首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An exhumed crustal section of the Mesozoic Torlesse terrane underlies the Southern Alps collision zone in New Zealand. Since the Late Miocene, oblique horizontal shortening has formed the northeastern–southwestern trending orogen and exhumed the crustal section within it. On the eastern side, rocks are zeolite- to prehnite–pumpellyite-grade greywacke; on the western side rocks, they have the same protolith, but are greenschist to amphibolite facies of the Alpine Schist. Zircon crystals from sediments in east-flowing rivers (hinterland) have pre-orogenic fission-track ages (>80 Ma) and are dominated by pink, radiation-damaged grains (up to 60%). These zircons are derived from the upper 10 km crustal section (unreset FT color zone) that includes the Late Cenozoic zircon partial annealing zone; both fission tracks and color remain intact and unaffected by orogenesis. Many zircon crystals from sediments in west-flowing rivers (foreland) have synorogenic FT ages, and about 80% are colorless due to thermal annealing. They have been derived from rocks that originally lay in the reset FT color zone and the underlying reset FT colorless zone. The reset FT color zone occurs between 250 and 400 °C. In this zone, zircon crystals have color but reset FT ages that reflect the timing of orogenesis.  相似文献   

2.
Multi-equilibrium thermobarometry shows that low-grade metapelites (Cubito-Moura schists) from the Ossa–Morena Zone underwent HP–LT metamorphism from 340–370 °C at 1.0–0.9 GPa to 400–450 °C at 0.8–0.7 GPa. These HP–LT equilibriums were reached by parageneses including white K mica, chlorite and chloritoid, which define the earliest schistosity (S1) in these rocks. The main foliation in the schists is a crenulation cleavage (S2), which developed during decompression from 0.8–0.7 to 0.4–0.3 GPa at increasing temperatures from 400–450 °C to 440–465 °C. Fe3+ in chlorite decreased greatly during prograde metamorphism from molar fractions of 0.4 determined in syn-S1 chlorites down to 0.1 in syn-S2 chlorites. These new data add to previous findings of eclogites in the Moura schists indicating that a pile of allochtonous rocks situated next to the Beja-Acebuches oceanic amphibolites underwent HP–LT metamorphism during the Variscan orogeny. To cite this article: G. Booth-Rea et al., C. R. Geoscience 338 (2006).  相似文献   

3.
The significant discordance of the radiometric (Rb-Sr, Pb-U, K-Ar and fission track) ages from various orogenic cycles of the Dharwar, Satpura, Aravalli and Himalayan orogenic belts in India, coupled with their corresponding blocking temperatures for various radiometric clocks in whole rocks and minerals, has been used to evaluate the cooling and the uplift histories of the respective orogenic belts. The blocking temperatures used in the present study of various Rb-Sr (isotopic homogenization at 600°C, muscovite at 500°C and biotite at 300°C), Pb-U (monazite at 530°C), K-Ar (muscovite at 350°C and biotite at 300°C) and fission-track clock (zircon at 350°C, sphene at 300°C, garnet at 280°C, muscovite at 130°C, hornblende at 120°C and apatite at 100°C for the cooling rate l°C/Ma) have been found suitable to explain the differences in mineral ages by different radiometric techniques. The nature of the cooling curves drawn using the temperature versus age data for various orogenic cycles in India has also been discussed. The cooling and the uplift patterns determined for various orogenic cycles of India, suggest comparatively slow cooling (5.0–0.2°C/Ma) and uplift (180–2 m/Ma) for the Peninsular regions and rapid cooling (25.0–1.0° C/Ma) and fast uplift (800–30 m/Ma) during the Himalayan Orogenic Cycle (Upper Cretaceous—Tertiary) in the Extra-Peninsular region.  相似文献   

4.
Zircon fission-track (FT) and U–Pb analyses were performed on zircon extracted from a pseudotachylyte zone and surrounding rocks of the Asuke Shear Zone (ASZ), Aichi Prefecture, Japan. The U–Pb ages of all four samples are  67–76 Ma, which is interpreted as the formation age of Ryoke granitic rocks along the ASZ. The mean zircon FT age of host rock is 73 ± 7 (2σ) Ma, suggesting a time of initial cooling through the zircon closure temperature. The pseudotachylyte zone however, yielded a zircon FT age of 53 ± 9 (2σ) Ma, statistically different from the age of the host rock. Zircon FTs showed reduced mean lengths and intermediate ages for samples adjacent to the pseudotachylyte zone. Coupled with the new zircon U–Pb ages and previous heat conduction modeling, the present FT data are best interpreted as reflecting paleothermal effects of the frictional heating of the fault. The age for the pseudotachylyte coincides with the change in direction of rotation of the Pacific plate from NW to N which can be considered to initialize the NNE–SSW trending sinistral–extensional ASZ before the Miocene clockwise rotation of SW Japan. The present study demonstrates that a history of fault motions in seismically active regions can be reconstructed by dating pseudotachylytes using zircon FT thermochronology.  相似文献   

5.
Fission track (FT) thermochronometry using zircon has widely been applied to the resolution of a variety of geologic problems, for which the understanding of FT annealing behaviour is essential. Thermal annealing experiments were conducted on FTs in natural zircons having different ages (ranging from ~0.6 to ~70 Ma) and radiation damage levels. We measured horizontal confined track lengths on nine zircon concentrates separated from rapidly cooled volcanic rocks, after 1 hr annealing at 400–700°C. As the annealing temperature increases, the observed tracks show a consistent and systematic length reduction in all samples, and the mean track lengths are hardly distinguishable among the nine samples for the same annealing step. Our results suggest that the thermal annealing characteristics at laboratory time‐scale are concordant among the zircons, regardless of their ages, and that identical annealing kinetics may work for Late Mesozoic to Cenozoic zircons.  相似文献   

6.
Zircon fission track (ZFT), apatite fission track (AFT) and (U–Th)/He thermochronometric data are used to reconstruct the Cenozoic exhumation history of the South China continental margin. A south to north sample transect from coast to continental interior yielded ZFT ages between 116.6 ± 4.7 Ma and 87.3 ± 4.0, indicating that by the Late Cretaceous samples were at depths of 5–6 km in the upper crust. Apatite FT ages range between 60.9 ± 3.6 and 37.3 ± 2.3 Ma with mean track lengths between 13.26 ± 0.16 µm and 13.95 ± 0.19 µm whilst AHe ages are marginally younger 47.5 ± 1.9–15.3 ± 0.5 Ma. These results show the sampled rocks resided in the top 1–1.5 km of the crust for most of the Cenozoic. Thermal history modeling of the combined FT and (U–Th)/He datasets reveal a common three stage cooling history which differed systematically in timing inland away from the rifted margin. 1) Initial phase of rapid cooling that youngs to the north, 2) a period of relative (but not perfect) thermal stasis at ~ 70–60 °C which increases in duration from the south to the north; 3) final-stage cooling to surface temperatures that initiated in all samples between 15 and 10 Ma. The timing and pattern of rock uplift and erosion does not fit with conventional passive margin landscape models that require youngest exhumation ages to be concentrated at or close to the rifted margin. The history of South China margin is more complex aided by weakened crust from the active margin period that immediately preceded rifting and opening of the South China Sea. This rheological inheritance created a transition zone of steeply thinned crust that served as a flexural filter disconnecting the northern margin of the South China block and site of active rifting to the south. Consequently whilst the South China margin displays many features of a rifted continental margin its exhumation history does not conform to conventional images of a passive margin.  相似文献   

7.
This study uses zircon and apatite fission‐track (FT) analyses to reveal the exhumation history of the granitoid samples collected from the Lesser Hinggan Mountains, northeast China. A southeast to northwest transect across the Lesser Hinggan Mountains yielded zircon FT ages between 89.8 ± 5.7 and 100.4 ± 8.6 Ma, and apatite FT ages between 50.6 ± 13.8 and 74.3 ± 4.5 Ma with mean track lengths between 11.7 ± 2.0 and 12.8 ± 1.7 µm. FT results and modelling identify three stages in sample cooling history spanning the late Mesozoic and Cenozoic eras. Stage one records rapid cooling from the closure temperature of zircon FT to the high temperature part of the apatite FT partial annealing zone (∼210–110 °C) during ca. 95 to 65 Ma. Stage two records a period of relative slow cooling (∼110–60 °C) taking place between ca. 65 and 20 Ma, suggesting that the granitoids had been exhumed to the depth of ∼1−2 km. Final stage cooling (60–20 °C) occurred since the Miocene at an accelerated rate bringing the sampled rocks to the Earth's surface. The maximum exhumation is more than 5 km under a steady‐state geothermal gradient of 35 °C/km. Integrated with the tectonic setting, this exhumation is possibly led by the Pacific Plate subduction combined with intracontinental orogeny associated with asthenospheric upwelling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A combined study using multi-radiometric dating and oxygen isotopic geothermometry was carried out for Mesozoic quartz syenite, alkali-feldspar granite and associated hydrothermal uranium mineralization at Dalongshan in the Middle-Lower Yangtze valley of east-central China. Radiometric dating of the quartz syenite yields a whole-rock Rb–Sr isochron age of 135.6±4.3 Ma, a zircon U–Pb isochron age of 132.9±2.2 Ma, and K–Ar ages of 126±2, 118±3 and 94±4 Ma for hornblende, biotite and orthoclase, respectively. The alkali-feldspar granite yields a whole-rock Rb–Sr isochron age of 117.3±3.3 Ma, a zircon U–Pb isochron age of 114.7±2.1 Ma, and K–Ar ages of 112±2, 109±3 and 88±4 Ma for hornblende, biotite and orthoclase, respectively. Oxygen isotope thermometry for both granites gives temperatures of 685 to 720, 555 to 580, 435 to 460 and 320 to 330 °C, for hornblende, magnetite, biotite and orthoclase respectively, when paired with quartz. The systematic differences among the ages by the different techniques on the different minerals are used to reconstruct the cooling history of the granite. The results yield rapid cooling rates of 27.4 to 58.6 °C/Ma from 800 to 300 °C in the early stage, but slow cooling rates of 6.3 to 7.2 °C/Ma from 300 to 150 °C in the late stage. The regular sequence of oxygen isotope temperatures for the different quartz–mineral pairs demonstrates that diffusion is a dominant factor controlling the closure of both radiometric and O isotopic systems during granite cooling. Pitchblende U–Pb isochron dating yields an uranium mineralization age of 106.4±2.9 Ma, which is younger than the age of the granite emplacement and thus considerably postdates the time of magma crystallization, but is close to the closure time of the K–Ar system in the biotite. This points to a close relationship between granite cooling and ore-forming process. It appears that hydrothermal mineralization took place in the stage of slow cooling of the granite, whereas the rapid cooling of the granite was concurrent with the migration of hydrothermal fluids along fault structures. Therefore, the activity of the ore-forming hydrothermal system is temporally dictated by the cooling rates of the granite and may lag about 25 to 30 Ma behind the crystallization timing of associated granite.  相似文献   

9.
沉积物中的锆石裂变径迹分析可以用于示踪沉积盆地的源区性质及其构造演化信息。济阳坳陷新生界9块砂岩样品的锆石裂变径迹中值年龄介于183.1±15.0 Ma~100.0±5.6 Ma之间,锆石单颗粒年龄均大于其地层沉积年龄。对没有通过χ2检验的6块样品进行了多组分年龄分离分析,表明多数样品主要由2个年龄组分组成。总体上,砂岩锆石裂变径迹单组分年龄具有较好的一致性,主要介于389.1±5.1 Ma~272.7±14.6 Ma(P1)、238.1±7.8 Ma~203.6±6.6 Ma(P2)、179.3±13.9 Ma~96.8±17.8 Ma(P3)、80.3±15.7 Ma~55.3±6.0 Ma(P4)之间。这4组年龄组分分别记录了晚古生代、三叠纪、晚侏罗-早白垩世及晚白垩世-古新世时期内锆石裂变径迹完全退火时的年龄。结合区域地质背景认为,济阳坳陷新生界的主要物源是燕山运动中期强烈的构造岩浆活动期内发育的上侏罗统-下白垩统的火山岩和火山-碎屑岩系; 海西期、印支期以及燕山晚期-喜马拉雅山早期过渡时期的构造岩浆活动也对坳陷有少量物源贡献。  相似文献   

10.
Recent U–Pb age determinations and PT estimates allow us to characterize the different levels of a formerly thickened crust, and provide further constraints on the make up and tectono-thermal evolution of the Grenville Province in the Manicouagan area. An important tectonic element, the Manicouagan Imbricate zone (MIZ), consists of mainly 1.65, 1.48 and 1.17 Ga igneous rocks metamorphosed under 1400–1800 MPa and 800–900 °C at 1.05–1.03 Ga, during the Ottawan episode of the Grenvillian orogenic cycle, coevally with intrusion of gabbro dykes in shear zones. The MIZ has been interpreted as representing thermally weakened deep levels of thickened crust extruded towards the NW over a parautochthonous crustal-scale ramp. Mantle-derived melts are considered as in part responsible for the high metamorphic temperatures that were registered.New data show that mid-crustal levels structurally above the MIZ are represented by the Gabriel Complex of the Berthé terrane, that consists of migmatite with boudins of 1136±15 Ma gabbro and rafts of anatectic metapelite with an inherited monazite age at 1478±30 Ma. These rocks were metamorphosed at about the same time as the MIZ (metamorphic zircon in gabbro: 1046±2 Ma; single grains of monazite in anatectic metapelite: 1053±2 Ma) and under the same T range (800–900 °C) but at lower P conditions (1000–1100 MPa). They are mainly exposed in an antiformal culmination above a high-strain zone, which has tectonic lenses of high PT rocks from the MIZ and is intruded by synmetamorphic gabbroic rocks. This zone is interpreted as part of the hangingwall of the MIZ during extrusion. A gap of 400 MPa in metamorphic pressures between the tectonic lenses and the country rocks, together with the broad similarity in metamorphic ages, are consistent with rapid tectonic transport of the high PT rocks over a ramp prior to the incorporation of the mafic lenses in the hangingwall.Between the antiformal culmination of the Gabriel Complex and the MIZ 1.48 Ga old granulites of the Hart Jaune terrane are exposed. They are intruded by unmetamorphosed 1228±3 Ma gabbro sills and 1166±1 Ma anorthosite. Hart Jaune Terrane represents relatively high crustal levels that truncate the MIZ-Gabriel Complex contact and are preserved in a synformal structure.Farther south, the Gabriel Complex is overlain by the Banded Complex, a composite unit including 1403+32/−25 Ma granodiorite and 1238+16/−13−1202+40/−25 Ma granite. This unit has been metamorphosed under relatively low-P (800 MPa) granulite-facies conditions. Metamorphic U–Pb data, limited to zircon lower intercept ages (971±38 Ma and 996±27 Ma) and a titanite (990±5 Ma) age, are interpreted to postdate the metamorphic peak.The general configuration of units along the section is consistent with extrusion of the MIZ during shortening and, finally, normal displacement along discrete shear zones.  相似文献   

11.
96 new fission track (FT) apatite and zircon, K/Ar and Rb/Sr biotite and muscovite ages are presented for 19 samples (mainly acid gneisses) from a 40 km traverse through the Lepontine Alps in the Maggia Valley, South Central Switzerland. Plotting measured mineral ages against assumed system closure temperatures yields cooling rates for each sample. The entire profile shows a fairly uniform Late Neogene-Recent mean uplift rate of 0.5 mm/a, confirmed by a gradient of FT apatite age with elevation. Cooling from higher temperatures occurred earlier in the south, where uplift rates of 2.2 mm/a in the Steep Belt (root zone) indicate >9 km Early Miocene uplift of the northern Pennine block. This uplift started before 23 Ma and is interpreted as resulting from a major phase of backthrusting along the Insubric Line, and as dating the formation of the mylonite belt. Estimated cooling rates constrain the timing of Lepontine Mid-Tertiary metamorphism: 3 schematic models are proposed which also consider published Rb/Sr, K/Ar mica and hornblende and U/Pb monazite ages. Slow cooling, differential initial heating and subsequent cooling of different parts of the Central Alps and post-38 Ma cooling with syntectonic metamorphism at 27 Ma are postulated as alternative interpretations of isotopic data and geologic evidence. From extrapolation between K/Ar and Rb/Sr mica ages and apatite FT ages, 240±50° C is proposed as the closure temperature for the retention of fission tracks in zircon.  相似文献   

12.
The Lavanttal Fault Zone (LFZ) is generally considered to be related to Miocene orogen-parallel escape tectonics in the Eastern Alps. By applying thermochronological methods with retention temperatures ranging from ~450 to ~40°C we have investigated the thermochronological evolution of the LFZ and the adjacent Koralm Complex (Eastern Alps). 40Ar/39Ar dating on white mica and zircon fission track (ZFT) thermochronology were carried out on host rocks (HRs) and fault-related rocks (cataclasites and fault gouges) directly adjacent to the unfaulted protolith. These data are interpreted together with recently published apatite fission track (AFT) and apatite (U-Th)/He ages. Sample material was taken from three drill cores transecting the LFZ. Ar release spectra in cataclastic shear zones partly show strongly rejuvenated incremental ages, indicating lattice distortion during cataclastic shearing or hydrothermal alteration. Integrated plateau ages from fault rocks (~76 Ma) are in parts slightly younger than plateau ages from HRs (>80 Ma). Incremental ages from fault rock samples are in part highly reduced (~43 Ma). ZFT ages within fault gouges (~65 Ma) are slightly reduced compared to the ages from HRs, and fission tracks show reduced lengths. Combining these results with AFT and apatite (U-Th)/He ages from fault rocks of the same fault zone allows the recognition of distinct faulting events along the LFZ from Miocene to Pliocene times. Contemporaneous with this faulting, the Koralm Complex experienced accelerated cooling in Late Miocene times. Late-Cretaceous to Palaeogene movement on the LFZ cannot be clearly proven. 40Ar/39Ar muscovite and ZFT ages were probably partly thermally affected along the LFZ during Miocene times.  相似文献   

13.
Application of the zircon fission track (FT) method to derive reliable cooling histories requires that rocks have undergone temperatures sufficient to reach full resetting prior to cooling. Zircons commonly show significant variation in accumulated radiation damage and therefore FT annealing behaviour. Twenty‐eight samples of mainly anchizonal to lowermost greenschist facies Triassic sandstones from the Songpan‐Garzê flysch, China, were evaluated for their FT annealing status. Literature data suggest a heating period in the range of 100 myr duration. Our results define a temperature range for partial FT annealing of 270–350°C (based on illite crystallinity data), higher than the proposed range for radiation‐damaged zircons. We suggest that the long residence at high temperature has led to annealing of relevant parts of radiation damage along with FT annealing, so that even for long durations of FT annealing, full resetting requires temperatures in the range of greenschist facies conditions typical for zero‐damage zircons.  相似文献   

14.
Archean basement gneisses and supracrustal rocks, together with Neoproterozoic (Sinian) metasedimentary rocks (the Penglai Group) occur in the Jiaobei Terrane at the southeastern margin of the North China Craton. SHRIMP U–Pb zircon dating of an Archean TTG gneiss gave an age of 2541 ± 5 Ma, whereas metasedimentary rocks from the Neoproterozoic Penglai Group yielded a range in zircon ages from 2.9 to 1.8 Ga. The zircons can be broadly divided into three age populations, at: 2.0–1.8 Ga, 2.45–2.1 Ga and >2.5 Ga. Detrital zircon grains with ages >2.6 Ga are few in number and there are none with ages <1.8 Ga. These results indicate that most of the detrital material comes from a Paleoproterozoic source, most likely from the Jianshan and Fenzishan groups, with some material coming from Archean gneisses in the Jiaobei Terrane. An age of 1866 ± 4 Ma for amphibolite-facies hornblende–plagioclase gneiss, forming part of a supracrustal sequence within the Archean TTG gneiss, indicates Late Paleoproterozoic metamorphism. Both the Archean gneiss complex and Penglai metasedimentary rocks resemble previously described components of the Jiao-Liao-Ji orogenic belt and suggest that the Jiaobei Terrane has a North China Craton affinity; they also suggest that the time of collision along the Jiao-Liao-Ji Belt was at 1865 Ma.  相似文献   

15.
Annealing behavior of alpha recoil tracks in phlogopite   总被引:1,自引:0,他引:1  
In this study we present and interpret a new experimental data set documenting thermal annealing of alpha recoil tracks (ARTs) in phlogopite. Through improvements in experimental technique, difficulties in obtaining useable data from material with an uneven distribution of U and Th were overcome. The resulting annealing pattern was well organized on an Arrhenius plot, allowing construction of a simple, 3-parameter annealing model of parallel contours of constant annealing with a linear progression. Our data and model indicate that phlogopite ARTs anneal at very low temperatures on geological time scales. At the million-year time scale, full annealing requires a temperature of only 33 °C, and we infer closure temperatures from 26–37 °C for cooling rates of 10–100 °C/m.y. Phlogopite ART analysis is thus likely to be primarily useful in relatively young (<1 Ma) terrains featuring either recent volcanism or recent, fast exhumation. In such situations, however, it may provide unique information on the timing of the final stages of unroofing. Comparison of our results with previous studies on ART and fission-track annealing in phlogopite and biotite indicates that these two types of radiation damage anneal at disparate time and temperature conditions in biotite-series micas.  相似文献   

16.
17.
To obtain the chemical Th*–Pb isochron ages and surface maps of monazite crystals in igneous and metamorphic rocks from the southern Brazilian Shield, we employ Th–U-total Pb dating by an electron probe microanalyzer. The ages of two Trans-Amazonian metamorphic events are given by a felsic, garnet-bearing granulite from the Santa Maria Chico granulitic complex. The age of the first event, at approximately 2.35 Ga, was obtained by surface mapping in a grain included in garnet. The dating of the second event, 1899±43 Ma, is in agreement with previous data obtained in zircon crystals with sensitive high-resolution ion microprobe. Other determinations belong to the Brasiliano cycle. In the São Gabriel block, an age of 643±129 Ma was obtained on monazite from a staurolite-garnet schist of the Cambaizinho Formation, whereas a staurolite-bearing schist from the Passo Feio complex yielded a 510±68 Ma age. Several units in the Dom Feliciano belt were dated, including the biotite-sillimanite gneisses of the Várzea do Capivarita complex (552±90 Ma), the sillimanite-garnet gneisses of Camboriú complex (565±77 Ma), the Três Figueiras granite (558±57 Ma), and the Plaza Itapema granite (545±55 Ma). The ages presented in this study, obtained through monazite chemical dating, are confirmed through comparison with previous data regarding zircon crystals from the same geological units.  相似文献   

18.
We present a new, reliably dated Mesoproterozoic paleopole for Siberia, based on a combined geochronological and paleomagnetic study of mafic rocks within the Mesoproterozoic Sololi Group of the Olenek Uplift in northern Siberia. Ion microprobe (SHRIMP) U–Pb analysis yields crystallisation ages of 2036 ± 11 Ma for zircon from a basement granite and 1473 ± 24 Ma for baddeleyite from a large dolerite sill within the Kyutingde Formation. The baddeleyite result indicates that the lower Sololi Group is significantly older than was suggested by previous K–Ar results. Paleomagnetic analysis of the dolerite sill and related mafic intrusive rocks yields a paleopole at 33.6°N, 253.1°E, A95 = 10.4°. A positive baked-contact test between the Kyutingde sill and sedimentary country rocks shows that the magnetisation is primary. Comparison of this paleopole with coeval results for Laurentia provides a revised reconstruction between Siberia and Laurentia, and implies that these two continents were parts of a single Mesoproterozoic supercontinent since at least 1473 Ma. We argue that Siberia, Laurentia, and Baltica belonged to the same supercontinent between 1473 Ma and mid-Neoproterozoic time.  相似文献   

19.
This study uses apatite fission track (FT) analysis to constrain the exhumation history of bedrock samples collected from the Altai Mountains in northern Xinjiang, China. Samples were collected as transects across the main structures related to Palaeozoic crustal accretion events. FT results and modeling identify three stages in sample cooling history spanning the Mesozoic and Tertiary. Stage one records rapid cooling to the low temperature part of the fission track partial annealing zone circa 70 ± 10 °C. Stage two, records a period of relative stability with little if any cooling taking place between 75 and 25–20 Ma suggesting the Altai region had been reduced to an area of low relief. Support for this can be found in the adjacent Junngar Basin that received little if any sediment during this interval. Final stage cooling took place in the Miocene at an accelerated rate bringing the sampled rocks to the Earth's surface. This last stage, linked to the far field effects of the Himalayan collision, most likely generated the surface uplift and relief that define the present-day Altai Mountains.  相似文献   

20.
The Amapá Block, southeastern Guiana Shield, represents an Archean block involved in a large Paleoproterozoic belt, with evolution related to the Transamazonian orogenic cycle (2.26 to 1.95 Ga). High spatial resolution dating using an electron-probe microanalyzer (EPMA) was employed to obtain U–Th–Pb chemical ages in monazite of seven rock samples of the Archean basement from that tectonic block, which underwent granulite- and amphibolite-facies metamorphism. Pb–Pb zircon dating was also performed on one sample.Monazite and zircon ages demonstrate that the metamorphic overprinting of the Archean basement occurred during the Transamazonian orogenesis, and two main tectono-thermal events were recorded. The first one is revealed by monazite ages of 2096 ± 6, 2093 ± 8, 2088 ± 8, 2087 ± 3 and 2086 ± 8 Ma, and by the zircon age of 2091 ± 5 Ma, obtained in granulitic rocks. These concordant ages provided a reliable estimate of the time of the granulite-facies metamorphism in the southwest of the Amapá Block and, coupled with petro-structural data, suggest that it was contemporaneous to the development of a thrusting system associated to the collisional stage of the Transamazonian orogenesis, at about 2.10–2.08 Ga.The later event, under amphibolite-facies conditions, is recorded by monazite ages of 2056 ± 7 and 2038 ± 6 Ma, and is consistent with a post-collisional stage, marked by granite emplacement and coeval migmatization of the Archean basement along strike-slip shear zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号