首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unusually high dibenzothiophene (DBT) concentrations are present in the oils from the Tazhong-4 Oilfield in the Tazhong Uplift, Tarim Basin. Positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in combination with conventional geochemical approaches to unravel the enrichment mechanisms. Significant amounts of S1 species with relatively low DBE values (0–8), i.e., sulfur ethers, mercaptans, thiophenes and benzothiophenes, were detected in three Lower Ordovician oils with high thermal maturity, which were suggested to be the products of thermochemical sulfate reduction (TSR) in the reservoir. The occurrence of TSR was also supported by the coexistence of thiadiamondoids and abundant H2S in the gases associated with the oils. Obviously low concentrations of the DBE = 9 S1 species (mainly equivalent to C0–C35 DBTs) compared to its homologues were observed for the three oils which were probably altered by TSR, indicating that no positive relationship existed between TSR and DBTs in this study. The sulfur compounds in the Tazhong-4 oils are quite similar to those in the majority of Lower Ordovician oils characterized by high concentrations of DBTs and dominant DBE = 9 S1 species with only small amounts of sulfur compounds with low thermal stability (DBE = 0–8), suggesting only a small proportion of sulfur compounds were derived from TSR. It is thermal maturity rather than TSR that has caused the unusually high DBT concentrations in most of the Lower Ordovician oils. We suggest that the unusually high DBT oils in the Tazhong-4 Oilfield are caused by oil mixing from the later charged Lower Ordovician (or perhaps even deeper), with high DBT abundances from the earlier less mature oils, which was supported by our oil mixing experiments and previous relevant investigations as well as abundant authigenic pyrite of hydrothermal origin. We believe that TSR should have occurred in the Tazhong Uplift based on our FT-ICR MS results. However, normal sulfur compounds were detected in most oils and no increase of δ13C2H6–δ13C4H10 was observed for the gas hydrocarbons, suggesting only a slight alteration of the oils by TSR currently and/or recently. We suspect that the abnormal sulfur compounds in the Lower Ordovician oils might also be a result of deep oil mixing, which might imply a deeper petroliferous horizon, i.e., Cambrian, with a high petroleum potential. This study is important to further deep petroleum exploration in the area.  相似文献   

2.
Aliphatic and aromatic hydrocarbons in sediments of the middle and lower Mississippi Fan and two intraslope basins in the Gulf of Mexico are derived from terrestrial organic matter and thermogenic, mature hydrocarbons. The terrestrial hydrocarbon component consists primarily of terrigenous, plant biowaxes (n-alkanes with 21 to 33 carbons). The occurrence of thermogenic hydrocarbons in immature near-surface sediments, their molecular distributions and concentration variations with depth suggest that the majority of these mature hydrocarbons have migrated from a source much deeper in the sediment column. A portion of the thermogenic hydrocarbons may be derived from recycled material and includes phenanthrene, methyl phenanthrenes, chrysene and benzopyrenes. The migrated, thermogenic hydrocarbons include normal and isoprenoid alkanes with less than 21 carbons, naphthalene, methyl naphthalenes, ethyl naphthalenes and other aromatics of similar volatility (i.e., biphenyl, acenaphthene and fluorene). Triterpane, sterane and aromatized sterane distributions suggest that the thermogenic hydrocarbons at both sites have a common source and are overprinted with immature sediment hydrocarbons. The biomarker distributions and carbon isotopic compositions of the thermogenic hydrocarbons are atypical for petroleum produced in the Gulf of Mexico. Molecular distributions of the hydrocarbons are constant, regardless of the present depth of occurrence, suggesting that they have migrated in a separate phase. The upward migration of hydrocarbons from deeper sources is a wide-spread phenomenon in the Gulf of Mexico with several documented cases of massive seepage (visible oil) as well as the more diffuse permeation of Pleistocene sediments of the Mississippi Fan and two intraslopes reported here.  相似文献   

3.
Sediment extracts and crude oils have been shown to contain methyl substituted biphenyls and dibenzothiophenes, with isomer distributions suggesting a geochemical relationship between the two compound classes. Laboratory simulation experiments have shown that carbon catalyses the reaction between surface adsorbed sulfur and biphenyl to form dibenzothiophene. Similarly, the methyl substituted biphenyls reacted to yield corresponding methyl dibenzothiophenes. We suggest that the widespread distribution of dibenzothiophene and alkylated dibenzothiophenes in sediments and crude oils is the result of a catalytic reaction of biphenyl ring systems and surface-adsorbed sulfur on the surface of carbonaceous material.  相似文献   

4.
Variations in the distributions of carbazoles and dibenzothiophenes were investigated in a set of source rocks, which differ mainly in their maturity levels during immature-mature stages. A comparison of the distributions of carbazoles and dibenzothiophenes has revealed the main results as follows- ① variations in the relative amounts of C0-, C1-, C2-dibenzothiophenes show a low correlation with that of the corresponding carbazoles, with the for- mer's being much higher than the latter's; ② variations in the relative amounts of methyldibenzothiophene isomers also display a low correlation with that of the corresponding methylcarbazoles, with 4-/4- +1-methyldibenzothio- phene ratio ranging from 0.52 to 0.96, while the corresponding carbazole ratio of 1-/1- +4-methylcarbazole only being 0.71-0.05; ③ the maturity parameter for 4,6-/4,6- +l,4-dimethyldibenzothiohene, ranging from 0.34 to 0.75, shows a remarkable linear correlation with the corresponding ratio of 1,8-/1,8- +1,4-dimethylcarbazole (R2〉0.84). The un-correlation may indicate some different geological-geochemical fates for some isomers of dibenzothiophenes and carbazoles. The high correlation may reveal a strong maturation dependence on the dimethylcarbazole distribu- tions, indicating that attention should be paid when 1,8-/1,8- +1,4-dimethylcarbazole is used as a petroleum migra- tion indicator.  相似文献   

5.
A large amount of deep oil has been discovered in the Tazhong Uplift, Tarim Basin whereas the oil source is still controversial. An integrated geochemical approach was utilized to unravel the characteristics, origin and alteration of the deep oils. This study showed that the Lower Cambrian oil from well ZS1C (
1x) was featured by small or trace amounts of biomarkers, unusually high concentration of dibenzothiophenes (DBTs), high δ34S of DBTs and high δ13C value of n-alkanes. These suggest a close genetic relationship with the Cambrian source rocks and TSR alteration. On the contrary, the Middle Cambrian oils from well ZS1 (
2a) were characterized by low δ13C of n-alkanes and relatively high δ34S of individual sulfur compounds and a general “V” shape of steranes, indicating a good genetic affinity with the Middle–Upper Ordovician source rocks. The middle Cambrian salt rock separating the oils was suggested to be one of the factors responsible for the differentiation. It was suggested that most of the deep oils in the Tazhong Uplift were mixed source based on biomarkers and carbon isotope, which contain TSR altered oil in varied degree. The percentage of the oils contributed by the Cambrian–Lower Ordovician was in the range of 19–100% (average 57%) controlled by several geological and geochemical events. Significant variations in the δ34S values for individual compounds in the oils were observed suggesting a combination of different extent of TSR and thermal maturation alterations. The unusually high DBTs concentrations in the Tazhong-4 oilfield suggested as a result of mixing with the ZS1C oil (
1x) and Lower Ordovician oils based on δ34S values of DBT. This study will enhance our understanding of both deep and shallow oil sources in the Tazhong Uplift and clarify the formation mechanisms of the unusually high DBTs oils in the region.  相似文献   

6.
We have examined, using a 12 Tesla FTICR-MS instrument, the impact of varying thermal maturity level on a suite of 9 related crude oils charged from source rocks covering most of the liquid petroleum generating portion of the oil window (0.68–1.11% vitrinite reflectance equivalent (%Re)). The sample suite was analyzed as whole oils under three different conditions, electrospray ionization (ESI) in positive and negative ion mode to analyze basic and acidic components, respectively, and atmospheric pressure photoionization (APPI) in positive ion mode, for sulfur and hydrocarbon species.Increasing oil maturity level had a strong influence on the composition of all compound classes in the oils with several major observations evident:The relative apparent abundances of all heteroatom containing compound classes detected in this study, using all ionization modes, decrease systematically with increasing oil maturation levels. Both aromatic hydrocarbons, detectable in APPI mode, and NSO compound classes (detectable in both ESI and APPI modes), as broad classes, are becoming more aromatic (shift to a greater predominance of higher DBE group members) and dealkylated (decreasing average molecular mass of individual compound groups), with increasing maturation level in the oil suite. Several putative oil maturity level dependent, molecular ratios were identified in the study. Of particular note, the relative abundance ratios of heteroatom compound classes tentatively identified as alkylated carbazoles, quinolines and benzothiophenes, compared to their benzannulated homologues are very sensitive to maturation level. Several groups of compounds show interesting and specific carbon number distributions, suggesting there may be hints of specific molecular markers in the FTICR-MS data. One observation of note is the strong increase in the relative abundance of protonated hydrocarbon components with DBE 5. We speculate this might reflect the presence of previously unreported higher molecular weight diamondoid (diamantane) species in oils with up to 40 carbon atoms or more, at advanced maturity levels. Such species may prove very valuable as molecular markers in highly mature fluids, such as those currently being produced from some shale reservoirs. Covariation of quantitative GC–MS data for alkylated hetero aromatic sulfur and nitrogen compounds in this oil suite, together with the corresponding FTICR-MS data from compounds believed to be, based on accurate mass, alkylated sulfur and alkylated nitrogen compounds, suggests that FTICR-MS already has some very rudimentary quantitation capabilities.  相似文献   

7.
塔中原油超高二苯并噻吩硫特征及其控制因素   总被引:1,自引:1,他引:0  
塔中相当部分原油具有高丰度芳香硫——二苯并噻吩(DBTs)特征,其在原油中的绝对丰度高达26 859μg/g,在芳烃中的相对丰度高达58.2%,主要分布在塔中I号构造带下奥陶统、塔中4(TZ4)和塔中1-6(TZ1-6)井区。采用综合地球化学研究途径,对该区原油的高DBTs特征及其主控因素进行初步探讨。分析表明,研究区母源岩较强地控制DBTs的丰度,纯泥岩、页岩中DBTs丰度不高,灰岩、云岩等烃源岩DBTs丰度偏高或超高;观察到在正常油窗范围内,烃源岩和相关原油随成熟度增加DBTs丰度增加,而塔中型高-过熟原油中DBTs丰度有先增加后减小的趋势,表明热成熟作用对该化合物有较强的控制作用;发现生物降解、水洗可使原油中DBTs丰度降低,但对塔中原油中DBTs影响较小;观测到塔中相当部分原油的DBTs含量与硫酸盐热化学还原作用——TSR的作用产物H2S、硫醇、长链烷基四氢噻烷有一定正相关性。对比研究认为,有多种因素控制塔中原油中DBTs丰度与分布,热成熟作用、TSR是导致塔中下奥陶统部分原油高DBTs特征的重要原因,前者可能是主要因素,特殊母源岩因素相对较少,尽管尚不能排除。TZ4井区等石炭系高DBTs原油主要来自深部地层,与下奥陶统抑或更深层高DBTS原油的混入有关。本研究对于该区深层油气勘探具有重要意义。  相似文献   

8.
A series of higher thiadiamondoids and diamondoidthiols, including thiatetramantanes, tetramantanethiols, thiapentamantanes, pentamantanethiols, thiahexamantanes, hexamantanethiols and thiacylcohexamantane, was discovered in a gas condensate produced from a very deep (6274 m, 20,585 ft) petroleum reservoir in the Bon Secour Bay in the Mobile Bay gas field, located offshore Alabama in the northern Gulf of Mexico, USA. This appears to be the first reported natural occurrence of these compounds. Several isomers of higher thiadiamondoids and diamondoidthiols were identified using full scan gas chromatography-mass spectrometry (GC-MS) coupled with GC-sulfur chemiluminescence detection (GC-SCD) and GC × GC-time of flight mass spectrometry (GC × GC-TOFMS). These higher thiadiamondoids and diamondoidthiols are associated with abundant lower homologs including thiaadamantanes, thiadiamantanes, thiatriamantanes and their thiol groups. The origin of these compounds in petroleum has not been reported. It is speculated that similar to lower thiadiamondoids and diamondoidthiols, higher ones are possibly formed from the sulfurization of their precursor diamondoids during TSR, a conclusion supported by the occurrence of open-cage higher diamondoidthiols and sulfur isotopic data of higher thiadiamondoids and diamondoidthiols isolated from the Mobile Bay condensate. The presence of higher thiadiamondoids and diamondoidthiols is indicative of the occurrence of TSR and can be used to predict sour gas production.  相似文献   

9.
Thiadiamondoids have been analyzed in a suite of Smackover-derived oils from the US Gulf Coast to determine whether their abundance and distribution reflect alteration by thermochemical sulfate reduction (TSR). The sample suite includes oils and condensates having various thermal maturities that are characterized as being unaltered by TSR, altered by TSR, or of uncertain affinities due to inconsistencies between conventional geochemical indicators of TSR. Nearly all samples contain thiadiamondoids, indicating that small amounts of these compounds can be generated from sulfur rich kerogen. TSR results in the generation of H2S, sulfides and thiophenic aromatic hydrocarbons, either by reaction with sulfate or by back reactions with the evolved H2S. Evidence shows that thiadiamondoids originate exclusively from reactions involving TSR. Once generated, their high thermal stability permits thiadiamondoids to accumulate with little further reaction and their abundance reflects not only the occurrence of TSR, but the extent of the alteration. The abundance of thiaadamantanes (1-cage structures) is particularly diagnostic of the onset of TSR. Examination of condensates from reservoirs >180 °C indicates that the thiadiamondoids can be thermally degraded. They are more thermally stable than the dibenzothiophenes, but are less stable than diamondoid hydrocarbons. Their stability appears to increase with increasing cage number, suggesting that the thiatriamantanes are the best proxy for the extent of TSR alteration in very high temperature reservoirs. Polythiadiamondoids (diamondoids with multiple sulfur substitutions) were detected in trace amounts and are also indicators of TSR.  相似文献   

10.
采用人工合成标准物质共注实验、与文献报道的保留指数对比并结合异构体的结构及性质的方法,对石油和沉积有机质中 C3-和 C4-烷基取代二苯并噻吩类含硫多环芳烃化合物进行了系统的鉴定。确定了常规色谱质谱(GC-MS)分析中,烷基取代二苯并噻吩异构体在 HP-5MS (5%-苯基甲基聚硅氧烷)色谱柱上的标准保留指数。确认了前人初步鉴定的部分三甲基二苯并噻吩异构体甲基取代基位置,初步比较了 C3-和 C4-烷基取代二苯并噻吩在不同成因石油和沉积有机质中的分布特征,初步探讨了 C3-和 C4-烷基取代二苯并噻吩潜在的地球化学意义。研究结果为今后进一步探索烷基取代二苯并噻吩系列在石油和沉积有机质中的地球化学意义奠定了可靠的基础。  相似文献   

11.
Maps of the distributions of the four major clay minerals (smectite, illite, kaolinite and chlorite) in and around the Mississippi River drainage basin and in the Northern Gulf of Mexico have been produced using newly acquired data from erodible/alluvial terrestrial sediments and marine surface sediments, as well as from previously published data. East of the Rockies, North America can be divided into four, large, clay-mineral provinces: (1) the north-western Mississippi River watershed (smectite rich), (2) the Great Lakes area and eastern Mississippi River watershed (illite and chlorite rich), (3) the south-eastern United States (kaolinite rich) and (4) the Brazos River and south-western Mississippi River watersheds (illite and kaolinite rich). The clay mineral distributions in surface sediments of the present-day Gulf of Mexico are strongly influenced by three main factors: (1) by relative fluvial contributions: the Mississippi River delivers the bulk of the clay input to the Northern Gulf of Mexico whereas the Apalachicola, Mobile, Brazos and Rio Grande rivers inputs have more local influences; (2) by differential settling of various clay mineral species, which is identified for the first time in Northern Gulf of Mexico sediments; and (3) by oceanic current transport: the Gulf of Mexico surface and subsurface circulation distributes the clay-rich sediments from river mouth sources throughout the Northern Gulf of Mexico.  相似文献   

12.
The Isthmus of Tehuantepec corresponds to the shortest distance (~200?km) between the Gulf of Mexico and the Pacific Ocean in Southern Mexico, and the main economical activity of this region is oil extraction and refining. Polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons (TPHs) were determined in a 210Pb dated sediment core collected from the continental shelf of Tehuantepec Gulf, in the vicinity of the oil refinery of Salina Cruz, Oaxaca, the main oil refining facility of the country. The sediments were mostly of coarse nature and hence PAHs and TPHs concentrations throughout the core (61?C404???g?g?1 and 29?C154?mg?kg?1, respectively) were below international quality benchmarks. Depth profiles of both PAHs and TPHs concentrations showed increasing trends since the early 1900s but the higher values were found from the 1950s to present. PAH congener ratios showed that these contaminants had both petrogenic and pyrolitic sources, although the former has been predominant since the 1970s. The Salina Cruz refinery started operations in 1978 but the oil industry activities in the Tehuantepec Isthmus go back to the beginning of the twentieth century with the operation of Minatitlan refinery in the Gulf of Mexico, and the Gulf of Tehuantepec being the main conduit for oil distribution in the Pacific coast. The observed changes in contaminant distributions described well the oil industry development in the area.  相似文献   

13.
Detailed geochemistry studies were conducted to investigate the origin of solid bitumens and hydrocarbon gases in the giant Puguang gas field. Two types of solid bitumens were recognized: low sulfur content, low reflectance (LSLR) solid bitumens in sandstone reservoirs in the Xujiahe Formation and high sulfur content, high reflectance (HSHR) solid bitumens in the carbonate reservoirs in the Lower Triassic Feixianguan and Upper Permian Changxing formations. Solid bitumens in the Upper Triassic Xujiahe Formation correlate well with extracts from the Upper Triassic to Jurassic nonmarine source rocks in isotopic composition of the saturated and aromatic fractions and biomarker distribution. Solid bitumens in the Feixianguan and Changxing formations are distinctly different from extracts from the Cambrian and Silurian rocks but display reasonable correlation with extracts from the Upper Permian source rocks both in isotopic composition of the saturated and aromatic fractions and in biomarker distribution, suggesting that the Permian especially the Upper Permian Longtan Formation was the main source of solid bitumens in the carbonate reservoirs in the Feixianguan and Changxing formations in the Puguang gas field. Chemical and isotopic composition of natural gases indicates that the majority of hydrocarbon gases originated from sapropelic organic matter and was the products of thermal cracking of accumulated oils. This study indicates that source rock dominated by sapropelic organic matter existed in the Upper Permian and had made major contribution to the giant Puguang gas field, which has important implication for petroleum exploration in marine sequences in South China.  相似文献   

14.
盐湖相烃源岩单体烃硫同位素分布特征和影响因素研究薄弱.采用气相色谱-电感耦合等离子体质谱,结合色谱/质谱、微量元素以及碳氧同位素技术,对东濮凹陷北部盐湖相烃源岩进行了分析.结果 表明,不同单体含硫化合物的δ34S值有较大差异,以δ34S=25.00‰为界,将烃源岩分成了两类,第一类:δ34S>25.00‰,主要为卫城地...  相似文献   

15.
The sulfur isotopic composition (δ34S) of petroleum is believed to be affected mainly by sulfur incorporation reactions into the sedimentary organic matter during the early diagenesis. However, secondary processes could affect the original δ34S of oil under the effect of thermal maturity or of the microbial activity of biodegraded reservoirs. In this study, the different processes that may affect the δ34S of in-reservoir oils were assessed based on the sulfur content and isotopes of a series of oil and core samples coming from various reservoirs of the Lower Cretaceous Mannville Group, Western Canada Sedimentary Basin (WCSB). Based on the molecular study, these samples appear to have reached various levels of maturity and biodegradation, ranging from 0 to 6.5 on the biodegradation scale of Peters and Moldowan. In addition, mixing of organic matter coming from different source rocks was identified based on the comparison with extensive correlation studies performed in the WCSB.Investigation of the δ34S shows a trend that seems a priori correlated to the level of biodegradation. However, a careful interpretation of molecular and sulfur isotope data leads to the conclusion that the observed δ34S variations have rather to be ascribed to contributions of oils generated by various source rocks. Alternatively, variations of δ34S could neither be related to maturity differences nor to kinetic effects during organic sulfur compounds biodegradation. In the case of some specific core samples showing a common origin based on biomarker study, δ34S variations might not be related to different sources but to secondary sulfur incorporation/exchange processes occurring within the reservoir. These processes would involve reduced sulfur species from bacterial sulfate reduction formed in situ or migrated into Mannville reservoirs. This hypothesis is supported by laboratory experiments showing sulfur exchange/incorporation under plausible conditions for shallow reservoirs.  相似文献   

16.
At the Chapopote Knoll in the Southern Gulf of Mexico, deposits of asphalt provide the substrate for a prolific cold seep ecosystem extensively colonized by chemosynthetic communities. This study investigates microbial life and associated biological processes within the asphalts and surrounding oil-impregnated sediments by analysis of intact polar membrane lipids (IPLs), petroleum hydrocarbons and stable carbon isotopic compositions (δ13C) of hydrocarbon gases. Asphalt samples are lightly to heavily biodegraded suggesting that petroleum-derived hydrocarbons serve as substrates for the chemosynthetic communities. Accordingly, detection of bacterial diester and diether phospholipids in asphalt samples containing finely dispersed gas hydrate suggests the presence of hydrocarbon-degrading bacteria. Biological methanogenesis contributes a substantial fraction to the methane captured as hydrate in the shallow asphalt deposits evidenced by significant depletion in 13C relative to background thermogenic methane. In sediments, petroleum migrating from the subsurface stimulates both methanogenesis and methanotrophy at a sulfate-methane transition zone 6-7 m below the seafloor. In this zone, microbial IPLs are dominated by archaeal phosphohydroxyarchaeols and archaeal diglycosidic diethers and tetraethers. Bacterial IPLs dominate surface sediments that are impregnated by severely biodegraded oil. In the sulfate-reduction zone, diagnostic IPLs indicate that sulfate-reducing bacteria (SRB) play an important role in petroleum degradation. A diverse mixture of phosphohydroxyarchaeols and mixed phospho- and diglycosidic archaeal tetraethers in shallow oil-impregnated sediments point to the presence of anaerobic methane-oxidizing ANME-2 and ANME-1 archaea, respectively, or methanogens. Archaeal IPLs increase in relative abundance with increasing sediment depth and decreasing sulfate concentrations, accompanied by a shift of archaeol-based to tetraether-based archaeal IPLs. The latter shift is suggested to be indicative of a community shift from ANME-2 and/or methanogenic archaea in shallower sediments to ANME-1/methanogenic archaea and possibly benthic archaea in deeper sediments.  相似文献   

17.
Oyster and sediment samples collected from six sites in Galveston Bay from 1986 to 1998 were analyzed for polynuclear aromatic hydrocarbons (PAHs). Total concentrations of parent PAHs in oysters ranged from 20 ng g−1 at one site to 9,242 ng g−1 at another and varied randomly with no clear trend over the 13 year period at any site. Concentrations of alkylated PAHs, which are indications of petroleum contamination, varied from 20 to 80,000 ng g−1 in oysters and were in higher abundance than the parent PAHs, indicating that one source of the PAH contaminants in Galveston Bay was petroleum and petroleum products. Four to six ring parent PAHs, which are indicative of combustion source , were higher than those of 2–3 ring parent PAHs, suggesting incomplete combustion generated PAHs was another source of PAHs into Galveston Bay. Concentrations of parent PAHs in sediments ranged from 57 to 670 ng g−1 and were much lower than those in oysters. Sediments from one site had a high PAH concentration of 5,800 ng g−1. Comparison of the compositions and concentrations of PAHs between sediment and oysters suggests that oysters preferentially bioaccumulate four to six ring PAHs. PAH composition in sediments suggests that the sources of PAH pollution in Galveston Bay were predominantly pyrogenic, while petroleum related PAHs were secondary contributions into the Bay.  相似文献   

18.
Volatile organic compounds with volatilities ranging between those of n-hexane and n-pentadecane were identified in open ocean and coastal marine surface water samples taken in the north central part of the Gulf of Mexico. Approximately 40 organic compounds were found. The types and concentrations of the compounds found depended upon the extent of anthropogenic and terrestrial influences. Open ocean samples consisted mostly of aromatic hydrocarbons, whereas coastal samples included alkanes, cycloalkanes, cycloalkenes, aromatic hydrocarbons, aldehydes and chlorinated hydrocarbons. Unpolluted open ocean and coastal water samples had individual concentrations rarely exceeding 5 ng/kg; some aromatic hydrocarbons approached 15 ng/kg. n-Pentadecane dominated the hydrocarbons in these samples (50–100 ng/kg). The most polluted coastal water samples had individual volatile organic concentrations as great as 150 ng/kg with total concentrations approaching 1000 ng/kg. The terpene, limonene, was found extensively in the coastal samples (up to 40 ng/kg). Photooxidization of hydrocarbons in industrial/urban atmospheres was considered as a possible source of aldehydes present in coastal water. The dynamic headspace stripping/Tenax-GC adsorption method coupled with packed column gas chromatography, and gas chromatography-mass spectrometry were used for volatile organic analysis.  相似文献   

19.
The anaerobic oxidation of methane in aquatic environments is a globally significant sink for a potent greenhouse gas. Significant gaps remain in our understanding of the anaerobic oxidation of methane because data describing the distribution and abundance of putative anaerobic methanotrophs in relation to rates and patterns of anaerobic oxidation of methane activity are rare. An integrated biogeochemical, molecular ecological and organic geochemical approach was used to elucidate interactions between the anaerobic oxidation of methane, methanogenesis, and sulfate reduction in sediments from two cold seep habitats (one brine site, the other a gas hydrate site) along the continental slope in the Northern Gulf of Mexico. The results indicate decoupling of sulfate reduction from anaerobic oxidation of methane and the contemporaneous occurrence of methane production and consumption at both sites. Phylogenetic and organic geochemical evidence indicate that microbial groups previously suggested to be involved in anaerobic oxidation of methane coupled to sulfate reduction were present and active. The distribution and isotopic composition of lipid biomarkers correlated with microbial distributions, although concrete assignment of microbial function based on biomarker profiles was complicated given the observed overlap of competing microbial processes. Contemporaneous activity of anaerobic oxidation of methane and bicarbonate-based methanogenesis, the distribution of methane-oxidizing microorganisms, and lipid biomarker data suggest that the same microorganisms may be involved in both processes.  相似文献   

20.
应光国  范璞 《沉积学报》1992,10(2):126-134
本文用GC-MS技术分析了美国南佛罗里达盆地Sunnliand原油和油源岩抽提物中的芳烃,以便探讨碳酸盐岩环境中芳烃的分布特征,并用来重建古环境.Sunnliand原油和油源岩中含较半富的萘、菲、二苯并噻吩和三芳甾烷等化合物,甲基二苯并噻吩异构体呈V型分布.芴、氧芴和硫芴三系列化合物的相对含量以及其他地球化学特征如:Pr/Ph<1、正烷烃在C22-C30范围内呈偶碳优势、无或很少有二环倍半萜、含丰富的含硫芳烃等,指示Sunnliand原油和油源岩形成于海相强还原高盐环境.Sunnliand原油和油源岩中检出的一些化合物如:D环芳构化8,14-断藿烷、长链烷基苯、长链烷基苯并噻吩以及很高的延伸藿烷(C31-C35)和C24、C26四环萜烷表明Sunniland有机质有细菌输入.成熟度参数指示Sunniland原油和油源岩属未成熟至低成熟.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号