首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 53 毫秒
1.
传统的栅格法与曲率法对数据模型进行精简时很容易剔除特征点,但是误判率较高,导致精简后的数据不能较好地突出点云数据的特征,使重构后的实体模型精度下降。针对以上问题,本文算法首先使用改进的Kmeans进行质心初始化;然后,使用X-Y边界提取算法来保留边界完整性;最后,根据Hausdorff距离对簇进行细分,在高曲率区域保留必要多的点,在低曲率地方保留一些均匀分布的点。实验验结果证明该方法优于传统的栅格法与曲率法。  相似文献   

2.
针对原始结构光钢轨轮廓点云数据量大、强噪声和离群杂点多的问题,本文提出了一种欧式聚类融合多种传统滤波方式的钢轨点云自适应精简的方法。采用点云欧式距离为特征量的聚类分割方法用于无效杂散点数据的识别和精简,采用统计滤波结合均匀体素下采样滤波方法实现点云初步去噪。在此基础上,通过欧式聚类分割噪点,采用自动获取滤波范围的自适应直通滤波去除轨底粘连数据,以保证点云配准的效率与准确性。本文提出的方法可有效精简无效数据和去噪,点云精简比约为94%,同时保留了原始点云的有效轮廓特征,为点云配准与磨耗点的高精度识别奠定了基础。  相似文献   

3.
平均曲率是分析三维表面的重要几何特征之一。根据平均曲率进行海量散乱点云数据的精简,首先通过空间包围盒法建立K邻域,然后对K邻域内的点拟合二次曲面计算平均曲率,最后以邻近区域内点的平均曲率中误差为阈值,结合点的精简概率判定点是否保留。通过与传统方法对比,证实了文中方法在保留特征点和压缩上具有较好的优势。  相似文献   

4.
欧氏聚类算法是多元统计中的一种重要分类方法,可以将其应用于测绘领域中点云数据的分割。本文首先计算点云数据中两点之间的欧氏距离,将距离小于指定阈值作为分为一类的判定准则;然后迭代计算,直至所有的类间距大于指定阈值,完成欧氏聚类分割。具体步骤为:①利用Octree法建立点云数据拓扑组织结构;②对每个点进行k近邻搜索,计算该点与k个邻近点之间的欧氏距离,最小归为一类;③设置一定的阈值,对步骤②迭代计算,直至所有类与类之间的距离大于指定阈值。试验证明,欧氏聚类算法对不同测量技术手段获取的点云数据均具有适用性,可以成功对点云数据进行分割,分割效果良好。  相似文献   

5.
应用了ISODATA聚类算法,在VC++6.0环境下实现了点云分割,利用OpenGI。进行分割效果显示,并与K—means算法的分割效果进行了比较。  相似文献   

6.
激光雷达点云密度较大时会导致数据冗余,对点云数据的计算、存储及显示造成困难。本文针对激光雷达地形扫描点云的精简问题,提出了一种多因子分区点云精简方法。首先在改进点云组织方式的基础上,使用变异系数定权法并综合4种传统的点云特征提取因子,得到最终的综合评价因子,以划分特征点与非特征点;然后使用改进的八叉树将所有点依据其位置与数量划分为子集,并根据每个子集的特征点数量确定是否保留其中部分非特征点。该方法可更全面客观地对数据进行特征评估与选择,得到最具代表性的点,实现更高精度的精简。试验显示,多因子分区方法的误差比其他方法低20%~50%,且在整体试验区域精度的均匀性高5%~70%,证明该方法更优越。  相似文献   

7.
针对传统的点云精简算法中不能良好保留细节特征的问题,提出一种基于最优邻域局部熵的点云精简算法.首先利用点云局部邻域协方差矩阵的3个特征值构造的维度特征,构建局部邻域信息熵函数,其次依据局部熵值最小原则确定最优邻域,然后根据最优邻域下计算的特征值间的关系,以及局部信息熵来剔除平坦区域数据点.通过模拟数据和实例扫描数据精简...  相似文献   

8.
针对散乱点云密度大、重建效率低等问题,提出一种基于曲率泊松碟采样的散乱点云精简方法。首先建立点云的邻接关系来计算点云的曲率特征,由此划分平坦区域和特征区域,然后格网化点云,在平坦区域对最靠近重心的点进行采样,在特征区域对曲率分级并进行泊松碟采样。本文利用另外3种不同的点云精简方法与本文方法进行对比试验。试验结果表明,本文方法能在平坦区域均匀精简点云的同时,最大化地保留曲率较大区域的点,很好地保留了点云的细节特征,并且有较高的精简精度。  相似文献   

9.
现有地面三维激光扫描点云数据滤波算法较少,针对地形复杂区域的点云滤波效果更是不甚理想,因此对二维聚类算法进行改进,提出三维点云聚类滤波算法,并对其在地形复杂区域的TLS数据滤波中的应用进行研究。以重庆鸡冠岭危岩体的TLS数据为例,分别采用曲率平滑滤波方法和文中提出的点云聚类滤波方法处理,并对两种方法处理过的数据进行形变量计算和分析。实验证明,针对植被覆盖茂密、地形复杂的山体,该方法的点云滤波效果较好,且处理速度有较大提升,能为点云后期形变量计算提供较好的基础。  相似文献   

10.
针对现有胸径提取精度不够高、自动化程度低等不足,基于地基激光雷达胸径切片点云数据,该文提出了一种改进K均值聚类的林木胸径提取方法.利用约束条件优化初始种子点的选择原则,避免随机种子点选择造成聚类结果陷入局部最优;采用拐点法自适应确定聚类目标类别数目,提高单木胸径点分割的自动化程度;根据点云与类别中心统计参数识别并剔除非目标对象点,通过圆模型参数求解实现胸径值计算.结果 表明:改进后的K均值聚类能快速实现林木胸径点的批量化提取,无须林木数目、样地大小等先验知识,具有自动化程度高、抗噪性强的优势.该研究对地基激光雷达在林业资源调查及生产管理应用具有一定的实际应用参考价值.  相似文献   

11.
针对现有的LiDAR点云分割算法稳健性差、效率低的问题,本文提出了一种新的层次化聚类分割算法。该算法首先把点云生成自适应分辨率的超体素,然后以超体素为基元,改进成对链接的分割算法,实现三维点云的分割。试验结果表明,该分割算法与现有的分割方法相比,具有更好的稳健性和更高的计算效率,避免了点云过分割和欠分割的问题。本文算法在分割细节方面更加突出,分割结果可有效地保证后续数据处理工作的精度。  相似文献   

12.
针对激光点云数据进行建筑物建模或矢量信息提取中快速识别建筑物面和棱线信息的要求,该文提出基于共享近邻聚类算法进行建筑物面和棱线的快速提取方法。首先,计算点云中每个数据点的单位法向量和点到基准面的距离,利用基于网格的共享近邻聚类算法对点云进行分类确定建筑物面点云;然后,自动判别相交平面,提取建筑物棱线,并与RANSAC算法对某建筑物面的提取结果进行比较。结果证明,该方法自动化程度高,建筑物面和棱线提取快速、准确,提取结果能够应用于三维建筑物自动建模和测绘出图。  相似文献   

13.
针对车载激光雷达点云初始聚类中心难以确定的问题,该文提出了一种基于最大网格密度的近邻聚类算法对点云实现分割,并以高程、法向量和投影密度作为约束条件对分割后的点云块进行地物的分类识别。通过对车载激光雷达的部分点云数据进行相关试验,结果表明该方法可以精确有效地实现城市典型地物分类。  相似文献   

14.
一种基于ISS-SHOT特征的点云配准算法   总被引:2,自引:0,他引:2  
针对点云配准过程中易产生错误对应点、收敛速度慢、配准时间长等问题,提出了一种基于内部形态描述子(ISS)及方向直方图描述子(SHOT)特征的点云配准算法。运用体素格网法下采样后,采用ISS算法提取特征点,并用SHOT对特征点进行描述,利用余弦相似度匹配对应点对,再采用RANSAC算法剔除错误对应点对,使得两片点云获得良好的初始位姿,最后采用点到平面的ICP算法进行精确配准。试验结果表明,与传统ICP算法及基于ISS的SAC-IA+ICP算法相比,本文算法配准精度及配准效率更高,对数据量大、重叠率较低点云具有很好的稳健性。  相似文献   

15.
针对海量点云数据存在大量冗余问题,该文提出基于K-近邻长方体的点云压缩算法。利用目标点的K近邻在非特征点云与特征点云之间的不同分布特性,基于该文算法将点云集合分为特征及非特征点集。该方法先对目标点近邻点进行坐标转换并构建K-近邻长方体,建立压缩准则,对长方体进行扁平程度筛选,结合分段采样去除大量冗余点及少量密集特征点,实现保留原始特征的点云压缩。该文方法涉及K、α、采样率β_(all)3个参数,在实验分析中,采用体积偏差、表面积偏差和Hausdorff距离对该文方法涉及的3个参数进行精度影响分析,结果表明,该方法能保留大量原始特征,在最优K值条件下β_(all)为0.4,α为0.9,此时体积偏差百分比为0.27%,表面积偏差百分比为0.5%,具有较高的压缩精度。  相似文献   

16.
针对目前生产高精度DOM生成效率低、人工编辑干预较大等现状,提出了一种基于点云滤波的DOM自动生产方式。该方法通过对空三解算后的影像匹配密集点云DSM,使用基于TIN的加密滤波方式进行滤波计算,解决了滤波后空洞区域插值问题,制作出满足微分纠正需求的DEM模型,并基于该模型进行微分纠正生成DOM成果。通过选取ISPRS城区试验数据和实际工程山区数据进行验证,证明该算法不仅提高了效率,同时优化了成果质量,DOM成果精度符合规范要求。  相似文献   

17.
Digital elevation models (DEMs) are a necessary dataset for modelling the Earth’s surface; however, all DEMs contain error. Researchers can reduce this error using DEM fusion techniques since numerous DEMs can be available for a region. However, the use of a clustering algorithm in DEM fusion has not been previously reported. In this study a new DEM fusion algorithm based on a clustering approach that works on multiple DEMs to exploit consistency in the estimates as indicators of accuracy and precision is presented. The fusion approach includes slope and elevation thresholding, k-means clustering of the elevation estimates at each cell location, as well as filtering and smoothing of the fusion product. Corroboration of the input DEMs, and the products of each step of the fusion algorithm, with a higher accuracy reference DEM enabled a detailed analysis of the effectiveness of the DEM fusion algorithm. The main findings of the research were: the k-means clustering of the elevations reduced the precision which also impacted the overall accuracy of the estimates; the number of final cluster members and the standard deviation of elevations before clustering both had a strong relationship to the error in the k-means estimates.  相似文献   

18.
A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automati...  相似文献   

19.
基于特征点法向量的点云配准算法   总被引:2,自引:0,他引:2  
在传统的迭代最近点算法(ICP)中,需要两片点云具有良好的初始位置,否则在配准时容易陷入局部最优。针对该问题,本文提出了一种基于特征点提取与配对的粗配准方法,以调整两片点云重叠部分的初始位置。首先,利用SIFT算法提取两片点云公共部分的特征点;其次,根据特征点法向量之间的欧氏距离将两片点云的特征点两两配对;然后,利用法向量的夹角对特征点对进行提纯;最后,通过单位四元数法,求解出旋转及平移矩阵,完成粗配准。试验表明,本文基于特征点法向量的粗配准方法可为精配准提供良好的初始位置,在一定程度上避免配准时陷入局部最优的现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号