共查询到16条相似文献,搜索用时 88 毫秒
1.
提出一种利用属类概率距离构图的半监督学习算法,并应用于高光谱图像分类。首先,该算法利用基于分类的稀疏表达方法来预估未标记样本的属类概率向量,然后,利用这个概率向量对描述数据相似性的距离函数进行改造,改造后的距离函数能有效扩大异类样本点之间的距离,在新的距离函数的度量下,每个样本点的邻域中可包含更多同类的样本点。最后,将该距离函数应用于半监督学习线性邻域传播算法和标签传播算法中。在Hyperion 和AVIRIS高光谱遥感图像上的实验结果表明:相比于传统的基于图的半监督学习算法,该算法能有效提高高光谱遥感图像分类精度。 相似文献
2.
高光谱遥感图像的监督分类 总被引:1,自引:0,他引:1
图像分类是高光谱遥感图像分析与应用的重要手段。总结了目前用于高光谱图像监督分类的主要方法,包括最小距离法、最大似然法、神经元网络法和支持向量机法,分析了上述方法的特点,并探讨了高光谱遥感图像分类方法的发展趋势。 相似文献
3.
为充分利用高光谱图像蕴藏的空间信息提升分类精度,提出了面向高光谱图像分类的半监督空谱判别分析(S3 DA)算法。考虑高光谱图像数据集的空间一致性,首先利用少量标记样本定义类内散度矩阵,保存数据集同类像元的光谱近邻结构;再利用无标记样本定义空间近邻像元散度矩阵,揭示像元间的空间近邻结构和地物的空间分布结构信息。S3 DA既保持数据集在光谱域的可分性,又保存了无标记样本蕴藏的空间域近邻结构,增强了同类像元和空间近邻像元在投影子空间的聚集性,从而提升分类性能。在PaviaU和Indian Pines数据集的试验表明,总体分类精度分别达到81.50%和71.77%。与传统的光谱方法比较,该算法能有效提升高光谱图像数据集的地物分类精度。 相似文献
4.
善于捕捉空间信息的条件随机场模型虽然已被应用于高光谱遥感图像分类,但条件随机场的性能受到了标注训练样本数量的制约。为解决上述问题,本文提出了一种半监督条件随机场模型用于高光谱遥感图像分类。在该模型中,首先,利用空间-光谱拉普拉斯支持向量机定义关联势函数,以利用未标注样本中包含的信息获取样本类别概率;然后,在交互势函数中嵌入未标注的空间邻域样本,以充分利用空间信息实现对样本类别概率的修正;最后,采用分布式学习策略和平均场完成半监督条件随机场的训练和推断。本文在两个公开的高光谱数据集(Indian Pines数据集,Pavia University数据集)上进行了实验。实验结果表明Kappa系数提升3.94%。 相似文献
5.
本文提出了一种聚类特征和SVM组合的高光谱影像半监督协同分类方法。利用构建的协同分类框架能够将KSFCM聚类算法与半监督SVM分类器相结合,同时利用聚类和分类优势,提高分类器的分类准确率。其中,通过聚类损耗函数、分类一致函数、分类差异性、样本差异性四个指数用以构建协同分类框架,以充分利用少量类标签样本信息,避免高光谱类标签样本获取困难问题,在一定程度上解决SVM支持向量随着训练样本增加而线性增加的问题,从而寻求最佳分类结果。实验结果表明,本文所提方法得到的分类精度优于直接利用SVM进行半监督分类。 相似文献
6.
传统高光谱图像分类方法主要使用图像的光谱特征信息,没有充分利用高光谱图像的空间特性及样本的其他信息。本文提出了一种基于空间特征与纹理信息的高光谱图像半监督分类方法。首先,将高光谱图像每一像素的光谱特征与其邻域范围内的光谱特征进行结合,得到了这一像素的空-谱特征;然后用灰度共生矩阵提取了高光谱图像的纹理特征,并与空-谱特征进行了融合;最后,用基于图的半监督分类算法进行了分类。通过在Indian Pines数据集和PaviaU数据集上进行试验,结果表明本文提出的方法能取得较高的分类结果。 相似文献
7.
8.
非监督波段选择方法是高光谱图像降维的主要方法,但现有方法应用到实际高光谱图像分类时,分类精度并不理想。本文提出一种改进的基于聚类的高光谱图像非监督波段选择方法,主要通过对传统的K-means聚类算法进行两方面改进:一方面是相似性度量函数;另一方面是聚类中心的选取。然后,通过实验数据用支持向量机法(SVM)对所提算法及现有的三种非监督波段选择方法进行分类。最后,用总体精度(OA)和Kappa系数评价分类结果。表明本文所提方法在分类精度方面优于其他现有方法。 相似文献
9.
针对传统的大规模草地牧草的识别,不仅浪费大量的人力、物力,还浪费大量的时间和经费。该文提出了一种基于高光谱成像采集系统的草地动态监测新手段,利用采集到的可见-近红外光谱(范围400~1 000nm)图像和光谱信息进行自动分类。该方法主要包括预处理、特征波段提取以及分类识别3个步骤。(1)利用ENVI(4.7)提取图片的感兴趣区域光谱数据,由于存在大量的数据冗余以及外界的噪声干扰等因素,因此采用多元散射校正去除散射,增强与成分含量相关的光谱吸收信息。(2)采用连续投影选取出13个特征波段消除数据冗余。(3)采用支持向量机对选取的特征波段进行分类,分类识别率可达100%。结果表明,采用高光谱成像技术对野外牧草种类的无损识别是可行的,SPA提取光谱特征波段及SVM进行判别野外田间牧草种类取得较好的效果。 相似文献
10.
提出了一种光谱相似性测度用于高光谱图像分类方法。通过将光谱向量进行归一化处理,将计算得到的欧氏距离与光谱角余弦的值域归化到相同区间,得到光谱角余弦与欧氏距离联合测度值(SAC-NED)。在对图像像元进行分类时,以距离加权的方式将邻域像元参与中心像元SAC-NED值的计算,将像元分到SAC-NED值最大的类别。通过与其他5种常用相似性测度方法的实验结果对比表明:该算法能够提升高光谱图像分类的准确性和稳定性。 相似文献
11.
针对当前高光谱影像分类时,人工标注样本费时费力以及大量未标记样本未有效利用等问题,提出了一种主动学习与图的半监督相结合的高光谱影像分类方法。首先,将像素的光谱信息与其邻域内的空间信息相结合,利用重排序机制得到一种旋转不变的空谱特征表达。在此基础上,利用主动学习算法选择最不确定性样本(即分类模糊度最大的样本),提交操作者标注得到标记样本集。最后将该标记样本与未标记样本组合,用于图的半监督分类。该算法可保证类别边界样本的选择,利于分类器的边界构造,同时,在较少标记样本情况下,通过引入大量的未标记样本,可以达到较好的分类效果。在3幅真实高光谱影像上的试验表明,该方法可以取得精度较高的分类结果。 相似文献
12.
支持向量机分类方法存在惩罚系数需要交叉验证获取、训练时间较长、支持向量个数随着训练样本数量的变化而变化,以及稳定性和稀疏性较差等问题。针对这些问题,提出了一种基于输入向量机的高光谱影像分类算法。该算法在核逻辑回归模型的基础上,采用前向贪心算法选择训练样本中的输入向量来进行模型的训练,达到稀疏的目的,提高影像的分类精度和分类效率。通过PHI和OMIS两组高光谱影像分类实验,结果表明基于输入向量机分类算法具有稳定性好、稀疏性强的优点。 相似文献
13.
面对高光谱影像分类的半监督阶梯网络 总被引:1,自引:0,他引:1
提出一种半监督阶梯网络用于对高光谱影像进行分类,以解决小样本条件下基于堆栈式自编码器的高光谱影像分类方法分类精度不高的问题。首先,该网络以堆栈式自编码器为基础,在编码器和解码器之间增加横向连接参数构建阶梯网络,以使网络适合半监督分类;然后将无监督损失函数与有监督损失函数之和作为最终优化的目标函数,采用半监督的方式对整个网络进行训练。为进一步提高分类精度,提取局部二值模式纹理特征进行分类实验。实验结果表明:提出的半监督阶梯网络能够较好地解决高光谱影像分类小样本问题;且LBP纹理特征能够有效提高分类精度。 相似文献
14.
15.
16.
高国勇 《测绘与空间地理信息》2015,(6):98-100
聚类是数据挖掘的重要分支之一,引入模糊理论的模糊聚类分析为显示数据提供了模糊处理能力,在许多领域被广泛应用。本文应用考虑邻域关系的约束模糊C均值(Fuzzy C-Means with Constrains,FCM_S)算法,将邻域像素引入到目标函数中,进而有效地利用邻域像素信息,提高分割精度。本文应用FCM_S算法对模拟彩色纹理图像进行分割,计算其混淆矩阵,定性定量地与FCM算法进行对比分析,证明了该算法的鲁棒性。 相似文献