首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The analysis of the composition of fossil palynomorphs from coals and clastic rocks of the Talyndzhan, Dublikan, Soloni, Chagdamyn, and Chemchuko formations of the Bureya coaliferous Basin revealed that the main coal-forming plants during the Talyndzhan and Dublikan time were represented by cyatheaceous ferns, plants similar to Pinaceae, and plants produced Ginkgocycadophytus pollen. In the Soloni time, the boggy plant communities were composed of dominant Cyatheaceae, subordinate Pinaceae, rare Gleichenaceae representatives, and Ginkgocycadophytus-producing plants. During the Chagdamyn time, the main coal-forming role belonged to gleicheniaceous ferns, bryophytes, and lycopsids, while the Chemchuko time was marked by the dominant contribution of Gleicheniaceae, Cyatheaceae, Ginkgocycadophytus, and plants close to Taxodiaceae to the coal formation.  相似文献   

2.
Selected Tertiary coals from the Zeya–Buryea Basin, Far Eastern Russia, were investigated for aspects of their coal type, rank, depositional environment and post-depositional history. The coals have been examined in outcrop (lithotype logging), microscopically (maceral, reflectance and fluorescence), and geochemically (proximate analysis).Two laterally extensive coal-bearing horizons occur: one of Palaeocene age and the other of early Miocene age. The Palaeocene coals were investigated in active open-cut mines at Raichikhinsk and Yerkovtsi and the early Miocene deposit in an abandoned open-cut mine at Cergeyevka.Palaeocene coals at Raichikhinsk and Yerkovtsi were indistinguishable from each other macroscopically, microscopically, and geochemically. The deposits were sufficiently coalified that brightness logging could be undertaken. Dull coals, with numerous fusainous wisps, were dominant. Four dulling-up sequences, which represent stacked peat deposits, were observed at Raichikhinsk. At Yerkovtsi, only a small section of the middle of the seam, which was mostly dull and muddy coal, was investigated. Petrographically, these coals were dominated by inertinite group macerals, which is unusual in non-Gondwanan coals and rare in the Tertiary. Rank classification was problematic with volatile matter (VM) content of vitrain (daf), macroscopic appearance, and microscopic textures suggesting subbituminous B rank, but carbon content, moisture content and specific energy indicating a lignite rank.Notwithstanding complications of rank, estimates of the maximum-range burial depths were calculated. Taking the VM (daf) content of vitrain as 48%, burial depth estimates range from 900 m for a high geothermal gradient and long heating time to a maximum of 3300 m for a low geothermal gradient and short heating time. These estimates are maxima as the coal rank may be lower than implied by the VM.The Cergeyevka deposit is a soft brown coal. Limited sampling of the upper-most portion indicated a high moisture content (75% daf) and an unusual, hydrogen-rich geochemistry. Lack of identifiable liptinites using either reflected light or fluorescence microscopy suggested a significant bituminite component. Otherwise, the coals appear to be typical for the Tertiary. An estimate of 125 m maximum burial depth was obtained using the bed-moisture content of the coal, which is around the present burial depth.Comparison of present-day thicknesses with inferred burial depths suggests that at least 500 m of section is missing between the Palaeocene coals and the early Miocene coals.Palaeoenvironmental considerations suggest that fire played a significant role in the accumulation of the peats at Raichikhinsk and Yerkovtsi. At Cergeyevka, peat accumulation ended by drowning of the mire.Two tuff beds were recognised within the seam at Raichikhinsk and one in the seam at Yerkovtsi. Correlation of the tuff beds is uncertain but they should prove useful in regional coal seam correlation and interpreting coal depositional environments. Geochemical analysis by XRF was complicated by high loss-on-ignition (LOI) values. Despite extensive alteration, an acid igneous source is implied from the presence of free quartz and TiO2/Al2O3 ratios of 0.02 to 0.05.  相似文献   

3.
The results of study of the volcanic rocks of the Khabarovsk accretionary complex, a fragment of the Jurassic accretionary prism of the Sikhote Alin orogenic belt (the southern part of the Russian Far East), are presented. The volcanic rocks are associated with the Lower Permian limestones in the mélange blocks and Triassic layered cherts. The petrography, petrochemistry, and geochemistry of the rocks are characterized and their geodynamic formation conditions are deduced. The volcanic rocks include oceanic plume basalts of two types: (i) OIB-like intraplate basalts formed on the oceanic islands and guyots in the Permian and Triassic and (ii) T(transitional)-MORBs (the least enriched basalts of the E-MORB type) formed on the midoceanic ridge in the Permian. In addition to basalts, the mélange hosts suprasubduction dacitic tuff lavas.  相似文献   

4.
One-dimensional basin modeling of the Kyndal Graben, Bureya Basin, is conducted in three deep wells. The basin modeling technique and its basic algorithms are described. The geological and geophysical characteristics of the studied object are reported in brief, emphasizing the modeling parameters. The general and tectonic history of the subsidence, sedimentation velocities, geodynamic parameters of the extension, and thermal history of the formation and evolution of the Kyndal Graben, Bureya Basin, are calculated.  相似文献   

5.
The catagenesis of the Jurassic-Cretaceous deposits and coals has been comprehensively examined based on a complex of features including the reflectance (R o and R a), the qualitative properties, and the petrochemical characteristics (the density and saturation porosity) of the host rocks. The catagenesis of the Jurassic-Cretaceous deposits was studied based on the structural zones in which the coal-bearing deposits occur at different depths ranging from ~ 10 to 300 m, down to 700m, and from 5 to 3460 m in the Western, Central, and Kyndal zones, accordingly. The following regularities of the changing of the coal’s catagenesis have been established: from group 3B to 1G, 2G, and GFL; from gradation PC3 to MC1-MC2; and from MC2 to MC3-MC4 with the changing of the composition of the coals from long-flame coal to gas and gasfat-lean coal. In the intrusive bodies distribution areas breaking through the coal-bearing deposits, the coal seams are metamorphosed to the marks of lean caking and lean coals. The data obtained have made possible the assessment of the hydrocarbon generation in the Jurassic-Lower Cretaceous deposits of the basin.  相似文献   

6.
Intracontinental subduction of the South China Block below the North China Block in the Late Triassic resulted in formation of the transpressional Sichuan foreland basin on the South China Block. The Upper Triassic Xujiahe Formation was deposited in this basin and consists of an eastward-tapering wedge of predominantly continental siliciclastic sedimentary rocks that are up to 3.5 km thick in the western foredeep depocenter and thin onto the forebulge and into backbulge depocenters.Five facies associations (A–E) make up the Xujiahe Formation and these are interpreted, respectively, as alluvial fan, transverse and longitudinal braided river, meandering river, overbank or shallow lacustrine, and deltaic deposits. This study establishes a sequence stratigraphic framework for the Xujiahe Formation which is subdivided into four sequences (SQ1, 2, 3 and 4). Sequence boundaries are recognized on the basis of facies-tract dislocations and associated fluvial rejuvenation and incision, and systems tracts are identified based on their constituent facies associations and changes in architectural style and sediment body geometries. Typical sequences consist of early to late transgressive systems tract deposits related to a progressive increase in accommodation and represented by Facies Associations A, B and C that grade upwards into Facies Association D. Regionally extensive and vertically stacked coal seams define maximum accommodation and are overlain by early highstand systems tract deposits represented by Facies Associations D, E and C. Late highstand systems tract deposits are rare because of erosion below sequence boundaries. Sequence development in the Xujiahe Formation is attributed to active and quiescent phases of thrust-loading events and is closely related to the tectonic evolution of the basin. The Sichuan Basin experienced three periods of thrust loading and lithospheric flexure (SQ1, lower SQ2 and SQ3), two periods of stress relaxation and basin widening (upper SQ 2 and SQ3) and one phase of isostatic rebound (SQ4). Paleogeographic reconstruction of the Sichuan Basin in the Late Triassic indicates that the Longmen Mountains to the west, consisting of metamorphic, sedimentary and pre-Neoproterozoic basement granitoid rocks, was the major source of sediment to the foredeep depocenter. Subordinate sediment sources were the Xuefeng Mountains to the east to backbulge depocenters, and the Micang Mountains to the northwest during the late history of the basin. This study has demonstrated the viability of sequence stratigraphic analysis in continental successions in a foreland basin, and the influence of thrust loading on sequence development.  相似文献   

7.
The Bureya orogen is a special object among the geodynamic factors determining the high seismicity of the Lower Amur region. Its location and deep structure are studied on the basis of comprehensive geophysical and tectonic data. This orogen is a low-density lithospheric domain expressed by an intensive negative gravity anomaly and Moho sunken down to 40 km depth. Within the limits of this lithospheric structure, contemporary uplifting takes place to form a meridional dome peaking at more than 2000 m altitude. The position of the orogen in the regional structure gives us grounds to think that the Bureya orogen formed in the Paleogene, at the finishing stage of tectonic block movement along the Pacific margin represented by the NE-trending strike-slip faults of the Tang Lu Fault Zone. Compression was concentrated at the triple junction between the Central Asian, Mongolian–Okhotian, and Sikhote Alin tectonic belts. The meridional orientation of the Bureya orogen is associated with the parallel elongated Cenozoic depressions in the region. The united morphotectonic system may have formed resulting from lithospheric folding under horizontal shortening in the Paleocene–Eocene. The wavelength of the Lower Amurian fold system is 250 km, which is consistent with the theoretical estimates and examples of lithospheric folds in other regions. The contemporary activation of the Bureya orogen began in the Miocene, under the effect of the Amurian Plate front moving in the northeastern direction. As a result of shortening, the meridional cluster of weak (M ≥ 2.0) earthquakes formed along the western boundary of the orogenic dome. The most intensive deformations caused another type of seismicity associated with the activation-related uplift of the mentioned orogen. As a result, the so-called Bureya seismic zone formed above the apex of the dome, and it is here that the strongest regional earthquakes (M ≥ 4.5) occur.  相似文献   

8.
Palynological complexes from the coaliferous Talyndzhan and Dublikan formations of the Bureya sedimentary basin are analyzed. The palynological assemblage from the upper part of the Talyndzhan Formation is characterized by dominant gymnosperms largely close to Pinaceae and Ginkgocycadophytus. The content of ferns is insignificant against the background of their relatively high taxonomic diversity. The assemblage is marked by the last occurrence of Staplinisporites pocockii, Camptotriletes cerebriformis, C. nitida, and Cingulatisporites sanguinolentus spores typical of the Late Jurassic palynofloras. The palynological assemblage from the Dublikan Formation is dominated by Pteridophyts representing mainly by Cyathidites and Duplexisporites. In addition to the conifer, the role of Classopollis increased among the gymnosperms in this assemblage. It also includes the first-appearing Stereisporites bujargiensis, Neoraistrickia rotundiformis, Contignisporites dorsostriatus, Duplexisporites pseudotuberculatus, D. rotundatus, Appendicisporites tricostatus, and Concavissimisporites asper. These sporomorphs are characteristic of the Berriasian palynofloras. Thus, the Jurassic-Cretaceous boundary is most likely located between the Talyndzhan and Dublikan formations.  相似文献   

9.
The Dakota Formation in southern Utah (Kaiparowits Plateau region) is a succession of fluvial through shallow-marine facies formed during the initial phase of filling of the Cretaceous foreland basin of the Sevier orogen. It records a number of relative sea-level fluctuations of different frequency and magnitude, controlled by both tectonic and eustatic processes during the Early to Late Cenomanian. The Dakota Formation is divided into eight units separated by regionally correlatable surfaces that formed in response to relative sea-level fluctuations. Units 1–6B represent, from bottom to top, valley-filling deposits of braided streams (unit 1), alluvial plain with anastomosed to meandering streams (2), tide-influenced fluvial and tide-dominated estuarine systems (3A and 3B), offshore to wave-dominated shoreface (4, 5 and 6A) and an estuarine incised valley fill (6A and 6B). The onset of flexural subsidence and deposition in the foredeep was preceded by eastward tilting of the basement strata, probably caused by forebulge migration during the Early Cretaceous, which resulted in the incision of a westward-deepening predepositional relief. The basal fluvial deposits of the Dakota Formation, filling the relief, reflect the onset of flexural subsidence and, possibly, a eustatic sea-level rise. Throughout the deposition of the Dakota Formation, flexure controlled the long-term, regional subsidence rate. Locally, reactivation of basement faults caused additional subsidence or minor uplift. Owing to a generally low subsidence rate, differential compaction locally influenced the degree of preservation of the Dakota units. Eustasy is believed to have been the main control on the high-frequency relative sea-level changes recorded in the Dakota. All surfaces that separate individual Dakota units are flooding surfaces, most of which are superimposed on sequence boundaries. Therefore, with the exception of unit 6B and, possibly, 3B, most of the Dakota units are interpreted as depositional sequences. Fluvial strata of units 1 and 2 are interpreted as low-frequency sequences; the coal zones at the base and within unit 2 may represent a response to higher frequency flooding events. Units 3A to 6B are interpreted as having formed in response to high-frequency relative sea-level fluctuations. Shallow-marine units 4, 5 and 6A, interpreted as parasequences by earlier authors, can be divided into facies-based systems tracts and show signs of subaerial exposure at their boundaries, which allows interpretation as high-frequency sequences. In general, the Dakota units are good examples of high-frequency sequences that can be misinterpreted as parasequences, especially in distal facies or in places where signs of subaerial erosion are missing or have been removed by subsequent transgressive erosion. Both low- and high-frequency sequences represented by the Dakota units are stacked in an overall retrogradational pattern, which reflects a long-term relative sea-level rise, punctuated by brief periods of relative sea-level fall. There is a relatively major fall near the end of the M. mosbyense Zone, whereas the base of the Tropic shale is characterized by a major flooding event at the base of the S. gracile Zone. A similar record of Cenomanian relative sea-level change in other regions, e.g. Europe or northern Africa, suggests that both high- and low-frequency relative sea-level changes were governed by eustasy. The high-frequency relative sea-level fluctuations of ≈100 kyr periodicity and ≈10–20 m magnitude, similar to those recorded in other Cenomanian successions in North America and Central Europe, were probably related to Milankovitch-band, climate-driven eustasy. Either minor glacioeustatic fluctuations, superimposed on the overall greenhouse climate of the mid-Cretaceous, or mechanisms, such as the fluctuations in groundwater volume on continents or thermal expansion and contraction of sea water, could have controlled the high-frequency eustatic fluctuations.  相似文献   

10.
Using the standard methods of paleogeographic analysis, small-scale paleogeographic sketch maps of the Verkhnyaya Bureya and Gudzhik depressions of the Bureya Foredeep are compiled for the Pliensbachian, Bajocian-Bathonian, Callovian, and Tithonian ages of the Jurassic. Marine sedimentation settings that existed during the Late Triassic and the major part of the Jurassic are characterized.  相似文献   

11.
The geochemical features of typical representatives of ferromanganese deposits are studied in the eastern Bureya and Khanka massifs (Russian Far East). Based on the major-, trace-, and rare-earth element distribution, the hydrothermal–sedimentary (with hydrogenic component) nature of their mineralization is established and the geodynamic setting and depth of ore formation are estimated. The differences in the depth and redox conditions of ore formation resulted in the metallogenic zonation of the Khingan block (Bureya Massif), which is expressed in a westward change in ore composition from the magnetite ores of the Kosten’ga–Kimkan zone to the hematite–magnetite and iron–manganese ores of the South Khingan zone. The conclusions about the participation of hydrothermal sources in the formation of ore mineralization of the studied deposits and the specifics of their localization require revision of the strategy of exploration and evaluation of ferromanganese ores in the southern Far East.  相似文献   

12.
塔里木盆地柯坪地区奥陶系发育浅水碳酸盐岩台地、深水陆棚-盆地两大类沉积体系和局限台地、开阔台地、陆棚和盆地等4种相类型。通过露头剖面的详细观察,在该区识别出局部暴露不整合和淹没不整合两类层序界面,以此为依据将该区奥陶系划分为9个三级层序。通过对层序格架内碳同位素和元素地球化学组成分析表明,不同层序界面及层序内不同体系域的δ13C和元素地球化学组成有明显的差异,并呈现出有规律性变化,反映出该区奥陶纪发生了多次海平面升降变化。研究表明同位素和地球化学特征可以作为层序地层学研究的辅助标志。  相似文献   

13.
运用层序地层学原理,对鄂尔多斯盆地东缘上三叠统延长组长7—长4+5曲流河三角洲露头进行深入的研究,划分出低位体系域、湖侵体系域和高位体系域,其内部砂体骨架是由席状化水下分流河道、曲流型分流河道、辫状型分流河道沉积构成。阐述了鄂尔多斯盆地东缘上三叠统延长组层序格架和砂体结构特征,建立了鄂尔多斯盆地层序地层格架内砂体分布模式,构建了层序地层格架内砂体结构与相对湖平面响应模式图。研究表明随湖平面变化层序格架内砂体结构发生规律性变化,低位体系域早期侵蚀,晚期充填呈复合状砂体;湖侵体系域砂体呈孤立状;高位体系域早期砂体发育不全,晚期呈席状砂体。  相似文献   

14.
为了揭示鄂尔多斯盆地东缘层序地层与沉积相特征,以层序地层学和沉积学理论为指导,对鄂尔多斯盆地东缘保德扒楼沟剖面及周缘上古生界的层序与体系域界面类型、层序结构、沉积相类型及沉积演化进行研究。依据区域性不整合面、下切谷冲刷面、海侵方向转换面和区域性海退面等层序界面将研究区上古生界划分为7个三级层序,分别对应于本溪组、太原组2段、太原组1段、山西组、下石盒子组、上石盒子组和石千峰组。保德扒楼沟及周缘上古生界剖面发育16种岩石类型和8种岩石组合。区内上古生界发育障壁海岸相、碳酸盐岩台地相、辫状河相和曲流河相。SQ1-SQ3中低位体系域发育风化壳和潮道亚相,海侵体系域发育潮坪亚相和潟湖亚相,高位体系域发育碳酸盐岩台地相、潟湖亚相和潮坪亚相;SQ4-SQ7中低位体系域发育辫状河河床亚相,海侵体系域主要发育曲流河泛滥平原亚相,高位体系域主要发育多期曲流河河床亚相—堤岸亚相—泛滥平原亚相的演化序列。区内上古生界经历了由障壁海岸相和碳酸盐岩台地相向河流相的演化过程,沉积演化主要受物源供给、海平面变化和构造活动的控制。  相似文献   

15.
This paper establishes a mechanical model of the stress distribution in front of the driving face during coal roadway excavation. Theoretical research shows that the stress state in the plastic zone of the driving face is consistent with the limit equilibrium equation, and the elastic zone is in accordance with the equilibrium equation based on elasticity mechanics. Based on this improved mechanical state solution model, different coal material constitutive hypotheses are used for the analysis. The width of the plastic zone calculated under the brittle-perfectly elastic model can reach 2–5 times the height of the roadway, and the stress concentration coefficient can reach two or more times. 3DEC numerical simulation software was used to simulate the stress distribution of the heading face. The results of the simulation are similar to those of the theoretical analysis. Compared with the elastic-perfectly plastic model, the calculated results of the brittle-perfectly elastic model are more consistent with the numerical simulation results. The heading face coal during roadway excavation shows obvious damage, and the strength characteristics of the coal decrease.  相似文献   

16.
The early Jurassic-Early Cretaceous tectonic environments were reconstructed for the first time on the basis of the study of sandstones from the Soloni-Urgal interfluve (Bureya sedimentary basin, Far East). The mineralogical-petrographic and lithochemical studies revealed that the sandstones are mostly quartz-feldspathic and feldspathic graywackes of acid composition with less common litites, graywacke arkoses, and arkoses. It was shown that the Lower-Middle Jurassic sediments were formed in active continental margin and continental volcanic arc settings, while the Upper Jurassic-Lower Cretaceous sediments were accumulated in a passive continental margin setting. Orogenic events in the Toarcian-Aalenian, Late Bajocian, and Late Oxfordian-Kimmeridgian led to sedimentation gaps.  相似文献   

17.
Abstract. Lermontovskoe tungsten skarn deposit in central Sikhote-Alin is concluded to have formed at 132 Ma in the Early Cretaceous, based on K-Ar age data for muscovite concentrates from high-grade scheelite ore and greisenized granite. Late Paleozoic limestone in Jurassic - early Early Cretaceous accretionary complexes was replaced during hydrothermal activity related to the Lermontovskoe granodiorite stock of reduced type. The ores, characterized by Mo-poor scheelite and Fe3+- poor mineral assemblages, indicate that this deposit is a reduced-type tungsten skarn (Sato, 1980, 1982), in accordance with the reduced nature of the granodiorite stock.
The Lermontovskoe deposit, the oldest mineralization so far known in the Sikhote-Alin orogen, formed in the initial stage of Early Cretaceous felsic magmatism. The magmatism began shortly after the accretionary tectonics ceased, suggesting an abrupt change of subduction system. Style of the Early Cretaceous magmatism and mineralization is significantly different between central Sikhote-Alin and Northeast Japan; reduced-type and oxidized-type, respectively. The different styles may reflect different tectonic environments; compressional and extensional, respectively. These two areas, which were closer together before the opening of the Japan Sea in the Miocene, may have been juxtaposed under a transpressional tectonic regime after the magmatism.  相似文献   

18.
Ferromanganese nodules (pisolites) form accumulations in basal layers of Pliocene-Quaternary clayey sections of Far East Russia and Vietnam. They are composed of minerals that are in common for both these regions (authigenic vernadite, feroxyhyte, goethite, halloysite, and terrigenous quartz) and minerals that are characteristic of either the northern (authigenic hollandite, lithiophorite, and bernessite) or southern (authigenic alumophorite, lepidocrocite, ferrihydrite, gibbsite, and terrigenous ilmenite) regions. Pisolites are considered to be microbial colonies with Mn and Fe oxides frequently forming biomorphs. The growth of the colonies was accompanied by dying off and mineralization of microorganisms successively from the central toward the peripheral parts of the nodules. The formation of metalliferous pisolites was linked to the oxidizing geochemical barrier developed at the interface between compact sedimentary clays and the underlying porous readily permeable weathered products of basalts.  相似文献   

19.
20.
The Kaskapau and Cardium Formations span Late Cenomanian to Early Coniacian time and were deposited on a low‐gradient foredeep ramp. The studied portion of the Kaskapau Formation spans ca 3·5 Myr and forms a mudstone‐dominated wedge thinning from 700 to <50 m from SW to NE over ca 300 km. In contrast, the Cardium Formation spans about 2·1 Myr, is about 100 m thick, sandstone‐rich and broadly tabular. The Kaskapau and Cardium Formations are divided, respectively, into 28 and nine allomembers, each bounded by marine flooding surfaces. Kaskapau allomembers 1 to 7 show about 200 km of offlap from the forebulge, accompanied by progradation of thin sandstones from the eroded forebulge crest. In contrast, Kaskapau allomembers 8 to 28 and Cardium allomembers C1 to C9 show overall onlap onto the forebulge of about 350 km, and contain no forebulge‐derived sandstones. This broad pattern is interpreted as recording a latest Cenomanian pulse of tectonic loading which led to shoreline back‐step in the proximal foredeep and coeval uplift of the forebulge, leading to erosion. The advance of the sediment wedge after Kaskapau allomember 7 is attributed primarily to the isostatic effect of a distributed sediment load; the advance of the orogenic wedge had a subordinate effect on subsidence of the forebulge. For Kaskapau allomembers 1 to 6, isopachs trend north to south, suggesting a load directly to the west; allomembers 7 to 28 show an abrupt rotation of isopachs to NW–SE, suggesting that the load shifted several hundred kilometres to the south. This re‐orientation might be related to a change from an approximately orthogonal to a dextral transpressive stress regime. Within the longer‐term offlap–onlap cycle recorded by the Kaskapau and Cardium Formations, individual allomembers are grouped into packages reflecting higher‐frequency onlap–offlap cycles, each spanning ca 0·5 to 0·7 Myr. Offlap from the forebulge tends to be accompanied by more pronounced transgression in the foredeep, whereas onlap onto the forebulge is accompanied by progradation of tongues of shoreface sandstone. This relationship suggests that changes in deformation rate in the orogenic wedge modulated proximal subsidence rate, enhancing or suppressing shoreline progradation, and also causing subtle uplift or subsidence of the forebulge region. Wedge‐shaped allomembers in the Kaskapau Formation contain shoreface sandstone and conglomerate that prograded, respectively, <40 and <25 km from the preserved basin margin; progradation of coarse clastics was limited by rapid flexural subsidence. Tabular allomembers of the Cardium Formation imply a low flexural subsidence rate and contain sandy and conglomeratic shoreface deposits that prograded up to ca 180 km from the preserved basin margin. This relationship suggests that low rates of flexural subsidence promoted steeper alluvial gradients, more vigorous gravel transport and more extensive shoreface progradation. Overall, observed stratal geometry and facies distribution is explained readily in terms of current elastic flexural models. Most shoreface sandstones in the proximal foredeep show evidence of forced regression. Eustasy provides the most plausible explanation for relative sea‐level rise–fall cycles on the 125 kyr allomember timescale. Geometric relationships suggest eustatic oscillations of about 10 m. Forced regressive shoreface development was suppressed during Kaskapau allomembers 1 to 10 when the rate of flexural subsidence was at its highest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号