共查询到19条相似文献,搜索用时 62 毫秒
1.
传统的栅格法与曲率法对数据模型进行精简时很容易剔除特征点,但是误判率较高,导致精简后的数据不能较好地突出点云数据的特征,使重构后的实体模型精度下降。针对以上问题,本文算法首先使用改进的Kmeans进行质心初始化;然后,使用X-Y边界提取算法来保留边界完整性;最后,根据Hausdorff距离对簇进行细分,在高曲率区域保留必要多的点,在低曲率地方保留一些均匀分布的点。实验验结果证明该方法优于传统的栅格法与曲率法。 相似文献
2.
针对点云精简算法在处理点云数据时特征保留不完整和对小曲率点云精简造成数据空洞的问题,提出了一种融合k-means聚类和Hausdorff距离的点云精简算法.该算法在八叉树算法的基础上构建点云数据的拓扑关系,首先计算所有点云数据点的主曲率,然后计算点云数据点主曲率的Hausdorff距离,根据精简目标要求设定Hausdo... 相似文献
3.
针对原始结构光钢轨轮廓点云数据量大、强噪声和离群杂点多的问题,本文提出了一种欧式聚类融合多种传统滤波方式的钢轨点云自适应精简的方法。采用点云欧式距离为特征量的聚类分割方法用于无效杂散点数据的识别和精简,采用统计滤波结合均匀体素下采样滤波方法实现点云初步去噪。在此基础上,通过欧式聚类分割噪点,采用自动获取滤波范围的自适应直通滤波去除轨底粘连数据,以保证点云配准的效率与准确性。本文提出的方法可有效精简无效数据和去噪,点云精简比约为94%,同时保留了原始点云的有效轮廓特征,为点云配准与磨耗点的高精度识别奠定了基础。 相似文献
4.
5.
欧氏聚类算法是多元统计中的一种重要分类方法,可以将其应用于测绘领域中点云数据的分割。本文首先计算点云数据中两点之间的欧氏距离,将距离小于指定阈值作为分为一类的判定准则;然后迭代计算,直至所有的类间距大于指定阈值,完成欧氏聚类分割。具体步骤为:①利用Octree法建立点云数据拓扑组织结构;②对每个点进行k近邻搜索,计算该点与k个邻近点之间的欧氏距离,最小归为一类;③设置一定的阈值,对步骤②迭代计算,直至所有类与类之间的距离大于指定阈值。试验证明,欧氏聚类算法对不同测量技术手段获取的点云数据均具有适用性,可以成功对点云数据进行分割,分割效果良好。 相似文献
6.
7.
激光雷达点云密度较大时会导致数据冗余,对点云数据的计算、存储及显示造成困难。本文针对激光雷达地形扫描点云的精简问题,提出了一种多因子分区点云精简方法。首先在改进点云组织方式的基础上,使用变异系数定权法并综合4种传统的点云特征提取因子,得到最终的综合评价因子,以划分特征点与非特征点;然后使用改进的八叉树将所有点依据其位置与数量划分为子集,并根据每个子集的特征点数量确定是否保留其中部分非特征点。该方法可更全面客观地对数据进行特征评估与选择,得到最具代表性的点,实现更高精度的精简。试验显示,多因子分区方法的误差比其他方法低20%~50%,且在整体试验区域精度的均匀性高5%~70%,证明该方法更优越。 相似文献
8.
9.
10.
11.
12.
13.
针对海量点云数据存在大量冗余问题,该文提出基于K-近邻长方体的点云压缩算法。利用目标点的K近邻在非特征点云与特征点云之间的不同分布特性,基于该文算法将点云集合分为特征及非特征点集。该方法先对目标点近邻点进行坐标转换并构建K-近邻长方体,建立压缩准则,对长方体进行扁平程度筛选,结合分段采样去除大量冗余点及少量密集特征点,实现保留原始特征的点云压缩。该文方法涉及K、α、采样率β_(all)3个参数,在实验分析中,采用体积偏差、表面积偏差和Hausdorff距离对该文方法涉及的3个参数进行精度影响分析,结果表明,该方法能保留大量原始特征,在最优K值条件下β_(all)为0.4,α为0.9,此时体积偏差百分比为0.27%,表面积偏差百分比为0.5%,具有较高的压缩精度。 相似文献
14.
Digital elevation models (DEMs) are a necessary dataset for modelling the Earth’s surface; however, all DEMs contain error. Researchers can reduce this error using DEM fusion techniques since numerous DEMs can be available for a region. However, the use of a clustering algorithm in DEM fusion has not been previously reported. In this study a new DEM fusion algorithm based on a clustering approach that works on multiple DEMs to exploit consistency in the estimates as indicators of accuracy and precision is presented. The fusion approach includes slope and elevation thresholding, k-means clustering of the elevation estimates at each cell location, as well as filtering and smoothing of the fusion product. Corroboration of the input DEMs, and the products of each step of the fusion algorithm, with a higher accuracy reference DEM enabled a detailed analysis of the effectiveness of the DEM fusion algorithm. The main findings of the research were: the k-means clustering of the elevations reduced the precision which also impacted the overall accuracy of the estimates; the number of final cluster members and the standard deviation of elevations before clustering both had a strong relationship to the error in the k-means estimates. 相似文献
15.
ZHANG Yi YAN Li 《地球空间信息科学学报》2007,10(4):276-281
A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automati... 相似文献
16.
基于特征点法向量的点云配准算法 总被引:2,自引:0,他引:2
在传统的迭代最近点算法(ICP)中,需要两片点云具有良好的初始位置,否则在配准时容易陷入局部最优。针对该问题,本文提出了一种基于特征点提取与配对的粗配准方法,以调整两片点云重叠部分的初始位置。首先,利用SIFT算法提取两片点云公共部分的特征点;其次,根据特征点法向量之间的欧氏距离将两片点云的特征点两两配对;然后,利用法向量的夹角对特征点对进行提纯;最后,通过单位四元数法,求解出旋转及平移矩阵,完成粗配准。试验表明,本文基于特征点法向量的粗配准方法可为精配准提供良好的初始位置,在一定程度上避免配准时陷入局部最优的现象。 相似文献
17.
本文首先简要分析了现有点云简化算法的优缺点,接着设计了一种基于kd_tree数据索引与曲率采样结合的高效简化策略,充分利用曲率采样的精度优势与kd_tree索引的速度优势,实现了基于kd_tree索引的曲率自适应点云简化算法。试验表明,该算法在减少点云数据量的同时,能够较好地保证模型中的特征点,在速度与效果上都达到了较为理想的结果。 相似文献
18.
19.
针对常规的密度峰值聚类算法在确定数据聚类中存在聚类中心的重复性、聚类不稳定、不适用于三维点云分割等问题,提出了中心均匀化聚类群融合算法.该算法对局部密度和距离函数进行归一化处理,较好地解决了这两种函数尺度不一的问题;基于局部密度和距离函数乘积的变化率来确定聚类中心,并对重复或距离很近的聚类中心进行了消除,避免了聚类中心非均匀分布对聚类的影响;利用数据点到聚类中心距离逐个确定每个数据的聚类归属,依据邻近聚类数据群之间的距离来判断邻近聚类之间的融合,实现对点云数据的有效分割.基于二维离散数据聚类及不同分辨率点云数据分割的实验结果表明:所提算法不仅适用于二维离散数据的聚类,也适用于三维点云数据的分割,且分割精度和稳定度要优于常规的CFDP、K-means、DBSCAN、DPC聚类算法和深度学习方法. 相似文献