首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
为了提高微电机系统(Micro-Electro-Mechanical Systems, MEMS)器件的姿态解算精度,本文提出了一种量测噪声自适应平方根正交变换容积卡尔曼滤波(Adaptive-Square Root Transformed Cubature Kalman Filter, A-SRTCKF)姿态数据融合算法。该算法对MEMS器件中的加速度计、陀螺仪和磁力计输出的数据进行数据融合,以TCKF作为基础算法,采用QR分解更新误差协方差矩阵的平方根进行滤波运算,并通过渐消记忆Sage-Husa噪声估计方法对量测噪声进行实时估计。实验结果表明,该算法使姿态测量系统的估计误差至少降低了79.6%,不但避免了因误差协方差矩阵非正定导致算法异常终止的情况,而且解决了系统因量测噪声未知造成的状态估计精度急剧下降问题,具有比TCKF和SRTCKF更高的精度和鲁棒性。  相似文献   

2.
当载体速度频繁发生突变时,针对卡尔曼滤波在GPS定位解算中对系统模型依赖性强、鲁棒性差的问题,提出了一种基于模糊逻辑的自适应强跟踪卡尔曼滤波算法。该算法主要利用模糊逻辑自适应控制器监测系统输出的残差均值,并根据模糊规则动态调整弱化因子,从而对强跟踪滤波器中次优渐消因子进行自适应调整,来实现抑制载体突变影响。仿真结果表明,该算法在载体突变的跟踪精度高于扩展卡尔曼滤波和强跟踪卡尔曼滤,其稳定性也有所提高。   相似文献   

3.

基于飞行器载体SINS姿态计算精度要求,提出了一种SINS(strap-down inertial navigation system)的球面径向容积卡尔曼(spherical-radial cubature Kalman filtering, SRC-KF) 姿态确定算法。该算法把笛卡尔坐标系中状态向量变换到球坐标系中,通过Gauss-Hermite求积计算获得2n个球面径向容积点及其权值系数来逼近计算系统状态估计及其方差矩阵,其计算精度可达到三阶;采用四元数姿态建模方法构建新型SINS状态变量与噪声向量相关的姿态方程模型,利用伪观测向量构建观测噪声与四元数相关的观测方程模型,设计系统噪声方差分离计算算法进行系统噪声方差计算,引入拉格朗日乘子算法计算四元数估计均值,最后利用SINS/CCD姿态估计仿真系统开展的SINS 的SRC-KF姿态模型算法进行仿真验证。通过与中心差滤波(CDKF)和无迹卡尔曼滤波(UKF)算法计算结果进行对比,可以看出SRC-KF算法具有计算精度高以及数值计算稳定等特点。

  相似文献   

4.
针对组合导航系统的定位精度与稳定性要求不断提高的现状,该文引入一种观测噪声协方差与抗差自适应相结合的Kalman滤波算法。利用新息向量和移动窗口协方差分析法,动态自适应修正观测噪声协方差阵;通过分析基于状态不符值、方差分量的统计量构造的自适应因子所存在的问题,提出一种由预测残差向量构造的自适应因子。仿真结果表明,该方法能够有效抑制观测异常对组合导航定位精度的影响。  相似文献   

5.
针对容积卡尔曼滤波(CKF)在递推过程中易出现状态协方差阵非正定性导致计算发散的现象,该文推导了一种基于奇异值分解的容积卡尔曼滤波算法(SVD-CKF)。该算法基于CKF的理论框架,采用奇异值分解代替标准CKF中的Cholesky分解,兼具奇异值分解算法的数值鲁棒性强和CKF精度高、实现简单等优点,解决了CKF在滤波过程中易出现状态协方差阵非正定性引起的计算发散的问题。同时推导了标准CKF、平方根CKF(SR-CKF)和SVD-CKF等不同滤波算法的具体形式,分析了上述不同CKF算法的特点。采用二维目标纯方位跟踪仿真实例与蒙特卡洛仿真试验对3种CKF算法的性能进行对比,结果表明:SVD-CKF算法性能优于标准CKF和平方根CKF算法。  相似文献   

6.
针对Sage-Husa自适应滤波算法在无人机导航定位应用中存在滤波发散和定位精度低的问题,本文提出一种强跟踪抗差自适应滤波算法.该算法在Sage-Husa自适应滤波算法基础上,引入强跟踪技术,通过自适应渐消因子降低历史数据对当前滤波的影响,从而抑制滤波发散,增强算法的稳健性;结合量测噪声和系统噪声进行实时估计,并且在估...  相似文献   

7.
张梅  吕乐  陈万利  冯涛 《测绘通报》2022,(12):91-96
针对传统超宽带(UWB)室内定位中非线性跟踪问题,基于当前统计(CS)模型和容积卡尔曼滤波(CKF),本文提出了一种新的定位算法。即采用奇异值分解(SVD)代替标准CKF算法中的Cholesky分解,提高了算法的稳定性,构造了奇异值分解容积卡尔曼滤波器(SCKF)。首先在CS模型的基础上改进了先验参数的函数形式,得到改进的CS模型(MCS),实现模型参数的自适应调整;然后将MCS模型引入SCKF滤波器,实现滤波算法的自适应调整;最后利用MCS-SCKF算法对UWB定位系统模型进行解算,从而得到移动目标位置。仿真和试验结果表明,该算法优于CS模型-卡尔曼滤波算法(CS-KF)和CS模型-SCKF算法(CS-SCKF),提高了UWB室内定位的定位精度。  相似文献   

8.
甘雨  隋立芬  刘长建  董明 《测绘学报》2015,44(9):945-951
由载波相位观测值直接解算姿态能实现观测及姿态约束信息的最优利用。本文推导了基于失准角及乘性误差四元数的载波相位观测模型,分别建立了有外部角速度传感器和无外部传感器辅助下姿态参数估计的状态模型;利用自适应抗差滤波估计姿态误差,借鉴分类自适应因子的思想,分别确定模糊度和姿态误差参数的自适应因子,其中姿态自适应因子由Ratio值构造的三段函数确定。自适应抗差滤波能够充分利用约束信息和历史信息,将其融合在浮点解计算过程中,极大提高模糊度浮点解精度及其协方差的结构,在此基础上使用整数最小二乘模糊度降相关平差法(least-squares ambiguity decorrelation adjustment,LAMBDA)方法即能快速搜索出固定解,满足实时性需求。采用实测舰载GNSS 3天线测姿算例对方法进行了验证,结果表明,基于自适应抗差滤波的观测值直接定姿方法效率高、可靠性好。  相似文献   

9.
苏天祥  援兰  朱俊 《测绘学报》2015,44(1):26-31
抗差自适应滤波算法先求解状态参数抗差解,然后根据抗差解求出的自适应因子来调节动力学模型误差对状态估计的影响。本文针对模型信息不精确和存在观测粗差的情况,提出双自适应因子滤波的思想,采用两个自适应因子分别调节动力学模型信息不精确和观测模型误差对滤波估计的影响,推导出双自适应因子滤波公式,并参考单因子计算方法给出双因子计算公式,最后通过仿真试验比较了双自适应因子滤波算法和抗差自适应滤波算法。仿真结果表明,针对观测粗差,此算法基本能够达到正常观测所得到的状态估值。对于动力学模型短时间内出现的小范围异常误差,此算法可在一定程度上削弱模型不精确对估值的影响。  相似文献   

10.
针对GPS/DR组合导航Kalman滤波的异常扰动影响问题,引入了自适应滤波算法。给出了由预测残差确定自适应因子的过程。利用实测数据进行验证,结果表明无论是单因子自适应滤波还是多因子自适应滤波都能够很好地控制状态异常对滤波估值的影响,滤波精度均优于标准Kalman滤波导航解;而且因为多因子自适应滤波避免损失可靠的状态参数信息,较单因子自适应滤波,精度又有明显提高。  相似文献   

11.
非线性自适应抗差滤波定轨算法   总被引:2,自引:1,他引:1  
讨论了应用卡尔曼滤波进行卫星精密定轨所遇到的一些问题,提出了一种新的非线性自适应抗差滤波定轨算法。该方法首先采用非线性滤波来提高定轨精度,避免了模型线性化误差的影响。另外,采用双因子方差膨胀模型来自适应地调节观测噪声的协方差阵,以控制观测异常对定轨结果的影响;通过自适应因子实时调节状态噪声协方差阵,以降低状态异常对定轨结果的影响。通过CHAMP卫星定轨计算,验证了新方法的可行性和有效性。  相似文献   

12.
卡尔曼滤波常常被用于惯性导航系统初始对准算法,其使用前提是对系统状态进行建模,从而得到比较准确的系统噪声和观测噪声统计特性。在模型失配和观测噪声干扰的情况下,常规卡尔曼滤波会出现精度下降甚至发散,从而影响初始对准精度。针对这一问题,提出了一种新型渐消卡尔曼滤波算法,引入了多重渐消因子对预测误差协方差阵进行调整,设计了基于新息向量统计特性的滤波状态χ2检验条件,使渐消因子的引入时机更加合理,算法的自适应性得到增强。将改进的卡尔曼滤波算法应用到惯性导航系统的初始对准问题中,仿真试验和实测数据试验结果表明,与常规渐消因子滤波算法相比,新算法可以有效提高滤波精度及鲁棒性。  相似文献   

13.
探讨了非线性系统的滤波问题,提出了将采样型平方根滤波SR-UKF(square root unscented Kalmanfilter)用于星载GPS卫星实时定轨。在滤波过程中,以协方差阵的平方根代替协方差阵参加递推运算,有效地提高了滤波算法的计算效率和数值稳定性。实例计算结果表明,SR-UKF的性能要优于推广卡尔曼滤波(extended Kalmanfilter)和Unscented卡尔曼滤波(unscented Kalmanfilter)。  相似文献   

14.
Kalman滤波时间尺度算法是一种实时的原子钟状态估计方法,在守时实验室具有重要实用价值。由于原子钟状态模型误差估计存在偏差,Kalman滤波时间尺度算法中状态估计可能出现相应异常扰动,应当对状态模型误差进行实时控制。对此,引入基于渐消因子的改进Kalman滤波时间尺度算法。对状态预测协方差矩阵引入渐消因子,利用统计量实时计算渐消因子的量值,控制状态预测协方差阵的增长,降低了原子钟状态估计的扰动。实验结果表明,相比于标准Kalman滤波时间尺度算法和基于预测残差构造自适应因子的Kalman滤波算法,基于渐消因子的改进Kalman滤波时间尺度算法能够提高原子钟状态估计的准确度,改进时间尺度的稳定度。  相似文献   

15.
首先,采用序贯最小二乘法计算无电离层组合观测值的模糊度;然后,固定宽巷组合模糊度;再固定窄巷组合模糊度;最后,得到无电离层组合观测值的模糊度最终解。谱密度的取值影响状态参数预测值的协方差矩阵元素的大小,因此,采用自适应滤波进行处理。利用机载GPS数据进行验证,结果表明,与其他方案相比,利用固定模糊度的自适应滤波加快了收敛速度,提高了动态精密单点定位的解算精度;无论谱密度取何值,自适应滤波都能够得到较稳定的解。  相似文献   

16.
为满足深空探测器的精确定姿需求,提出了一种惯性测量单元(IMU)辅助的X射线脉冲星定姿方法。该方法用IMU的速率陀螺来估计航天器短时姿态,观测两颗或多颗脉冲星的X射线辐射信号,将拟合得到的观测矢量作为滤波器信息输入,利用这两种测姿手段在时间和空间上的互补特性,提供一种全天候、抗干扰性强的定姿方法。仿真结果表明,相比于EKF,基于UKF的俯仰、横滚和偏航三姿态角的测量精度可提高21.9%、21.1%和31.7%;与仅使用脉冲星或IMU的定姿方法相比,组合定姿方法的俯仰角估计精度分别提高了32.5%和77.6%。  相似文献   

17.
针对实际环境中量测噪声易被野值污染而呈现非高斯分布,进而导致传统卡尔曼滤波(KF)算法性能降低的问题,提出了最大熵卡尔曼滤波(MCKF)算法. 该算法基于最大熵准则(MCC)和M估计的思想推导得到. 与KF相比,所提算法能够给异常量测值分配较小的权重以减轻其对于状态估计的影响,与基于Huber函数的卡尔曼滤波(HKF)算法相比,其能够更有效地利用量测信息,因此所提算法相比于KF和HKF而言更加鲁棒. 在全球卫星导航系统(GNSS)与惯性导航系统(INS)的紧组合模式下进行车载实测实验,由于GNSS的伪距与伪距率等原始量测信息质量不佳,因此KF和HKF的性能均受到影响,而所提MCKF算法能够有效地抑制异常量测值的影响,能够更快地收敛且得到更高的估计精度.   相似文献   

18.
An improved adaptive Kalman filter algorithm is presented to model error and process noise uncertainty. The adaptive algorithm for model error is obtained by using an upper bound for the state prediction covariance matrix. The process noise is estimated at each filter step by minimizing a criterion function, which was determined by measurement prediction. A recursive algorithm is provided for solving the criterion function. The proposed adaptive filter algorithm was successfully implemented in GPS relative navigation for spacecraft formation flying in high earth orbits with real orbit perturbations. Software simulation results indicated that the proposed adaptive filter performed better in robustness and accuracy compared with previous adaptive algorithms.  相似文献   

19.
组合导航利用惯性导航(INS)和全球定位系统(GPS)较强的非相似性和互补性,将两者组合,可以取长补短,充分发挥各自的优点,提高导航系统性能。利用卡尔曼滤波能够有效提高其精度,但卡尔曼滤波的应用要求函数模型和随机模型已知,符合实际,这在实际应用中是很难保证的,一般都是通过经验信息确定。H滤波则具有很强的鲁棒性,抗干扰性强。通过仿真数据处理,结果表明:H滤波比卡尔曼滤波在噪声特性未知时更适用,精度更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号