderate fractionation between LREE and HREE as reflected by enrichment of HREE and moderate enrichment of LREE. The negative Eu anomaly indicates role of plagioclase fractionation.Three distinct co-eval primary magmas i.e. mafic syenite-, felsic syenite- and alkali basalt magmas — all derived from low-degrees of partial melting of mantle differentiates and enriched metasomatised lower crust played a major role in the genesis and emplacement of the syenites into overlying crust along deep seated regional scale trans-lithospheric strike-slip faults and shear zones following immediately after late-Archaean calc-alkaline arc magmatism at different time-space episodes i.e. initially at craton margin and later on into the thickened interior of the Eastern Dharwar craton. The ductile sheared and folded Pulikonda alkaline complex was evolved dominantly from the magmas derived from partial melting of lower crust and minor juvenile magmas from mantle. Differentiation and fractionation by liquid immiscibility of mafic magma and commingling-mixing of intermediate and felsic magmas followed by fractionational crystallisation under extensional tectonics during waning stages of calc-alkaline arc magmatism nearer to the craton margin were attributed as the main processes for the genesis of Pulikonda syenite complex. Commingling and limited mixing of independent mantle derived mafic and felsic syenitic magmas and accompanying fractionation resulting into soda rich and potash rich syenite variants was tentatively deduced mechanism for the origin of Dancherla, Danduvaripalle, Reddypalle syenites and other bodies belonging to Dancherla alkaline complex at the craton interior. The Peddavaduguru syenite was formed by differentiation of alkali mafic magma (gabbro to diorite) and it’s simultaneous mingling with fractionated felsic syenitic magma under incipient rift. Vannedoddi and Yeguvapalli syenites were derived due to desilicification and accompanying alkali feldspar mestasomatism of younger potash rich granites along Guntakal-Gooty fault and along Singanamala shear zone respectively.  相似文献   

19.
The voluminous Meso- to Neoarchean rocks exposed in the Beartooth Mountains of the northern Wyoming Province of western North America comprise the Long Lake Magmatic Complex (LLMC), a variably metamorphosed and deformed association of igneous and meta-igneous plutonic rocks with SiO2 ranging from at least 52 to 78 wt%. Within this compositional range, rock types include lineated amphibolites to hornblende-bearing gneisses of intermediate composition and multiple generations of foliated to unfoliated granitoids. Emplacement ages range between approximately 2.79 and 2.83 Ga, based on U–Pb zircon geochronology (SHRIMP). Field relations, elemental compositions, and geochronology indicate that these rocks do not represent a single fractional crystallization sequence, but rather, the LLMC was constructed by injection of numerous, discrete magmas as sill-like bodies over an ∼40 Ma period. Although there is a continuum of compositions in the LLMC, trace element abundances can be used to distinguish distinct sources and petrogenetic processes that can be broadly extrapolated to at least 3 compositional groupings: (1) trondhjemitic to granitic intrusive rocks with SiO2 >70 wt%, (2) variably metamorphosed granodioritic orthogneisses with SiO2 between 63 and 70 wt%, and (3) amphibole-bearing mafic to intermediate gneisses with SiO2 between 52 and 63 wt%. Despite the range of SiO2 contents, maximum LREE abundances are similar across the compositional range and, consequently, exhibit a wide range of (La/Yb)n ratios (∼20–130). All LLMC rocks share a relative depletion in HFSE abundances similar to modern convergent margin magmas. Initial Sr and Nd isotopic compositions across the compositional range are consistently offset from typical bulk silicate earth (BSE) values and preclude unaltered derivation from primitive or depleted mantle. Common Pb isotopic data define a single array that lies above model crustal growth curves and, along with the Nd and Sr data, suggest relatively uniform interaction with, or derivation from, older lithosphere. The combined isotopic and elemental data suggest the LLMC resulted from simultaneous, rapid, and voluminous production of diverse magmas that represent melting of isotopically similar, but compositionally distinct, crustal and mantle sources. Dynamically, Meso- to Neo-archean crustal growth in the northern Wyoming Province appears to require an environment similar to a modern ocean–continent convergent margin with a comparable rate of crustal production and diversity of magma series. The resultant crust and associated mantle lithosphere (keel) appear to have suffered little-to-no modification prior to Laramide (Cretaceous) uplift and exposure.  相似文献   

20.
位于扬子克拉通西缘的新元古代宝兴杂岩主要由中低级变质的辉长质片麻岩、闪长质片麻岩、英云闪长质到花岗闪长质片麻岩和块状二长花岗岩组成。岩石地球化学和Sm-Nd同位素特征表明,辉长质片麻岩和闪长质片麻岩为同源岩浆演化序列,原始岩浆起源于亏损地幔尖晶石橄榄岩的部分熔融,在上升和侵位过程中受到了地壳岩石强烈混染。英云闪长质和花岗闪长质岩浆形成于下地壳玄武质岩石部分熔融,而二长花岗质岩浆形成于杂砂岩的部分熔融。综合分析宝兴杂岩的岩石组合、微量元素和同位素特征,该杂岩体最有可能形成于新元古代活动大陆边缘火山弧构造背景,并可能经历了碰撞过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号