首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Seismotectonics of Taiwan   总被引:3,自引:0,他引:3  
High-quality seismicity data and focal mechanism solutions obtained during 1973–1983 by the permanent Taiwan Telemetered Seismographic Network and several temporary local seismographic networks are used for a detailed study of the seismotectonics of the Taiwan area. Seismicity distribution in southern Taiwan clearly reveals an east-dipping Benioff zone which has a thickness of about 30 km and begins to deepen along 121°E at a dip angle of 55°–60°. The leading edge of this Benioff zone reaches a depth of about 180 km between 21°N and 22°N, but tapers off to a shallower depth of about 100 km from 22°N to 23°N. The presence of this seismic zone implies that subduction of the South China Sea plate under the Philippine Sea plate extends from Luzon northward to about 23°N. The position of the northern boundary of the South China Sea plate, as tentatively defined according to the seismicity distribution, passes through southern Taiwan from the offshore area in the Taiwan Strait west of Kaohsiung in an east-northeast direction to the Taitung area where a triple junction probably lies. Seismicity is found to disappear abruptly below a certain depth in many parts of Taiwan. This phenomenon may be attributed to the frictional to quasiplastic transition in the crust or upper mantle. Comparison of shallow seismicity with surface faults and fractures shows that all areas of active shallow seismicity are marked by densely-developed faults and fractures. However, the converse is not necessarily true. This may be partly due to the relatively short duration of seismicity data and partly due to excessive weakening of some of the severely faulted and fractured areas. Finally, focal mechanism solutions for west central Taiwan and the Kuangfu-Fuli area in eastern Taiwan predominantly show a maximum horizontal compression in the SE-NW direction which can be related to collision between the Eurasian and Philippine Sea plates. However, focal mechanism solutions for both the Hualien area in eastern Taiwan and the Tainan area in southwestern Taiwan show remarkable irregularities which may result from local tectonic complexities.  相似文献   

2.
Relocation of intermediate and deep earthquakes of Tyrrhenian Sea area through joint hypocenter determination for the period 1962–1979, has allowed a more detailed definition of the geometry of this peculiar Benioff zone. Earthquakes dip along a quasi-vertical plane to 250 km depth; there is a 50° dip in the 250–340 km depth range, and a low dip angle to 480 km depth. The structure sketched from the hypocenters is almost continuous, but most energy has been released in the 230–340 km depth interval. An evaluation of fault plane solutions of intermediate earthquakes in this area indicates predominance of down-dip compressions in the central part of the slab. At the border, strike-slip motion occurs independent of depth. Some earthquakes that occurred at intermediate depth (less than 100 km) along the Ionian margin of Calabria show predominance of reverse faulting, with the P-axis oriented SE-NW. However, shallow earthquakes in the Calabria-Sicily region indicate a more complex motion, with predominance of normal faulting. A possible interpretation of these features according to the available geological history, which involves subduction of continental lithosphere, is discussed.  相似文献   

3.
A seismicity map of that part of the Pakistan-Afghanistan region lying between the latitudes 28° to 38°N and longitudes 66° to 75°E is given using all available data for the period 1890–1970. The earthquakes of magnitude 4.5 and above were considered in the preparation of this map. On the basis of this map, it is observed that the seismicity pattern over the well-known Hindukush region is quite complex. Two prominent, mutually orthogonal, seismicity lineaments, namely the northvestern and the north-eastern trends, characterize the Hindukush area. The northwestern trend appears to extend from the Main Boundary Fault of the Kashmir Himalaya on the southeast to the plains of the Amu Darya in Uzbekistan on the northwest beyond the Hindukush. The Sulaiman and Kirthar ranges of Pakistan are well-defined zones of intermontane seismicity exhibiting north-south alignment.Thirty-two new focal-mechanism solutions for the above-mentioned region have been determined. These, together with the results obtained by earlier workers, suggest the pre-dominance of strike-slip faulting in the area. The Hazara Mountains, the Sulaiman wrench zone and the Kirthar wrench zone, as well as the supposed extension of the Murray ridge up to the Karachi coast, appear to be mostly undergoing strike-slip movements.In the Hindukush region, thrust and strike-slip faulting are found to be equally prevalent. Almost all the thrust-type mechanisms belonging to the Hindukush area have both the nodal planes in the NW-SE direction for shallow as well as intermediate depth earthquakes. The dip of P-axes for the events indicating thrust type mechanisms rarely exceeds 35°. The direction of the seismic slip vector obtained through thrust type solutions is always directed towards the northeast. The epicentral pattern together with these results suggest a deep-seated fault zone paralleling the northwesterly seismic zone underneath the Hindukush. This NW-lineament has a preference for thrust faulting, and it appears to extend from the vicinity of the Main Boundary Fault of the Kashmir Himalaya on the southeast of Uzbekistan on the northwest through Hindukush. Almost orthogonal to this NW-seismic zone, there is a NE-seismic lineament in which there is a preference for strike-slip faulting.The above results are discussed from the point of view of convergence of the Indian and Eurasian plates in the light of plate tectonics theory.  相似文献   

4.
The Andaman Sea is considered as an actively spreading back-arc basin. Seismicity and newly determined focal-mechanism solutions in the Andaman Sea area support this view. The tectonic history of the region is inferred from magnetic lineations in the northeastern Indian Ocean and the northward motion of Greater India. The mid-oceanic ridge which migrated northward along the east side of the Ninetyeast Ridge collided with the western end of the “old Sunda Trench” in the Middle or Late Miocene (10–20 m.y. B.P.). This ridge—trench collision released much of the compressional stress in the back-arc area and the continued northward movement of India that collided with Eurasia exerted a drag on the back-arc region, causing the opening of the Andaman Sea. In appearance, the subducted ridge jumped to the back-arc area. Thus, the Andaman Sea is not an ordinary subduction-related back-arc basin, but probably a basin formed by oblique extensional rifting associated with both ridge subduction and deformation of the back-arc area caused by a nearby continental collision.  相似文献   

5.
High seismicity in the Baikal rift zone is controlled by the development of conjugate rising and subsiding block structures. Many types of seismological phenomena resulting from large earthquakes are manifested in the rift zone and include seismotectonic (regional, zonal and local), gravity-seismotectonic and seismogravitational deformations. Impulsive as distinct from gradual seismogenetic crustal movements play a dominant role in the recent development of the Baikal geomorphology.  相似文献   

6.
Data concerning the focal mechanism and the spatial distribution of earthquakes have been used to investigate the active tectonics of the northern Aegean and the surrounding area.A thrust region, which includes the northernmost part of the Aegean and at least part of the Marmara Sea, has been defined. An amphitheatrical Benioff zone dipping towards the thrust region from south, east and probably from west, at a mean angle of about 30°, has been detected.The thrust region is surrounded by a region of normal faulting. An eastward progression of the seismic activity in this normal faulting region between 1954 and 1971 has been observed.A correspondence between the earthquake occurrence in the thrust and normal faulting regions has also been observed. Each large shock produced by tensional mechanism in the region of normal faulting is preceded or followed by one or more shocks of compressional mechanism in the thrust region.The focal mechanism, the distribution of the earthquake foci with intermediate focal depth, as well as some magnetic and gravimetric observations can be interpreted by assuming that dense oceanic crust sinks in the northern part of this area and that the adjacent lithosphere moves by segmentation to fill the void with the consequence of producing tensile stresses associated with normal faulting. Such a mechanism of lithospheric interaction suggests that accretion probably takes place in this area.  相似文献   

7.
《Gondwana Research》2014,25(1):204-213
Bounded by the western and eastern syntaxes, the Himalayan region has experienced at least five M ~ 8 earthquakes during a seismically very active phase from 1897 through 1952. However, there has been a paucity of M ~ 8 earthquakes since 1952. Examining of various catalogues and seismograms from the Gottingen Observatory, it is established that this quiescence of M ~ 8 earthquakes is real. While it has not been possible to forecast earthquakes, there has been a success in making a medium term forecast of an M 7.3 earthquake in the adjoining Indo-Burmese arc. Similarly we find that in the central Himalayan region, earthquakes of M > 6.5 have been preceded by seismic swarms and quiescences. In the recent past, based on GPS data, estimates have been made of the accumulated strains and it is postulated that a number of M ~ 8 earthquakes are imminent in the Himalayan region. We examine these estimates and find that while earthquakes of M ~ 8 may occur in the region, however, the available GPS data and their interpretation do not necessarily suggest their size and time of occurrence and whether an earthquake in a particular segment will occur sooner in comparison to that in the neighboring segment. We also comment on the inference of occurrence of M ~ 8 earthquakes based on M8 algorithm for the region. We conclude that while an M ~ 8 earthquake could occur any time anywhere in the Himalayan region, there is no indication as of now as to where and when it would occur. We impress on the need for preparedness to mitigate the pending earthquake disaster in the region.  相似文献   

8.
Seismotectonics and seismicity of the Silakhor region, Iran   总被引:1,自引:0,他引:1  
This paper deals with seismotectonic and seismicity of the Silakhor region that shows high seismic activity in western Iran. Silakhor is a vast plain with several villages and cities of Dorud and Borujerd and a small town of Chalanchulan that were destroyed and/or damaged many times by large earthquakes. This paper addresses the historical and instrumental earthquakes and their causative faults, seismotectonic provinces and seismotectonic zones of the region. Available seismic data were normalized by means of time normalization technique that resulted in the magnitude-frequency relation for the Silakhor area and estimation of the return period of earthquakes with different magnitudes. Some active faults in this region include the Dorud fault, the main Zagros thrust, the Galehhatam fault, the Sahneh fault and others. Among them, the Dorud fault is an earthquake fault and is the cause for most of the large and intermediate earthquakes in the region. The return period of large earthquakes with magnitudes greater than 7.0 (Ms) is very low, however, the occurrence of destructive earthquakes is greater in the region than in the neighboring provinces. The study proves the high seismicity of this zone and it is required to develop an accurate national plan for future building and reinforcement of the existing buildings in this region.  相似文献   

9.
In this article, we review the significant recent results of geophysical studies and discuss their implications on seismotectonics, magmatism, and mantle dynamics in East Asia. High-resolution geophysical imaging revealed structural heterogeneities in the source areas of large crustal earthquakes, which may reflect magma and fluids that affected the rupture nucleation of large earthquakes. In subduction zone regions, the crustal fluids originate from the dehydration of the subducting slab. Magmatism in arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab. The intraplate magmatism has different origins. The continental volcanoes in Northeast Asia (such as Changbai and Wudalianchi) seem to be caused by the corner flow in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and the deep dehydration of the stagnant slab as well. The Tengchong volcano in Southwest China is possibly caused by a similar process in BMW above the subducting Burma microplate (or Indian plate). The Hainan volcano in southernmost China seems to be a hotspot fed by a lower-mantle plume associated with the Pacific and Philippine Sea slabs’ deep subduction in the east and the Indian slab’s deep subduction in the west down to the lower mantle. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and cause the slab–plume interactions. Some of these issues, such as the origin of intraplate magmatism, are still controversial, and so further detailed studies are needed from now.  相似文献   

10.
New elements on the seismicity of Portugal and new focal-mechanism solutions of earthquakes with epicentres situated off the coast of the Portuguese mainland and in the Azores region are presented. Historical seismicity data show that in the territory of the Portuguese mainland there are active faults that are responsible for earthquakes that have caused important damage and many casualties. However, most of the intraplate earthquakes with epicentres situated in the Portuguese mainland or near the shore are normally of small magnitude and this renders difficult their interpretation in the light of focal mechanisms. A solution for one earthquake, with magnitude 5 and epicentre at the Nazaré submarine canyon, is presented.Southwestwards of Cape St. Vincent there is an important seismic zone responsible for high-magnitude earthquakes such as that of 1 November 1755. This zone is situated in the region where the extension of the Messejana fault into the ocean joins with the Azores-Gibraltar fault.The seismicity of the area situated between the western coast of the Portuguese mainland and the Azores increases approximately along the 15°W meridian, from the latitude of the Azores-Gibraltar fault up to 44°N. Focal mechanisms of earthquakes with epicentres situated along this line show very similar solutions.The interpretation of the focal mechanism solutions of the earthquakes with epicentres situated in the studied area shows that the stress field trends approximately NW-SE. It is assumed that this stress field results from the interaction of the Eurasian and African plates; however, this direction is not maintained in the Azores region.  相似文献   

11.
The results of focal mechanisms determination for the recent seismic activity (earthquakes of 1951, 1955, 1987, 1988, and 1998) in the passive continental margin of Egypt may shed some light on the local stress field in this area. Moreover, studying the source mechanism of these events provides an opportunity to understand the structural style of the passive margin of Egypt, as well as the tectonic setting beside its variation in space and time. This study reveals that there are two types of tectonic regimes which caused these mechanisms. The first is a tensional regime, represented by NW oblique (normal-dextral) faults and the second is a compressive one represented by E–W to ENE (reverse-sinstral) faults. These fault trends probably indicate rejuvenation of inherited E–W Mesozoic and NW Oligo-Miocene faults.  相似文献   

12.
研究区位于青藏高原的东北隅(96°~107°E,30°~35°N)。基于该地区长度大于2km的4 781条1∶20万数字化实测断裂、1900年以来的5 220条数字地震记录,以及野外地质观测数据,识别出993条不同属性的地震断层,构建了该地区百年地震构造格局。1970年以来十年期地震断层跃迁图像表明,自20世纪80年代中期白马—虎牙强烈震群爆发之后,地震活动在沿各主要走滑断层带自西(北西)向东(南东)迁移的同时,逐渐向中部贡玛—达曲断裂带和南部鲜水河断裂带的东南段集中。地震活动的断裂构造联系主要表现为挤压剪切转换机制和典型的楔顶效应。研究区165个GPS速度矢量展现了与3个地块和以鲜水河断裂带为主的速度域、速度梯度带和速度扰动区。跨研究区南缘鲜水河断裂带的位移速率因贡玛—达曲断裂带汇聚而达到了6.5~8.6mm/a,而跨北缘东昆仑断裂带的位移速度只有1.8~2.2mm/a。因鲜水河断裂走向在其中南段发生向南的急剧偏转,垂直断层面的位移矢量分量不断增强,形成了汶川8.0级地震成核及NE向单边破裂的动力学条件。  相似文献   

13.
Seismotectonics of the Nepal Himalaya from a local seismic network   总被引:3,自引:0,他引:3  
The National Seismological Network of Nepal consists of 17 short period seismic stations operated since 1994. It provides an exceptional view of the microseismic activity over nearly one third of the Himalayan arc, including the only segment, between longitudes 78°E and 85°E, that has not produced any M>8 earthquakes over the last century. It shows a belt of seismicity that follows approximately the front of the Higher Himalaya with most of the seismic moment being released at depths between 10 and 20 km. This belt of seismicity is interpreted to reflect interseismic stress accumulation in the upper crust associated with creep in the lower crust beneath the Higher Himalaya. The seismic activity is more intense around 82°E in Far-Western Nepal and around 87°E in Eastern Nepal. Western Nepal, between 82.5 and 85°E, is characterized by a particularly low level of seismic activity. We propose that these lateral variations are related to segmentation of the Main Himalayan Thrust Fault. The major junctions between the different segments would thus lie at about 87°E and 82°E with possibly an intermediate one at about 85°E. These junctions seem to coincide with some of the active normal faults in Southern Tibet. Lateral variation of seismic activity is also found to correlate with lateral variations of geological structures suggesting that segmentation is a long-lived feature. We infer four 250–400 km long segments that could produce earthquakes comparable to the M=8.4 Bihar–Nepal earthquake that struck eastern Nepal in 1934. Assuming the model of the characteristic earthquake, the recurrence interval between two such earthquakes on a given segment is between 130 and 260 years.  相似文献   

14.
Earthquakes for the period 1964–1973 are relocated by the method of Joint Hypocenter Determination in order better to resolve the configuration and the structure of the New Guinea—New Britain—Solomon Islands region. Focal mechanism solutions are integrated with the seismicity and interpreted closely with it. A zone of subduction exists beneath New Britain and the Solomon Islands, a zone of left-lateral strike-slip movement extends from New Ireland to New Guinea. The zone of seismicity in northern New Guinea has developed as a result of a continent—island-arc collision in late Oligocene—Miocene times and does not exhibit a well-developed inclined seismic zone. It is proposed that plate tectonics theory does not apply rigorously, but slip-line field theory allows the presentation of a new geodynamic model for this region.  相似文献   

15.
首都圈地区小震重新定位及其在地震构造研究中的应用   总被引:15,自引:0,他引:15  
使用双差地震定位法对首都圈地区39°~4 1°N,115°~118°E范围内1980~2 0 0 0年的2 0 98个小震进行了重新定位,定位均方根残差从重新定位前的1.4 s降到0 .32 s。重新定位后,地震活动多集中分布于北东与北西向断裂的交汇处,或密集成北东与北西向线性分布,与已知活动断裂具有密切的关系。在顺义与延怀盆地一带揭示出几条高角度北西向隐伏活动断裂,长度在10~2 0 km间。小震活动显示的构造信息表明,北西向构造是重要的发震构造,在现今构造变形和地震孕育、发生中,与北东向构造起着同样重要的作用。同时,重定位震源深度分布在东西方向上显示出明显的不均匀性,推测是地壳变形和构造活动强弱在横向变化的一种反映。  相似文献   

16.
17.
Three magnitude >6 earthquakes struck Qaidam, Qinghai province, China, in November 10th 2008, August 28th and 31st 2009 respectively. The Zongwulongshan fault has often been designated as the active seismogenic structure, although it is at odd with the data. Our continuous GPS station (CGPS), the Xiao Qaidam station, located in the north of the Qaidam basin, is less than 30 km to the southwest of the 2008 earthquake. This CGPS station recorded the near field co-seismic deformation. Here we analyzed the co-seismic dislocation based on the GPS time series and the rupture processes from focal mechanism for the three earthquakes. The aftershocks were relocated to constrain the spatial characteristics of the 2008 and 2009 Qaidam earthquakes. Field geological and geomorphological investigation and interpretation of satellite images show that the Xitieshan fault and Zongwulongshan fault were activated as left lateral thrust during the late Quaternary. Evidence of folding can also be identified. Integrated analyses based on our data and the regional tectonic environment show that the Xitieshan fault is the fault responsible for the 2008 Qaidam earthquake, which is a low dip angle thrust with left lateral strike slip. The Zongwulongshan fault is the seismogenic fault of the 2009 earthquakes, which is a south dipping back thrust of the northern marginal thrust system of the Qaidam basin. Folding takes a significant part of the deformation in the northern marginal thrust system of the Qaidam basin, dominating the contemporary structure style of the northern margin of the Qaidam basin and Qilianshan tectonic system. In this region, this fault and fold system dominates the earthquake activities with frequent small magnitude earthquakes.  相似文献   

18.
江苏—南黄海地区城市密集,人口众多,是中国东部经济最发达的地带之一。同时,该地区历史上曾频发中—强以上级别的地震,地震及次生地质灾害是威胁该区经济社会发展的自然灾害之一。该区的地震活动时空特征和发震机制还不清楚。本文通过整理江苏—南黄海地区的历史和仪器记录地震数据,分析了该区地震活动时空分布格局,发现地震活动主要集中于若干条区域活动断裂带,在时间上具有约60年的平静期,目前仍处于地震活跃期。深部构造研究还表明该区域内地震活跃的南部坳陷和勿南沙隆起区均存在显著的地球物理异常,表明地震活动与区域深部构造有关。东部菲律宾海板块的俯冲作用和印度—欧亚大陆碰撞引起的板块边界挤压力和大陆边缘因地形高程差异伴随的重力势能是中国海洋地震的主要驱动力。上述认识不仅加深了对江苏—南黄海地区地震构造环境的理解,同时也能对该区防震减灾公益事业提供科学参考。  相似文献   

19.
A probabilistic method is used to evaluate the seismichazard of Adassiya dam site on the Yarmouk river in Jordan. A line source model developedby McGuire (1978) is used in this study. An updated earthquake catalogue coveringthe period from 1 A.D. to 1996 A.D. is used for this purpose. This catalogue includesall earthquakes that occurred in Jordan and adjacent areas, more specifically between latitudes27.0°–35.5°N and longitudes 32.0°–39.0°E.Nine distinct seismic sources of potential seismic activitiesare identified. The seismic hazard parameters are determined using the method suggested by Kijko and Sellevoll (1989).The Peak Ground Acceleration (PGA) is selected as a measure of ground motion severity. Esteva (1974) attenuation relationship is used in evaluating PGA values at each dam site. Analysis is carried out for 50%, 90%, and 95% probability that is not being exceeded in a life time of 50, 100, and 200 years.Results of analysis indicate that PGA values at the dam site are as follows:[] Operating Basis Earthquake (OBE) (50% probabilityof non-exceedance for a design life of 100 years – corresponding to a return period of 145 years) is 133.6 cm/sec2.[] An earthquake with 90% probability of non-exceedancefor a design life of 50 years – corresponding to a return period of 475 years is 214.9 cm/sec2.[] Maximum Credible Earthquake (MCE) (Return period of900 years) is 283.0 cm/sec2.Strong motion acceleration time history of these earthquakes are givenbased on strong motion records of the November 1995 Gulf of Aqaba earthquake.Local site effect analysis for Adassiya Dam site using SHAKE program showed no amplification. Normalized site-specific acceleration response spectra for OBE and MCE design earthquakes is also given.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号