首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bathymetric and magnetic survey of the California Seamount region (17°40′N × 124°00′W) shows that existing charts are in error. California Seamount is a peak extending to within 454 m (248 fathoms) of the surface. Its true location is 17°41′N × 124°01′W, 25 km southwest of the charted position. Near the old charted position there is an elongated feature which extends to within 1818 m (994 fathoms) of the surface. Both features are located on the Clarion Fracture Zone.  相似文献   

2.
东海浮游翼足类(Pteropods)数量分布的研究   总被引:10,自引:1,他引:10  
徐兆礼 《海洋学报》2005,27(4):148-154
根据1997~2000年东海海域23°30'~33°00'N,118°30'~128°00'E的4个季节海洋调查资料,运用定量、定性方法,探讨了东海浮游翼足类总丰度的平面分布、季节变化及变化的动力学机制.结果表明,东海翼足类总丰度和出现频率有明显的季节变化,均为秋季最高,夏季次之,春季最低;总丰度在各个季节基本上呈东海南部高于北部、外海高于近海的分布趋势;春季的尖笔帽螺(Creseis acicula)、夏季的锥笔帽螺(Creseis virgula)、秋季的蝴蝶螺(Desmopterus papilio)和冬季的马蹄螔螺(Limacina trochiformis)是导致总丰度季节变化的最主要的种类;冬、春和夏3个季节丰度变化及4季总丰度的变化同表层或10m层水温有非常显著的线性相关关系,与底层温度及盐度的相关关系不显著.夏季翼足类高丰度区位于台湾暖流与黑潮暖流的分支处;从夏季到秋季,翼足类随着台湾暖流向北扩展,并在与长江冲淡水,闽浙沿岸水团,黄海水团等交汇处形成高丰度(大于500×10-2个/m3)和较高丰度(250×10-2~500×10-2个/m3)分布区.水温和海流是影响东海翼足类总丰度分布的主要环境因素.  相似文献   

3.
This study was carried out as part of a baseline long-term environmental project in the proposed mining areas for an environmental impact assessment of future mining in the Clarion-Clipperton Fracture Zone (CCFZ). The community structure and distributional pattern of meiobenthos were investigated in the deep-sea bottom of the Clarion-Clipperton Fracture Zone of the northeastern Pacific in July 1998, 1999, 2001, 2003 and August 2004, 2005. Twenty one meiobenthic groups were found at the stations in the study area. The most abundant meiobenthos comprised nematodes followed by benthic foraminiferans and harpacticoid copepods. The maximum density of meiobenthos was 306 ind/10 cm2 at the station located at 11°N (water depth, 4833 m), and the minimum density was 6 ind/10 cm2 at the station located at 14°N (water depth, 5037 m). Oligotrophic conditions in the CCFZ seem to directly reflect the lower standing stocks of meiobenthos in the CCFZ compared to other deep-sea plains of similar depth. The latitudinal distribution pattern of meiobenthos in the study area seemed to be related with surface water primary productivity, which was connected to the water circulation pattern of the Pacific Ocean near the Equator, diverging at 8ºN latitude and converging at 5°N. The horizontal distribution of meiobenthic organisms in the study area showed high densities at the stations within 135–136°W. The densities of meiobenthic organismas within the CCFZ were high at stations with few manganese nodules on the sediment surface at low-latitude sites. In 1998, the observed relative high values of meiobenthic abundance were at stations from 5° to 6°N. Other stations from 7° to 10°N showed no significant fluctuations during the interannual sampling periods. It is considered that the inter-annual fluctuation of meiobenthos abundance is intimately related with a regime shift that may have occurred in the north Pacific between 1998 and 1999, the El Niño period. Vertical distribution of meiobenthic organisms showed the highest individual numbers in the surface sediment layers of 0~2 cm depth and a steep decreasing trend as sediment becomes deeper at the stations of high latitude located in 16~17°N. Size distribution analyses showed that organisms that fit into the sieve mesh size of 0.063 mm were abundant.  相似文献   

4.
《Marine Chemistry》2001,73(3-4):291-303
Oxygen and phosphate measurements from two sections across the Norwegian Atlantic Current, the Gimsøy-NW section from 67.5°N 9°E to 71.5°N 1°E and the Bjørnøya-W section along 74.5°N from 7 to 15°E, are used to estimate oxygen fluxes in the surface layer and between the atmosphere and the ocean. Vertical entrainment velocities of 0.9 m day−1 for the winter season and 0.1 m day−1 for the summer season are found and applied to the upper 300 m. The resulting oxygen fluxes to the surface layer driven by this vertical mixing are 0.58±0.05 and 0.27±0.02 mol O2 m−2 year−1 at the Gimsøy-NW and Bjørnøya-W sections, respectively. Oxygen fluxes to the surface layer due to phytoplankton production are 2.6 and 3.4 mol O2 m−2 year−1, which represent the net community production at the two sections. Estimated uncertainties in these numbers are ±15%. The surface water is a sink for atmospheric oxygen during fall and winter and a source during the productive season for both sections. On an annual basis there is a net uptake of oxygen from the atmosphere, 3.4±0.4 mol O2 m−2 year−1 at the Gimsøy-NW section and 4.9±0.5 mol O2 m−2 year−1 at the Bjørnøya-W. A decrease in temperature of 1°C to 1.5°C seen between the Gimsøy-NW section and the Bjørnøya-W section is the main reason for the increased atmospheric flux of oxygen at the latter section. An oxygen budget made for the area bounded by the two sections gives a net advective flux of oxygen out of the area of approximately 10 mol O2 m−2 year−1. The increased concentration of oxygen corresponding to the decrease in surface layer temperatures going northwards in the Norwegian Atlantic Current is mainly attributed to the air–sea oxygen exchange and phytoplankton production in this area.  相似文献   

5.
The foraminiferal (planktonic and benthic) and nannofosssil assemblages have been analyzed in the sediments of Core ACB-17-1447 taken from the South America continental slope north of the Rio Grande Rise piedmont during Cruise 17 of the R/V Akademik Sergey Vavilov. The core section is largely composed of carbonate and marly hemipelagic mud. The Quaternary age of the host sediments is evident from the occurrence of the planktonic foraminiferal index species Globorotalia truncatulinoides. Based on the nannofossil assemblages, the core sediments are attributed to the upper Pleistocene-Holocene. They contain abundant reworked Pliocene, Miocene, and Paleogene taxa transported from the slopes of the underwater Rio Grande Rise. The paleotemperature analysis of the planktonic foraminifers provided data for constructing the temperature curve that demonstrates two warm peaks. During the first warm period (Interval of 7–9 cm), the surface water temperature was as high as 26°C (Holocene optimum), which exceeds by 3–4°C its presentday values and implies the more intense warm Brazil Current. The earlier warm peak with temperatures up to 24°C recorded in the upper Pleistocene sediments (Interval of 69–71 cm) most likely reflects the 3rd oxygenisotope stage (MIS 3), which corresponds to the interstadial phase of the last glaciation (30–40 ka ago). Based on the abundances, taxonomic diversity, and proportions of the characteristic species of benthic foraminifers, the Core ASV-17-1447 section is divided into six intervals correlated with the marine isotopic stages defined by both the planktonic foraminifers and climatic changes evident from the variations in the bottom water circulation along the southwestern slope of the Brazilian Basin during the Late Quaternary.  相似文献   

6.
2017年8月对大亚湾海域浮游群落初级生产、群落呼吸代谢及其平衡特征进行了研究, 并分析了其潜在环境影响因素以及对沿岸生态系统功能与健康的指示作用。研究结果表明, 大亚湾夏季海水表层呈自养状态, 而底层呈异养状态, 群落总初级生产力(gross primary productivity, GPP)、呼吸代谢速率(community respiration, CR)与净生产力(net commutnitiy production, NCP)在表层分别为1335.36±910.12、597.86±403.30和737.50±608.22mg C·m-3·d-1; 在底层分别为43.65±37.05、216.25±147.28和-160.27±137.01mg C·m-3·d-1。海湾整体呈自养状态, 水柱平均NCP为233.41±248.88mg C·m-3·d-1; 部分沿岸水域存在异养状态。1~200μm粒级浮游生物是GPP和CR的主要贡献者。相关性分析和主成分分析显示, NCP在表层受GPP和CR共同调控, 且与浮游植物生物量和营养盐正相关; 而在底层主要受CR影响, 且与盐度正相关。大亚湾夏季群落生产代谢平衡存在明显的水平和垂向变化, NCP的区域差异与潜在波动性对该海湾生态系统稳定性及健康状况有重要的指示作用。  相似文献   

7.
As shown by an extensive echo‐sounding survey, the morphology of Lake Waikaremoana is a drowned valley system; complex troughs and banks at the eastern end are consistent with infilling and damming by slip material. In September 1972, water temperatures were near isothermal (surface‐bottom, 9.3–8.8°c), and clarity measured by secchi disc averaged 12.2 m. Very fine‐grained clayey silts occur on the surface of sediments throughout the lake.

Five benthic dredging stations yielded ten groups of organisms; of these, oligocheates and gasteropods (Potamopyrgus antipodarum only) occurred most widely, to the greatest depths (248 m), and in the greatest numbers. Animals in the eight remaining groups were few and limited to shallower depths.  相似文献   

8.
Diatom and nannoplankton microfossils in the samples of the surface bottom sediments and cores from the western part of the Norwegian Sea (64°–79°N) were studied. The abundance, distribution, taxonomic composition, and structure of the assemblages are determined by the productivity and temperature of the surface waters, by the distance from the shore, by the hydrological setting, and by the intensity of the supply of the Atlantic (from the south) and Arctic (from the north) waters to the Norwegian Sea. The repeated changes in the ecological structure of the diatom assemblages with time allowed us to distinguish five different ages and to estimate the changes in the paleoenvironment in the region under study during the past ~19–21 ky. The nannofossil distribution is not universal over the entire area studied owing to the extreme northern location of the stations and low water temperatures. All the sediments examined refer to the Emiliania huxleyi zone of the Late Pleistocene-Holocene; in selected cases, narrower temperate and cold-water intervals were also recognized. The low species diversity and the poor preservation of nannofossils prove the dominating influence of the Arctic water masses.  相似文献   

9.
The distributions of CFC (chlorofluorocarbon) in the water column was determined twice in 2000 and 2001 in the northwestern Japan Sea. In 2000 the CFC-11 concentration decreased almost exponentially with depth from 6 pmol/kg at a few hundred m deep to 0.3 pmol/kg or less at the bottom of about 3400 m depth at three stations (40–41°N, 132–133°E) about 300 km off Vladivostok. In 2001 the CFC-11 concentration increased sharply up to 2 pmol/kg in the bottom water, while it did not increase at a station (42.0°N, 136.5°E) about 450 km away to the northeast. This is due to the renewal of the bottom water which is replaced by the surface water flowing down along the continental slope, as suggested by Tsunogai et al. (1999), who proposed the continental shelf pump. Furthermore, an increase in the CFC-11 concentration was observed throughout the entire water column above 3000 m depth, although the proportion of the increase was about 20%, which was one order of magnitude smaller than that in the bottom water. The increase in inventory is almost four times larger than that in the bottom water below 3000 m depth which is equivalent to about 1/6 of the total inventory found in 2000. The increase also means that 3% of the deep water was replaced by the recent surface water, or, if the turnover occurs every year, that the turnover time of the deep water to be about 30 years. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Time-series sediment traps were deployed for five consecutive years in two distinctively different subarctic marine environments. The centrally located subarctic pelagic Station SA (49°N, 174°W; water depth 5406 m) was simultaneously studied along with the marginal sea Station AB (53.5°N, 177°W; water depth 3788 m) in the Aleutian Basin of the Bering Sea. A mooring system was tethered to the sea-floor with a PARFLUX type trap with 13 sample bottles, which was placed at 600 m above the sea-floor at each of the two stations. Sampling intervals were synchronized at the stations, and they were generally set for 20 days during highly productive seasons, spring through fall, and 56 days during winter months of low productivity. Total mass fluxes, which consisted of mainly biogenic phases, were significantly greater at the marginal sea Station AB than at the pelagic Station SA for the first four years and moderately greater for the last year of the observations. This reflects the generally recognized higher productivity in the Bering Sea. Temporal excursion patterns of the mass fluxes at the two stations generally were in parallel, implying that temporal changes in their biological productivity are strongly governed by a large-scale seasonal climatic variability over the region rather than local phenomena. The primary reason for the difference in total mass flux at the two stations stems mainly from varying contributions of siliceous and calcareous planktonic assemblages. A significantly higher opal contribution at Station AB than at Station SA was mainly due to diatoms. Diatom fluxes at the marginal sea station were about twice those observed at the pelagic station, resulting in a very high opal contribution at Station AB. In contrast to the opal fluxes, CaCO3 fluxes at Station AB were slightly lower than at Station SA. The ratios of Corg/Cinorg were usually significantly greater than one in both regions, suggesting that preferentially greater organic carbon from cytoplasm than skeletal inorganic carbon was exported from the surface layers. Such a process, known as the biological pump, leads to a carbon sink which effectively lowers p CO2 in the surface layers and then allows a net flux of atmospheric CO2 into the surface layer. The efficiency of the biological pump is greater in the Bering Sea than at the open-ocean station.  相似文献   

11.
应用荧光显微直接计数法,研究了2006年夏季长江口及邻近海域浮游细菌、浮游病毒数量的分布特征,探讨了它们与环境因子之间的关系.结果表明:(1)浮游细菌数量为(6.92×105~5.54×106)个/mL,浮游病毒数量为(2.22×106~9.97×107)个/mL.浮游细菌和浮游病毒数量的平面分布特征较一致,均为近海过...  相似文献   

12.
The composition and distribution of helium and oxygen isotopes in samples of seawater obtained at depths from surface to 300 m in the western Pacific(7°-26°N,122°-130°E) were discussed in detail.The results show that both δ18O and δ3He isoline extend eastward in the Pacific side of the Bashi Channel, which may suggest that the South China Sea water intrudes into the western Pacific by the Bashi Channel.  相似文献   

13.
《Oceanologica Acta》1998,21(4):533-542
Seawater samples collected in the northeast Pacific from 112° 50′W to 126° 36′W along a latitudinal band (21–25° N) have been analysed for 228RA and 226Ra. Both nuclides exhibit their characteristic distributions. In the surface water, the exponential-like decrease of 228 Ra away from Baja California can be interpreted by horizontal water mixing with eddy diffusion coefficients (Kx) of 1 × 106 cm2 s−1 and 5 × 107 cm2 S−1 for scale lengths of 200 km and 1000 km, respectively. In the bottom waters, the decrease of 228Ra away from bottom sediments can be modeled by vertical eddy diffusivities (Kz) of 15–30 cm2 s−1 except at one station (24° 16.9′ N, 115° 8.9′ W) where a value of 120 cm2 s−1 is obtained. The 228Ra-derived diffusivities were used to compute the mass balance of 226Ra using a two-box model. The model results show a mean mixing coefficient of 3.8 cm2 s−1 for the thermocline and a mean upwelling velocity of 7.7 m y−1 in the study area, both are about two or three times higher than those generally quoted for the Pacific.  相似文献   

14.
We measured potential temperature, salinity, and dissolved oxygen profiles from the surface to the bottom at two locations in the north Ross Sea (65.2°S, 174.2°E and 67.2°S, 172.7°W) in December 2004. Comparison of our data with previous results from the same region reveals an increase in potential temperature and decreases in salinity and dissolved oxygen concentration in the bottom layer (deeper than 3000 m) over the past four decades. The changes were significantly different from the analytical precisions. Detailed investigation of the temperature, salinity, dissolved oxygen and σ 3 value distributions and the bottom water flow in the north Ross Sea suggests a long-term change in water mass mixing balance. That is to say, it is speculated that the influence of cool, saline, high-oxygen bottom water (high-salinity Ross Sea Bottom Water) formed in the southwestern Ross Sea has possibly been decreased, while the influences of relatively warmer and fresher bottom water (low-salinity Ross Sea Bottom Water) and the Adélie Land Bottom Water coming from the Australia-Antarctic Basin have increased. The possible impact of global warming on ocean circulation needs much more investigation.  相似文献   

15.
The present paper focuses on heat and mass exchange processes in methane hydrate fragments during in situ displacement from the gas hydrate stability zone (GHSZ) to the water surface of Lake Baikal. After being extracted from the methane hydrate deposit at the lakebed, hydrate fragments were placed into a container with transparent walls and a bottom grid. There were no changes in the hydrate fragments during ascent within the GHSZ. The water temperature in the container remained the same as that of the ambient water (~3.5 °С). However, as soon as the container crossed the upper border of the GHSZ, first signs of hydrate decomposition and transformation into free methane gas were observed. The gas filled the container and displaced water from it. At 300 m depth, the upper and lower thermometers in the container simultaneously recorded noticeable decreases of temperature. The temperature in the upper part of the container decreased to –0.25 °С at about 200 m depth, after which the temperature remained constant until the water surface was reached. The temperature at the bottom of the container reached –0.25 °С at about 100 m depth, after which it did not vary during further ascent. These observed effects could be explained by the formation of a gas phase in the container and an ice layer on the hydrate surface caused by heat consumption during hydrate decomposition (self-preservation effect). However, steady-state simulations suggest that the forming ice layer is too thin to sustain the hydrate internal pressure required to protect the hydrate from decomposition. Thus, the mechanism of self-preservation remains unclear.  相似文献   

16.
The seasonality and distribution, abundance, and hydrological affinities of the planktonic stages of the sternoptychid Maurolicus muelleri (Grnelin, 1788) are described for the New Zealand region. Spawning occurred from August to March, and the planktonic stages were widespread around New Zealand. Spawning probably takes place around midday at depths greater than 250 m. Eggs and larval stages were present over temperature ranges of 9.0–15.5°c and 13–22°c respectively.  相似文献   

17.
A total of 150 samples were collected at a 10-days' anchor station in the Bornholm basin (55° 31.1′N, 15° 32.1′E) and analyzed for dissolved (< 0.4 μm) and particulate trace metals. For dissolved Mn, large gradients have been found in the vertical distribution with minimum concentrations (< 0.2 μgl?1) in the halocline zone and considerably higher values in the deep waters (up to 50 μgl?1). Ultrafiltration studies indicate that dissolved Mn is probably present as Mn2+ in the oxygenated bottom layer. The primary production process was not evident in the particulate Mn profile; the suspended particulate material (SPM), however, shows a considerable enrichment with depth, apparently due to Mn-oxide precipitation.The distribution of dissolved Fe was rather homogeneous, with average concentrations throughout the water column between 0.86 and 1.1 μgl?1, indicating that the oxidation of Fe2+ ions released from the sediments must already be complete in the very near oxidation boundary layer. Relatively high concentrations of particulate Fe were actually measured in the bottom layer, with the maximum mean of 11.2 μgl?1 at 72 m. Similarly to Mn, the profile of particulate Fe does not reflect the SPM curve of the eutrophic layer. On average, about 70% of the total Fe in surface waters was found to be particulate.The average concentrations of dissolved Zn, Cd and Cu were found to be rather homogeneous in the water column but showed a relatively high variability with time. A simplified model on trace-metal uptake by phytoplankton indicates no significant change in dissolved metal concentrations during the period of investigation. On average, only 1.7% Zn, 3.3% Cd and 9.8% Cu of the total metal concentrations were found in particulate form. SPM analyses showed significant correlations of Zn, Cd and Cu with Fe, indicating that particulate iron is an important carrier for particulate trace metals in Baltic waters.  相似文献   

18.
The properties of the Antarctic Bottom Water flow in the region of its inflow to the channel of the Romanche Fracture Zone at 22°10′–22°30′ W are studied on the basis of CTD and LADCP profiling in the western part of the equatorial fracture zone. A deep water cataract was found at the sill over the southern wall of the fracture with a depth of approximately 4600 m, which is associated with the abyssal flow, whose potential temperature is lower than 1°C. The inflow of water into the channel of the fracture in this temperature range is fully localized over this sill. The minimum potential temperature θ recorded in 2011 near the bottom was equal to 0.51°C, which is lower approximately by 0.12°C than the minimum temperatures ever measured in the western part of the fracture. The water transport in the cataract was estimated at 0.2 Sv (1 Sv = 106 m3/s), which is approximately 30% of the known estimates of the total transport of Antarctic Bottom Water (θ < 1.9°C) through the fracture. The extremely high intensity of the cross isothermal mixing in the cataract region was found. The analysis of the bottom topography data, including the historical WOD09 dataset, shows that the inflow of water with 1.00° < θ < 1.70°C into the channel of the fracture is most likely fully localized in a few passages in the region of the survey in 2011, while the water exchange with the abyssal waters with θ > 1.70°C through the Romanche Fracture Zone between the West and East Atlantic can also occur through the depressions in the southern and northern walls of the fracture in the region of the Vema Deep.  相似文献   

19.
南海南部活体浮游有孔虫分布特征及其影响因素初探   总被引:1,自引:0,他引:1  
通过对2002年5月采自南海南部海区11个站位20个垂直分层浮游拖网样品的浮游有孔虫组成和分布特征的初步分析,发现该区表层水体中浮游有孔虫分布广泛,共鉴定属种20种,以热带暖水种占绝对优势,广适应性冷水种有零星出现。深水种Globorotalia menardii在南海南部50 m水层中广泛出现,但壳体相对较小,壳壁较薄。该区0—50m水层活体浮游有孔虫丰度范围为(6 138—64 174)枚.1 000 m-3海水,大致呈西高东低的分布趋势,在西南部浅水区和西北部上升流区丰度最高,与表层水体的营养水平密切相关。将水样浮游有孔虫分布数据与该海区23个站位表层沉积样数据进行对比分析,发现遗壳浮游有孔虫与活体的分布关系密切,虽然在种属丰度以及分布范围等方面有明显差异,但两者具有相似的优势种组合。主要差异在于水体中浮游有孔虫优势种相对丰度差异较大,易溶种Hastigerina pelagica含量较高,而遗壳中浮游有孔虫各种属分布趋向于均匀化。此外,陆源物质的释稀作用对沉积物中的有孔虫丰度分布有明显的控制作用。  相似文献   

20.
《Oceanologica Acta》1999,22(1):57-66
Observations made during a “La Niña” situation (April–May 1996) in the equatorial Pacific upwelling, between 165° E and 150° W, show the classic deepening of hydrological isolines from east to west, resulting in zonal gradients for surface temperature and macronutrients. However, contrasting with such a gradient, no clear zonal variation could be seen for integrated planktonic biomasses and carbon fluxes, namely: chlorophyll a, bacterial abundances, particulate organic phosphorus, mesozooplankton ash-free dry weight, primary production, and the sinking flux of particulate organic carbon (POC). Moreover, mean values of these parameters along the zonal equatorial transect, are not significantly different from those of a 7-day-long time series station made at 0°, 150° W in October 1994 during an El Niño period. Such a steady zonal distribution of planktonic parameters seems to be characteristic of equatorial Pacific upwelling west of the Galapagos Islands so that the spatial distributions of nutrient concentrations and planktonic biomass appear to be uncoupled. This is consistent with the High Nutrient-Low Chlorophyll (HNLC) concept, in which primary production is not controlled directly by macronutrient concentrations. The lack of zonal gradient also suggests that carbon budget of the equatorial Pacific is primarily controlled by oscillations in the zonal and meridian extension of the HNLC area, rather than by values of planktonic biomasses and carbon fluxes within the upwelled water, which are quite constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号