首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
塔里木盆地寒武-奥陶纪海平面升降变化规律研究   总被引:5,自引:0,他引:5  
利用元素地球化学特征和地震几何构型特征,对塔里木盆地寒武-奥陶纪时期海平面升降变化规律进行了研究,建立了寒武-奥陶纪相对海平面变化曲线。研究发现,塔里木盆地寒武-奥陶纪可划分出3个一级旋回,8个二级旋回,17个三级旋回和多期高频震荡旋回。其中,寒武纪经历了3期二级旋回,早中奥陶世经历了2期旋回。相对于寒武纪,早奥陶世海平面升幅较大。晚奥陶世经历了3期二级旋回:第一期处于海平面低位期,幅度较小;后二期快速上升,直达最高水位状态。海平面相对升降变化控制着盆地的沉积充填和层序的形成演化,其旋回性与盆地沉积作用的旋回性相一致,并可通过沉积相的演变表现出来。  相似文献   

2.
《Sedimentary Geology》2005,173(1-4):187-232
This study describes the coeval development of the depositional environments in three areas across the Mut Basin (Southern Turkey) throughout the Late Burdigalian (early Miocene). Antecedent topography and rapid high-amplitude sea-level change are the main controlling factors on stratigraphic architecture and sediment type. Stratigraphic evidence is observed for two high-amplitude (100–150 m) sea-level cycles in the Late Burdigalian to Langhian. These cycles are interpreted to be eustatic in nature and driven by the long-term 400-Ka orbital eccentricity-cycle-changing ice volumes in the nascent Antarctic icecap. We propose that the Mut Basin is an exemplary case study area for guiding lithostratigraphic predictions in early Miocene shallow-marine carbonate and mixed environments elsewhere in the world.The Late Burdigalian in the Mut Basin was a time of relative tectonic quiescence, during which a complex relict basin topography was flooded by a rapid marine transgression. This area was chosen for study because it presents extraordinary large-scale 3D outcrops and a large diversity of depositional environments throughout the basin. Three study transects were constructed by combining stratal geometries and facies observations into a high-resolution sequence stratigraphic framework. 3346 m of section were logged, 400 thin sections were studied, and 145 biostratigraphic samples were analysed for nannoplankton dates (Bassant, P., 1999. The high-resolution stratigraphic architecture and evolution of the Burdigalian carbonate-siliciclastic sedimentary systems of the Mut Basin, Turkey. PhD Thesis. GeoFocus 3. University of Fribourg, 277 p.).The first transect (Alahan) is on the northwestern basin margin. Here, the siliciclastic input is high due to the presence of a river system. The siliciclastic depocentre migrates landwards during transgressions, creating an ecological window allowing carbonates to develop in the distal part of the delta. Carbonate production shuts down during the regression when siliciclastics return. The second transect (Pirinç) is also situated on the northern basin margin 12 km to the east of the Alahan section. It shows a complete platform-to-basin transition. An isolated carbonate platform complex develops during the initial flooding, which is drowned during a time of rapid sea-level rise and environmental stress, associated with prograding siliciclastics. The shelf margin then retrogrades forming large-scale clinoform geometries and progrades before a major sea-level fall provokes slumping collapse, followed by rebuilding of the shelf margin as sea level rises again. The third transect (Silifke) has a steep asymmetric Pre-Miocene valley-topography, forming a narrow strait, linking the Mut Basin to the Mediterranean. Strong tidal currents are generated in this strait area. Siliciclastic input is low and localised. Eighty metres of cross-bedded bioclastic sands are deposited in a tidal regime at the base. Subsequently, carbonate platforms backstep against the shallow-dipping northern flank, while platforms only develop on the steep southern flank when a firm wide shallow-marine substrate is provided by a bench on the footwall block. The energy of the environment decreases with increased flooding of the strait area.Third-order sequences and higher-order parasequences have been identified in each transect and correlated between transects. Correlations were made using biostratigraphic data and high-resolution sequence stratigraphy in combination with the construction of the relative sea-level curve for each site. The third-order highstands are stacked in a proximal position and separated by exposure surfaces, while the lowstands, deposited in a distal setting, are separated by deep-marine (offshore or subphotic) deposits. The parasequences produce dominantly aggradational and progradational geometries with transgressive ravinement surfaces and exposure surfaces developing at times. Reconstruction of the depositional profile shows that the third-order sequences are driven by relative sea-level oscillations of 100–150 m, and that these may be attributed to 400-Ka orbital eccentricity cycles. The parasequences are driven by eustatic 20–30 m sea-level oscillations, which may be attributed to the 100-Ka orbital eccentricity cycles.The isolated carbonate build-ups in the Pirinç and Alahan transects develop at the same time as bioclastic tidal deposits in the Silifke area during the transgression of sequence 1. This is caused by a difference in hydrodynamic regime: a direct result of basin morphology funneling tidal currents in the Silifke area. We also demonstrate how during the highstands a siliciclastic delta system progrades in the Alahan area, while only 12 km to the east, a fringing carbonate platform develops, showing how siliciclastic input can have a very localised effect on carbonate environments.The exceptional quality of the outcrops with its variety of environments and its location at the Tethyan margin make this site a good candidate for a reference model for Burdigalian reef and platform architectures.  相似文献   

3.
Global sea-level has changed in a cyclic manner through geologic history, but the regularities of these changes are yet to be fully understood. Despite certain (and sometimes significant) differences, ...  相似文献   

4.
准噶尔盆地中新生代湖水位升降曲线的建立与剖析   总被引:1,自引:0,他引:1  
中新生代的准噶尔盆地为典型的内陆湖盆,四周为山系包围,是分析内陆湖泊水位升降的理想场所。本文参照全球海平面变化的计算方法,通过内陆湖盆沉积体系及其地貌特色的研究,建立准噶尔盆地中新生代湖水位升降曲线。中新生代的准噶尔盆地为一封闭型内陆盆地,湖水位升降主要受气候和构造因素的控制。笔者利用区域的气候和构造背景对湖水位的升降作了剖析,初步建立两种背景下的湖水位升降曲线。  相似文献   

5.
This paper presents examples of various large tidal sandbodies from the Eocene Roda Sandstone in the southern Pyrenees and the Late Pleistocene and Early Holocene in the East China Sea. An attempt is made to summarize the geometric variability of these large tidal sandbodies in relation to the sediment supply and tidal discharge of the depositional system. Transverse sand bars were developed in low-sinuosity, high-gradient channels with high influxes of coarse sediments and water from fluvial systems. Tidal point bars were formed in meandering low-gradient estuarine channel where tidal influence was stronger and sediment was finer than those of the transverse sand bar. A tidal delta complex was built up at the estuary mouth with an abundant sediment supply and an increased tidal discharge. Tidal sand ridges were formed when relict fluvial or deltaic sands were eroded and reworked by strong tidal currents during subsequent sea-level rise.

Since the sediment supply and the tidal discharge of the depositional system were closely related to the eustatic sea-level change and basin subsidence, i.e. the relative sea-level change, special attention will be given to the relationship between geometric variability of tidal sandbodies and the sequence stratigraphic framework in which various sandbodies occurred. Three orders of eustatic sea-level fluctuations can be recognized. The third-order eustatic sea-level cycle, together with basin subsidence, controlled the development of systems tracts and the occurrence of different tidal sandbodies, such as estuary and tidal flat facies during the late stage of a LSW systems tract (type 1 sequence) or a SM systems tract (type 2 sequence); tidal point bar facies, tidal delta facies or tidal sand-ridge facies during a TR systems tract; estuary facies during an early HS systems tract; and fluvial sand bar facies in a late HS systems tract and the early stage of a SM or LSW systems tract. There are also the fourth-order and fifth-order eustatic fluctuations, which are superimposed on the third-order eustatic changes and have important control on the build-up, abandonment and preservation of composite and single tidal sandbodies, respectively.

Since the deposition of tidal sandbodies is very sensitive to eustatic sea-level changes, recognition of various tidal sandbodies is important in sequence stratigraphy analyses of sedimentary basins and in the facies prediction of clastic sediments in basin modelling.  相似文献   


6.
One-dimensional basin modeling of the Kyndal Graben, Bureya Basin, is conducted in three deep wells. The basin modeling technique and its basic algorithms are described. The geological and geophysical characteristics of the studied object are reported in brief, emphasizing the modeling parameters. The general and tectonic history of the subsidence, sedimentation velocities, geodynamic parameters of the extension, and thermal history of the formation and evolution of the Kyndal Graben, Bureya Basin, are calculated.  相似文献   

7.
The Bajo Segura Basin is located in the eastern Betic Cordillera, at present connected with the Mediterranean Sea to the east. It has a complete stratigraphic record from the Tortonian to the Quaternary, which has been separated into six units bounded by unconformities. This paper is concerned with the northern edge of the basin, controlled by a major strike–slip fault (the Crevillente Fault Zone, CFZ), where the most complete stratigraphic successions are found. The results obtained (summarised below) are based on an integrated analysis of the sedimentary evolution and the subsidence-uplift movements. Unit I (Early Tortonian) is transgressive on the basin basement and is represented by ramp-type platform facies, organised in a shallowing-upward sequence related to tectonic uplift during the first stages of movement along the CFZ. Unit II (lower Late Tortonian) consists of shallow platform facies at bottom and pelagic basin facies at top, forming a deepening-upward sequence associated with tectonic subsidence due to sinistral motion along the CFZ. Unit III (middle Late Tortonian) is made up of exotic turbiditic facies related to a stage of uplift and erosion of the southern edge of the basin. Unit IV (upper Late Tortonian) consists of pelagic basin facies at bottom and shallow platform facies at top, defining a shallowing-upward sequence related to tectonic uplift during continued sinistral movement on the basin-bounding fault. Units V (latest Tortonian–Messinian) and VI (Pliocene–Pleistocene p.p.) consist of shallowing-upward sequences deposited during folding and uplift of the northern margin of the basin. No definitive evidence of any major eustatic sea-level fall, associated with the ‘Messinian salinity crisis’, has been recorded in the stratigraphic sections studied.  相似文献   

8.
The Kashafrud Formation was deposited in the extensional Kopeh-Dagh Basin during the Late Bajocian to Bathonian (Middle Jurassic) and is potentially the most important siliciclastic unit from NE Iran for petroleum geology. This extensional setting allowed the accumulation of about 1,700 m of siliciclastic sediments during a limited period of time (Upper Bajocian–Bathonian). Here, we present a detailed facies analysis combined with magnetic susceptibility (MS) results focusing on the exceptional record of the Pol-e-Gazi section in the southeastern part of the basin. MS is classically interpreted as related to the amount of detrital input. The amount of these detrital inputs and then the MS being classically influenced by sea-level changes, climate changes and tectonic activity. Facies analysis reveals that the studied rocks were deposited in shallow marine, slope to pro-delta settings. A major transgressive–regressive cycle is recorded in this formation, including fluvial-dominated delta to turbiditic pro-delta settings (transgressive phase), followed by siliciclastic to mixed siliciclastic and carbonate shoreface rocks (regressive phase). During the transgressive phase, hyperpycnal currents were feeding the basin. These hyperpycnal currents are interpreted as related to important tectonic variations, in relation to significant uplift of the hinterland during opening of the basin. This tectonic activity was responsible for stronger erosion, providing a higher amount of siliciclastic input into the basin, leading to a high MS signal. During the regressive phase, the tectonic activity strongly decreased. Furthermore, the depositional setting changed to a wave- to tide-dominated, mixed carbonate–siliciclastic setting. Because of the absence of strong tectonic variations, bulk MS was controlled by other factors such as sea-level and climatic changes. Fluctuations in carbonate production, possibly related to sea-level variations, influenced the MS of the siliciclastic/carbonate cycles. Carbonate intervals are characterized by a strong decrease of MS values indicates a gradual reduction of detrital influx. Therefore, the intensity of tectonic movement is thought to be the dominant factor in controlling sediment supply, changes in accommodation space and modes of deposition throughout the Middle Jurassic sedimentary succession in the Pol-e-Gazi section and possibly in the Kopeh-Dagh Basin in general.  相似文献   

9.
笔者运用现代沉积学和层序地层学理论,对陕西镇安西口地区二叠系-三叠系的主要不整合面和地质体的岩相岩石组合特征及空间展布规律进行调查,在此基础上并依据前人研究资料,将区内二叠系-三叠系划分为4个层序单位,进而对单位内的体系域系统进行了划分和研究,建立了该地区地层格架与地层模型。通过研究认为,4次大幅度海平面变化及区域构造沉降作用是形成4个Ⅱ型不整合面的根本原因。该地区自晚二叠世,在不同阶段的盆地演化过程中,皆继承了西浅东深的古地理格局,此项研究成果为在构造活动地带相对稳定地区进行地层格架与地层模型提供了范例。  相似文献   

10.
Robin  Guillocheau  & Gaulier 《地学学报》1998,10(6):323-329
The quantification of tectonic and eustatic factors in the control of the sedimentary record is one of the main questions in sedimentary basin dynamics. We propose two methods allowing: (i) 3D measurement of accommodation at basin scale and (ii) to decipher between local (10–100 km wavelength) and basin-scale accommodation. The local signal is necessarily of tectonic origin, the basin-scale signal is of both eustatic and large tectonic origin. The measurement of accommodation requires (a) high-resolution time-lines calibrated in ages (sequence stratigraphy on well-logs and biostratigraphy on cores), (b) decompacted lithologies (well-logs), and (c) palaeodepth/palaeoaltitude (sedimentology and well-logs). Application of these methods to the intracratonic Paris basin during the Lias (early Jurassic) suggests a tectonic origin for the 1–5 Myr stratigraphic cycles, with basin-scale flexure during transgressive half-cycles, and 10–100 km uplift of basement units, during regressive half-cycles.  相似文献   

11.
The Maggol Limestone of Ordovician age was deposited in the Taebaeksan (Taebacksan) Basin which occupies the northeastern flank of the Okcheon (Ogcheon) Belt of South Korea. Carbonate facies analysis in conjunction with conodont biostratigraphy suggests that an overall regression toward the top of the Maggol Limestone probably culminated in subaerial exposure of platform carbonates in the early Middle Ordovician (earliest Darriwilian). Elsewhere this subaerial exposure event is manifested as a major paleokarst unconformity at the Sauk-Tippecanoe sequence boundary beneath the Middle Ordovician succession and its equivalents, most in notably North America and North China. Due to its global extent, this paleokarst unconformity has been viewed as a product of second- or third-order eustatic sea level fall during the early Middle Ordovician. The Sauk-Tippecanoe sequence boundary in South Korea, however, appears to be a discrete marine-flooding surface in the upper Maggol Limestone. Strata beneath this surface represent by a thinning-upward stack of exposure-capped tidal flat-dominated cycles that are closely associated with multiple occurrences of paleokarst-related solution-collapse breccias. This marine-flooding surface is onlapped by a thick succession of thin-bedded micritic limestone that is eventually overlain by a Middle Ordovician condensed section. This physical stratigraphic relationship suggest that second- and third-order eustatic sea level fall may have been significantly tempered by regional tectonic subsidence near the end of Maggol deposition. The tectonic subsidence is also evidenced by the occurrence of coeval off-platform lowstand siliciclastic quartzite lenses as well as debris flow carbonate breccias (i.e., the Yemi Breccia) in the basin. With continued tectonic subsidence, a subsequent rise in the eustatic cycle caused drowning and deep flooding of the carbonate platform, forming a discrete marine-flooding surface that may be referred to as a drowning unconformity. This tectonic interpretation contrasts notably with the slowly subsiding carbonate platform model for the basin as has been previously suggested. Thus, it is proposed that the Taebaeksan Basin in the northeastern flank on the Okcheon Belt evolved from a slowly subsiding carbonate platform to a rapidly subsiding intracontinental rift basin during the early Middle Ordovician.  相似文献   

12.
The quantitative sea-level curve in the eastern part of the East European Platform during the Early Cretaceous first compiled for this region is based on the results of analysis of the corresponding deposits and the bathymetric distribution of benthic foraminifers in their sections. This quantitative curve is correlated with the sea-level curve constructed for central areas of the East European Platform [9]. According to [9], the basin in the central part of the platform was as deep as 110 m, while in its eastern areas the depth amounted to 350 m. It is revealed that tectono-eustatic cycles defined previously in the central part of the platform and cycles (megasequences) in its eastern areas are asynchronous and are characterized by different orders. Such asynchrony is determined by the different tectonic trends in these regions during the Early Cretaceous.  相似文献   

13.
《Gondwana Research》2006,9(4):511-528
The Maggol Limestone of Ordovician age was deposited in the Taebaeksan (Taebacksan) Basin which occupies the northeastern flank of the Okcheon (Ogcheon) Belt of South Korea. Carbonate facies analysis in conjunction with conodont biostratigraphy suggests that an overall regression toward the top of the Maggol Limestone probably culminated in subaerial exposure of platform carbonates in the early Middle Ordovician (earliest Darriwilian). Elsewhere this subaerial exposure event is manifested as a major paleokarst unconformity at the Sauk-Tippecanoe sequence boundary beneath the Middle Ordovician succession and its equivalents, most in notably North America and North China. Due to its global extent, this paleokarst unconformity has been viewed as a product of second- or third-order eustatic sea level fall during the early Middle Ordovician. The Sauk-Tippecanoe sequence boundary in South Korea, however, appears to be a discrete marine-flooding surface in the upper Maggol Limestone. Strata beneath this surface represent by a thinning-upward stack of exposure-capped tidal flat-dominated cycles that are closely associated with multiple occurrences of paleokarst-related solution-collapse breccias. This marine-flooding surface is onlapped by a thick succession of thin-bedded micritic limestone that is eventually overlain by a Middle Ordovician condensed section. This physical stratigraphic relationship suggest that second- and third-order eustatic sea level fall may have been significantly tempered by regional tectonic subsidence near the end of Maggol deposition. The tectonic subsidence is also evidenced by the occurrence of coeval off-platform lowstand siliciclastic quartzite lenses as well as debris flow carbonate breccias (i.e., the Yemi Breccia) in the basin. With continued tectonic subsidence, a subsequent rise in the eustatic cycle caused drowning and deep flooding of the carbonate platform, forming a discrete marine-flooding surface that may be referred to as a drowning unconformity. This tectonic interpretation contrasts notably with the slowly subsiding carbonate platform model for the basin as has been previously suggested. Thus, it is proposed that the Taebaeksan Basin in the northeastern flank on the Okcheon Belt evolved from a slowly subsiding carbonate platform to a rapidly subsiding intracontinental rift basin during the early Middle Ordovician.  相似文献   

14.
Cretaceous transgressions in the epicontinental area of western Europe, and in particular in the Paris-London Basin, were controlled, to a large extent, by the eustatic rise of sea-level in direct relation to the creation of mid-oceanic ridges.On a regional and local scale, positive and negative vertical movements of the Earth's crust have moderated the effects of transgression. These variations are revealed by changes in the nature, or thickness, of sediment deposited on the tectonic blocks which form the basin. The method used for the delimitation of blocks is supported by the presentation of paleogeographical maps from various Mesozoic epochs, as well as a NE-SW section from the Boulonnais area to Normandy which displays tectonic control on sedimentation.  相似文献   

15.
The Miocene Lavanttal Basin formed in the Eastern Alps during extrusion of crustal blocks towards the east. In contrast to basins, which formed contemporaneously along the strike-slip faults of the Noric Depression and on top of the moving blocks (Styrian Basin), little is known about the Lavanttal Basin. In this paper geophysical, sedimentological, and structural data are used to study structure and evolution of the Lavanttal Basin. The eastern margin of the 2-km-deep basin is formed by the WNW trending Koralm Fault. The geometry of the gently dipping western basin flank shows that the present-day basin is only a remnant of a former significantly larger basin. Late Early (Karpatian) and early Middle Miocene (Badenian) pull-apart phases initiated basin formation and deposition of thick fluvial (Granitztal Beds), lacustrine, and marine (Mühldorf Fm.) sediments. The Mühldorf Fm. represents the Lower Badenian cycle TB2.4. Another flooding event caused brackish environments in late Middle Miocene (Early Sarmatian) time, whereas freshwater environments existed in Late Sarmatian time. The coal-bearing Sarmatian succession is subdivided into four fourth-order sequences. The number of sequences suggests that the effect of tectonic subsidence was overruled by sea-level fluctuations during Sarmatian time. Increased relief energy caused by Early Pannonian pull-apart activity initiated deposition of thick fluvial sediments. The present-day shape of the basin is a result of young (Plio-/Pleistocene) basin inversion. In contrast to the multi-stage Lavanttal Basin, basins along the Noric Depression show a single-stage history. Similarities between the Lavanttal and Styrian basins exist in Early Badenian and Early Sarmatian times.  相似文献   

16.
Fluctuations in sea depth within a magnitude 20–100 m and a duration of 1–10 m.y. are often explained by rapid eustatic changes — so called ‘third-order eustatic events’. Considerable influence of regional tectonics on relative sea-level changes has been demonstrated by many authors, but because of uncertainties in the timing of short events in widely separated regions, the problem of separating tectonic and eustatic factors still remains unsolved. In this paper, a new and simple approach is used to reveal the presence or absence of eustatic events. We consider the St. Petersburg area and North Estonia in the north-eastern region of the East Baltic. From the late Early Cambrian until the middle of the Tremadoc (early Ordovician), deposition was extremely slow and the sea bed remained for a long time in a well defined peritidal zone in a water depth ≤10 m. Under such environmental conditions, a sea-level rise of ≥10 m would result in marked changes in the character of faunas and sedimentation. In the time interval considered here, significant sea deepening in the north-eastern Baltic region occurred only twice, and its magnitude did not exceed 10–20 m. A fall of sea level by ≥10 m would result in complete regression in the peritidal zone. This situation also occurred in region. However, the preservation of a sequence of unconsolidated sands, which is only a few tens of metres thick and includes all the main stratigraphic subdivisions on a regional scale, indicates that the crustal surface reached a very low altitude ≤10–20 m above sea level. These data show that in the late Late Cambrian to the middle of the Tremadoc, over a period of 40 m.y. long, eustatic sea-level changes did not exceed ±10–20 m. This limits the magnitude of several third-order cycles — eustatic events with duration of a few million years, which have been proposed previously for the epoch of the transition from the Cambrian to the Ordovician. In the late Early Cambrian to the Late Cambrian, transgressions and regressions with a magnitude of 50–150 m took place in southern Sweden and Lithuania. Since these phenomena occurred when there were no comparable eustatic sea-level changes, they must be associated with regional tectonic movements. Some were rapid and could be easily misinterpreted as indications of third-order eustatic changes. It is probable that some of the other eustatic events that have been proposed for the Phanerozoic were actually not of eustatic but of tectonic origin. Such rapid tectonic movements with magnitude of 50–100 m in cratonic areas can be caused by changes in the forces in the lithospheric layer with a laterally variable thickness, and by phase transitions in the mafic lower crust. Depending on the spatial distribution of vertical crustal movements, both these mechanisms could have been operating in the East Baltic and southern Sweden in the Cambrian.  相似文献   

17.
塔里木克拉通盆地改造对油气聚集和保存的控制   总被引:20,自引:8,他引:20  
张光亚  宋建国 《地质论评》1998,44(5):511-521
显生宙以来塔里木克拉通盆地主要经历了加里东晚期,海西早期,海西末期,印支期和燕山晚期5次主要构造运动的改造,历次构造运动造成的强烈剥蚀区(强烈改造区)弱剥蚀区(弱改造区)和未剥蚀区(未改造区)展布各不相同,从而使盆内油气聚集和保存的时空分布也极不均一。塔中地区主要经历了加里东晚期,海西早期运动的强烈改造,故在这些运动之前形成的油气藏遭受了不同程度的破坏,海西晚期以来,塔中地区相对稳定,有利油气的聚  相似文献   

18.
Abstract

Deep-sea turbidite sedimentation in convergent margin settings generally is controlled by tectonic uplift, climate and eustatic sea-level variations. The rate of tectonic uplift governs the relief of the source area and the position of the base level (coinciding with sea-level), climate influences the rate and style of weathering and continental runoff and eustatic seal-level additionally shifts the base level, functioning with the concurrently working tectonic movements. Thus, these factors primarly determine the availability of sediment (yield and nature of material and the site of intermittent storage) at the basin margin which is unlocked periodically to flow downslope to the basin.

This paper attempts to decipher quantitatively the importance of the individual factors in the Late Maastrichtian to Early Eocene Schieren Flysch Croup. The flysch was deposited in a moderately converging remnant oceanic trench basin. Mean parameters are calculated on the basis of formations and the duration of nannofossil zones comprised in. For transposing these zone into absolute age intervals the problem of inconsistent durations in current time scales had to be solved by a best-fit approach. Frequencies and periodicities of turbidite events, decompacted and compacted sedimentation rates (the latter are considered as apparent denudation rates) are calculated to reveal the dynamics of sedimentation. Climatic evidence is deduced from clay mineralogy. Changing uplift rates in the drainage area are indirectly interpreted from back-stripped tectonic subsisdence rates in the basin.

The obtained data point to an immediate control of sub-duction-Iinked tectonic uplift in the bordering drainage and shelf area on turbidite sedimentation, as frequency and thickness of the turbidite events are closely correlated with the increasing tectonic subsisdence in the basin (assumed to match the rate of subduction and underplating). This general trend is modified by the temporary migration of the oceanic hinge zone towards the trench causing periodically the starvation of outer portions of the basin at the transition from Early to Late Paleocene and Late Paleocene to Eocene. Regional climatic trends additionnaly rule the turbidite facies development and apparent denudation rates. In the upper part of Early Eocene series high rate mud dominated sediments correlate with warm/humid conditions and in Late Paleocene deposits low rate sandy sediments coincide with cool ones. During the Late Paleocene period the global 2nd-order sea-level lowering probably may be responsible for the by-passing of the shelf by the coarse grained sediments.  相似文献   

19.
A micropaleontological analysis was made using materi-als from exploration wells Geobuk-1 (Td:2 72 2 .5m) andOkdom-1 (Td:2 90 3 .7m) for the purpose of biostratigraphicand paleoenvironmental interpretation of the Cheju sedimenta-ry basin.Two wells yield relatively abundant microfossilssuch as dinoflagellates,calcareous nannofossils,pollen andspores.The biostratigraphic and paleoenvironmental settingsanalyzed by microfossil assemblages seem to be closely relatedto the framework of the local t…  相似文献   

20.
ABSTRACT The Upper Triassic platform-margin deposits of the Carnian Prealps fail to show the succession of the two global sea-level lowerings predicted for the Norian and Rhaetian by the Haq global sea-level curve. In both cases a relative sea-level rise occurs, a discrepancy that can be explained by an increase in tectonically controlled subsidence, a consequence of the plate-scale rifting in the NW Tethys Gulf preceding oceanic spreading in the Jurassic. Pulses of tectonic subsidence followed by relative quiescence are capable of generating depositional sequences similar in gross geometry and duration to the third-order eustatic cycles of Haq et al . The Late Triassic part of the Exxon global sea-level curve, partly derived from correlatable strata within the same palaeogeographical domain, is likely to reflect pulses of tectonically induced subsidence rather than eustatic sea-level changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号