首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Cosmological model with a viscous fluid in Kaluza-Klein metric is obtained assuming a time-dependent equation of state. The solution is in fact a generalization of an earlier work by Hajj and Boutros for a perfect fluid. It is also found that dimensional reduction of the extra space takes place such that the five-dimensional universe naturally evolves into an effective four-dimensional one. The dynamical behavior of the model is examined and it is also found that with a decrease in extra space the observable 3D space entropy increases thus accounting for the large value of entropy observable at present.  相似文献   

2.
A homogeneous cosmological model in Kaluza–Klein metric is obtained assuming a time-dependent equation of state. The solution is in fact generalization of an earlier work by Hajj and Boutros for a perfect fluid. It is also found that dimensional reduction of the extra space takes place such that the five-dimensional universe naturally evolves into an effective four-dimensional one. The dynamical behaviour of the model is examined and it is also found that with a decrease in extra space the observable three-dimensional space entropy increase thus accounting for the large value of entropy observable at present.  相似文献   

3.
Exact solution for a homogeneous cosmological model in 5D space-time-mass gravity theory proposed by Wesson (Astron. Astrophys. 119:145, 1983) is obtained by assuming the time-dependent equation of state. The behavior of the solution is discussed for the two cases k<0 and k=0. It is found that the observed constancy of the rest mass of an isolated particle in the present era may be interpreted as a consequence of the decreasing rate of change of rest mass with time. Moreover, a spontaneous compactification-like phenomenon of an extra dimension takes place in the case of k=0. It is also found that with decrease in extra space the observable three-dimensional space entropy increases, thus accounting for the large value of entropy observable at present.  相似文献   

4.
We study the relation between the existence of the logarithmic prefactor and spacetime dimensionality in black hole entropy relation by a detailed study of a TeV-scale black hole entropy. In a model universe with large extra dimensions and within the Generalized Uncertainty Principle (GUP) framework, we show that probability of black hole production in the Large Hadronic Collider (LHC) decreases for sufficiently large values of the GUP parameter. In this regard, even observation of micro-black holes may be suppressed at TeV energy scale. We determine also the GUP parameter in an extra dimensional scenario by comparing black hole entropy calculated within the GUP and loop quantum gravity frameworks.  相似文献   

5.
Though entropy production is forbidden in standard FRW Cosmology, Berman and Som presented a simple inflationary model where entropy production by bulk viscosity, during standard inflation without ad hoc pressure terms can be accommodated with Robertson–Walker’s metric, so the requirement that the early Universe be anisotropic is not essential in order to have entropy growth during inflationary phase, as we show. Entropy also grows due to shear viscosity, for the anisotropic case. The intrinsically inflationary metric that we propose can be thought of as defining a polarized vacuum, and leads directly to the desired effects without the need of introducing extra pressure terms.  相似文献   

6.
Exact solutions are obtained in a five-dimensional space-time with an energy-momentum tensor containing a viscous fluid, assuming either an equation of state or a special form for the viscous term in line with the assumption of Belinskii and Khalatnikov (1977). The solutions are, in fact, generalizations of an earlier work by Grøn for a perfect fluid in the 5D rest-mass varying theory of gravity proposed recently by Wesson. It is found that dimensional reduction of the extra space takes place in some of the cases such that the 5-dimensional universe naturally evolves into an effective 4-dimensional one. A huge amount of entropy can be produced following this shrinkage of extra-dimension which may account for the very large value of entropy per baryon observed in our 4D world. Moreover, the observed constancy of the rest-mass in the present era is also interpreted.  相似文献   

7.
In the frame of the preparation of the use of ENVISAT data, the EEC is supporting the MSDOL project: Monitoring of the Stratospheric Depletion of the Ozone Layer. The purpose is to assimilate the 400 vertical profiles of Ozone recorded each day by the experiment GOMOS (on the future ESA ENVISAT spacecraft ) in a 3-D chemistry-transport model, where the winds are the ECMWF analysis. The sequentially assimilated model will better represent the reality since all single measurements are extrapolated in space and time through chemistry and transport. The assimilated model will serve at least two purposes : the comparison with other data sets, and the estimate of the evolution of ozone as a function of time and space.The 3-D model is derived from the stratospheric chemistry-transport Rose model, in which the internally generated dynamics is replaced by the actual wind field.  相似文献   

8.
The correspondence principle offered a unique opportunity to test cylindrically symmetric model for Universe at correspondence point “the centre of mass energies around (M s/(g s)2)”. First by using this symmetry, the Universe state for highly excited string “string ball” is studied and the entropy of these states is calculated. Then, to consider the string ball states, a copy of the original Hilbert space is constructed with a set of creation/annihilation operators that have the same commutation properties as the original ones. The total Hilbert space is the tensor product of the two spaces H physical ?H unphysical , where in this case H physical denotes the physical quantum state space of the string ball. It is shown that string ball states can be represented by a maximally entangled two-mode squeezed state of the physical and unphysical spaces of string. Also, the entropy for these string states is calculated. It is found that Universe entropy matches the string entropy at transition point. This means that our result is consistent with correspondence principle and thus cylindrically symmetric model works. Finally the signature of bosonic string ball is studied. When string balls are produced, they evaporate to Massive particles like Higgs boson. Then Higgs bosons decay to quarks and gluons. Thus an enhancement of these partons can be a signature of bosonic string ball inside the cylindrically symmetric Universe.  相似文献   

9.
The evolution of coronal loops in response to slow photospheric twisting motions is investigated using a variety of methods. Firstly, by solving the time-dependent equations it is shown that the field essentially evolves through a sequence of 2-D equilibria with no evidence of rapid dynamic evolution. Secondly, a sequence of 1-D equilibria are shown to provide a remarkably good approximation to the 2-D time-dependent results using a fraction of the computer time. Thus, a substantial investigation of parameter space is now possible. Finally, simple bounds on the 3-D stability of coronal loops are obtained. Exact stability bounds can be found by using these bounds to reduce the region of parameter space requiring further investigation. Twisting the loop too much shows that a 3-D instability must be triggered.  相似文献   

10.
A five-dimensional cosmological model including a single perfect fluid is studied in the framework of dynamical system analysis. All the critical points of the system are listed with their stability properties and some representative phase diagrams are explicitly shown. It is found that the stabilization of extra dimension is possible and the observed flatness of the three-dimensional space is provided for certain ranges of the equation of state parameter of the fluid. The model suggested here can be considered as a simplified model for examining the possible effects of the extra dimensions in the early universe.  相似文献   

11.
An aliasing effect brought up by mass assignment onto Fast Fourier Transformation (FFT) grids may bias measurement of the power spectrum of large scale structures. In this paper, based on the Beylkin's unequally spaced FFT technique, we propose a new precise method to extract the true power spectrum of a large discrete data set. We compare the traditional mass assignment schemes with the new method using the Daub6 and the 3rd-order B-spline scaling functions. Our measurement of Poisson samples and samples of N-body simulations shows that the B-spline scaling function is an optimal choice for mass assignment in the sense that (1) it has a compact support in real space and thus yields an efficient algorithm (2) without any extra corrections. The Fourier space behavior of the 3rd-order B-spline scaling function enables it to be able to accurately recover the true power spectrum with errors less than 5% up to k < kN. It is expected that such a method can be applied to higher order statistics in Fourier space and will enable us to have a precision capture of the non-Gaussian features in the large scale structure of the universe.  相似文献   

12.
我们已经研究了分别具椭圆和双曲不动点的二维保测度映射及其受摄三维扩张的KS熵。本文研究一类具抛物不动点的二维保测度映射:及其受摄扩张:的KS熵随参数A、B、C、D、E的变化.数值探索结果表明:适当定义区域内的二维映射T2的KS熵与A无关,与我们的理论分析结果相一致。受摄扩张映射T3的KS熵随摄动参数B、C、D的增大而增大,却随E的增大而减小.我们还发现,随着摄动的逐渐增强,映射T3的不变环面将逐渐破裂,使更多的轨道逃逸,从而可能使映射T3的KS熵减小。另外,不变环面存在的判别式在大范围内仍在一定程度上有效。  相似文献   

13.
Gregory P. Smith  David Nash 《Icarus》2006,182(1):181-201
A box model sensitivity analysis was applied to output from a version of the 1-D JPL/Caltech KINETICS photochemistry-transport model of Jupiter's atmosphere. Results quantify the controlling chemical reaction parameters for the variety of observable hydrocarbons, and suggest changes to explore and new observations and rate measurements to pursue. High sensitivities are found to photolysis steps and to several hydrogen atom recombination steps and product branches. Complexity ranges from the relatively simple scheme seen for the methyl radical, to the rich variety of reactions tested by diacetylene.  相似文献   

14.
15.
We have presented in homogeneous cosmological models within the framework of Lyra geometry. We have considered an inhomogeneous spherically symmetric higher dimensional model in presence of a mass less scalar field whose potential has a flat part. The scalar field is considered to be inhomogeneous. Also an inhomogeneous cosmological model is derived in a Kaluza-Klein type of space time. The matter field is taken as an inhomogeneous distribution of fluid. It is observed that there is no singularity at finite past in our model and the desirable feature of dimensional reduction is also possible for the extra space. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
A cosmological model with inhomogeneous space and nonuniform time is proposed and substantiated. Both space and time are assumed to be finite, i.e., curved of positive sign and characterized by a variable curvature.The replacement of the absolute universal time by a relative proper time, intrinsic for individual gravitational objects, is in accord with the spirit of relativity.Numerous consequences of this model leading to observable phenomena in galaxies, quasars and in the solar system are derived from the mathematical analysis of the line element, Equation (8), of the model in the papers mentioned in Section 4.2, where they are confronted with observational evidence. In addition several predictions following from the theory are listed (Section 4.3), whose verification by future observations may justify the postulate lying at the basis of this theory.  相似文献   

17.
A Population II, 1.3M , pre-helium flash, red-giant model is investigated with respect to the influence of inclusion of relativistic gas characteristics, i.e., the equations of state, entropy, specific heats, and the adiabatic gradient. Little change is found in the observable properties of the model, but slightly large changes are found in the interior properties, the most important of which is the narrowing of the already thin radiative zone between the hydrogen burning shell and the extensive outer convective envelope from 9.6 to 8.0 density scale heights.  相似文献   

18.
The seasonal variation of the surface temperature is calculated for various idealized paleogeographic conditions with a 1.5-dimensional (1.5-D) coupled climate-sea ice model. The sensitivity of the annual and summer polar temperatures to the meridional oceanic heat transport and to the parameterizations adopted for the snow and sea ice albedos is examined in connection with the location and size of a polar global super-continent. It is shown that the high latitude summer temperatures remain below the freezing point in all numerical simulations with a polar super-continent, thus suggesting the potential role played by a large polar continental mass in the initiation of glaciations. These results are in agreement with a previous 1.5-D energy balance model (EBM) study but in conflict with two-dimensional (2-D) EBMs suggesting above-freezing high latitude summer temperatures in the case of a polar-centered super-continent. It is also found that the amount of seasonality is strongly dependent on the details of the surface albedo feedback parameterizations and could explain the various model diverging results.If a simplified temperature dependence of the silicate weathering rate controlling the long-term carbon cycle is included, the atmospheric CO2 level is significantly increased in the case of a polar-centered continent but summer temperatures still remain below freezing.  相似文献   

19.
In my contribution I discuss the relevance that hydrodynamical simulation of clusters can play to understand the ICM physics and to calibrate mass estimates from X-ray observable quantities. Using hydrodynamical simulations, which cover quite a large dynamical range and include a fairly advanced treatment of the gas physics (cooling, star formation and SN feedback), I show that scaling relations among X-ray observable quantities can be reproduced quite well. At the sametime, these simulations fail at accounting for several observational quantities, which are related to the cooling structure of the ICM: the fraction of stars, the temperature profiles and the gas entropy in central cluster regions. This calls for the need of introducing in simulations suitable physical mechanisms which should regulate the cooling structure of the ICM.  相似文献   

20.
Studies of the X-ray surface brightness profiles of clusters, coupled with theoretical considerations, suggest that the breaking of self-similarity in the hot gas results from an 'entropy floor', established by some heating process, which affects the structure of the intracluster gas strongly in lower-mass systems. By fitting analytical models for the radial variation in gas density and temperature to X-ray spectral images from the ROSAT PSPC and ASCA GIS, we have derived gas entropy profiles for 20 galaxy clusters and groups. We show that, when these profiles are scaled such that they should lie on top of one another in the case of self-similarity, the lowest-mass systems have higher-scaled entropy profiles than more massive systems. This appears to be due to a baseline entropy of depending on the extent to which shocks have been suppressed in low-mass systems. The extra entropy may be present in all systems, but is detectable only in poor clusters, where it is significant compared with the entropy generated by gravitational collapse. This excess entropy appears to be distributed uniformly with radius outside the central cooling regions.
We determine the energy associated with this entropy floor, by studying the net reduction in binding energy of the gas in low-mass systems, and find that it corresponds to a pre-heating temperature of 0.3 keV. Since the relationship between entropy and energy injection depends upon gas density, we are able to combine the excesses of 70140 keV cm2 and 0.3 keV to derive the typical electron density of the gas into which the energy was injected. The resulting value of implies that the heating must have happened prior to cluster collapse but after a redshift z 710. The energy requirement is well matched to the energy from supernova explosions responsible for the metals which now pollute the intracluster gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号