首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Focal mechanisms determined from moment tensor inversion and first motion polarities of the Himalayan Nepal Tibet Seismic Experiment (HIMNT) coupled with previously published solutions show the Himalayan continental collision zone near eastern Nepal is deforming by a variety of styles of deformation. These styles include strike-slip, thrust and normal faulting in the upper and lower crust, but mostly strike-slip faulting near or below the crust–mantle boundary (Moho). One normal faulting earthquake from this experiment accommodates east–west extension beneath the Main Himalayan Thrust of the Lesser Himalaya while three upper crustal normal events on the southern Tibetan Plateau are consistent with east–west extension of the Tibetan crust. Strike-slip earthquakes near the Himalayan Moho at depths >60 km also absorb this continental collision. Shallow plunging P -axes and shallow plunging EW trending T -axes, proxies for the predominant strain orientations, show active shearing at focal depths ∼60–90 km beneath the High Himalaya and southern Tibetan Plateau. Beneath the southern Tibetan Plateau the plunge of the P -axes shift from vertical in the upper crust to mostly horizontal near the crust–mantle boundary, indicating that body forces may play larger role at shallower depths than at deeper depths where plate boundary forces may dominate.  相似文献   

2.
The North Canterbury region marks the transition from Pacific plate subduction to continental collision in the South Island of New Zealand. Details of the seismicity, structure and tectonics of this region have been revealed by an 11-week microearthquake survey using 24 portable digital seismographs. Arrival time data from a well-recorded subset of microearthquakes have been combined with those from three explosions at the corners of the microearthquake network in a simultaneous inversion for both hypocentres and velocity structure. The velocity structure is consistent with the crust in North Canterbury being an extension of the converging Chatham Rise. The crust is about 27 km thick, and consists of an 11 km thick seismic upper crust and 7 km thick seismic lower crust, with the middle part of the crust being relatively aseismic. Seismic velocities are consistent with the upper and middle crust being composed of greywacke and schist respectively, while several lines of evidence suggest that the lower crust is the lower part of the old oceanic crust on which the overlying rocks were originally deposited.
The distribution of relocated earthquakes deeper than 15 km indicates that the seismic lower crust changes dip markedly near 43S. To the south-west it is subhorizontal, while to the north-east it dips north-west at about 10. Fault-plane solutions for these earthquakes also change near 43S. For events to the south, P -axes trend approximately normal to the plate boundary (reflecting continental collision), while for events to the north, T -axes are aligned down the dip of the subducted plate (reflecting slab pull). While lithospheric subduction is continuous across the transition, it is not clear whether the lower crust near 43S is flexed or torn.  相似文献   

3.
The nature of the transition between the Zagros intra-continental collision and the Makran oceanic subduction is a matter of debate: either a major fault cutting the whole lithosphere or a more progressive transition associated with a shallow gently dipping fault restricted to the crust. Microearthquake seismicity located around the transition between the transition zone is restricted to the west of the Jaz-Murian depression and the Jiroft fault. No shallow micro-earthquakes seem to be related to the NNW–SSE trending Zendan–Minab–Palami active fault system. Most of the shallow seismicity is related either to the Zagros mountain belt, located in the west, or to the NS trending Sabzevaran–Jiroft fault system, located in the north. The depth of microearthquakes increases northeastwards to an unusually deep value (for the Zagros) of 40 km. Two dominant types of focal mechanisms are observed in this region: low-angle thrust faulting, mostly restricted to the lower crust, and strike-slip at shallow depths, both consistent with NS shortening. The 3-D inversion of P traveltimes suggests a high-velocity body dipping northeastwards to a depth of 25 km. This high-velocity body, probably related to the lower crust, is associated with the deepest earthquakes showing reverse faulting. We propose that the transition between the Zagros collision and the Makran subduction is not a sharp lithospheric-scale transform fault associated with the Zendan–Minab–Palami fault system. Instead it is a progressive transition located in the lower crust. The oblique collision results in partial partitioning between strike-slip and shortening components within the shallow brittle crust because of the weakness of the pre-existing Zendan–Minab–Palami faults.  相似文献   

4.
5.
6.
For seven weeks, a temporary network of 68 seismological stations was operated in Central Greece, in the region of Thessaly and Evia, located at the western termination of the North Anatolian Fault system. We recorded 510 earthquakes and computed 80 focal mechanisms. Seismic activity is associated with the NE–SW dextral North Aegean Fault, or with very young E–W-striking normal faults that are located around the Gulf of Volos and the Gulf of Lamia. The important NW–SE-striking faults bounding the Pilion, or the basins of Larissa and Karditsa, are not seismically active, suggesting that it is easier to break continental crust, creating new faults perpendicular to the principal stresses, than to reactivate faults that strike obliquely to the principal stress axes  相似文献   

7.
8.
9.
10.
Magnetic and gravity data collected during a GLORIA survey of the Indus Fan provide new information on the earliest sea-floor spreading history of the Arabian Sea. A negative gravity anomaly correlates with the buried Laxmi Ridge. This ridge is interpreted here to be a sliver of continental crust adjacent to the oceancontinent transition which bounds thinned, probably intruded, transitional crust to the NE. The oldest sea-floor spreading anomaly is anomaly 28 (65-66 Ma), breakup occurring at the time of the Deccan Traps volcanic event. The earliest oceanic crust formed from two phases of rift propagation which accommodates the angular disparity between the E-W trending anomalies in the western Arabian Sea and the NE-SW trending western part of the Laxmi Ridge. Flow-line projection shows that the Laxmi ridge forms the conjugate structure to the northern Mascarene Plateau margin.  相似文献   

11.
12.
13.
14.
15.
Structure and early evolution of the Arabian Sea and East Somali Basin   总被引:5,自引:0,他引:5  
The Laxmi Ridge is a large-scale basement high buried beneath the sediments of the Indus Fan. The location of the ocean–continent transition (OCT) on this margin has previously been proposed at either the southern edge of the Laxmi Ridge or beyond it towards the India–Pakistan shelf. The former explains the margin-parallel Laxmi Basin as thinned continental crust, the latter as a failed rift of earlier seafloor spreading. To examine the structure of this margin, a reassessment of marine magnetic data has detailed seafloor-spreading magnetic anomalies prior to anomaly 24 in both the Arabian and East Somali basins. The previously identified anomaly 28 is not interpreted as a seafloor-spreading anomaly but as a magnetized basement feature adjacent to, and merging with, the ridge—the Laxmi Spur. New gravity models across the Laxmi Ridge and adjacent margin using ship and satellite data corroborate the existence of underplated crust beneath the Laxmi Ridge and Basin and the location of the OCT at the southern edge of the Ridge. The results are not compatible with the existence of a pre-anomaly 28 phase of seafloor spreading, although large-scale intrusions may be the origin of some of the basement features in the Laxmi Basin. The models also identify the Laxmi Spur as a low-density feature with a natural remanent magnetization (NRM) compatible with serpentinization. The Laxmi Ridge is mapped to the southeast, where it appears to terminate at a point coinciding with the appearance of E–W magnetic lineations and gravity anomalies at 15.5°N. Thereafter it becomes indistinct. This is interpreted as necessary in the reconstruction to the Mascarene Plateau to avoid continental overlap.  相似文献   

16.
17.
Upper Jurassic red sandstones and red siltstones were collected from 67 layers at 12 localities in the Penglaizhen formation. This formation is in the north of Bazhong county (31.8°N, 106.7°E) in the Sichuan basin, which is located in the northern part of the Yangtze craton. Thermal demagnetization isolated a high-temperature magnetic component with a maximum unblocking temperature of about 690 °C from 45 layers. The primary nature of the magnetization acquisition is ascertained through the presence of magnetostratigraphic sequences with normal and reversed polarities, as well as positive fold and reversal tests at the 95 per cent confidence level. The tilt-corrected mean direction of 36 layers is D = 20.0°, I = 28.8° with α 95 = 5.8°. A Late Jurassic palaeomagentic pole at 64.7°N, 236.0°E with A 95 = 7.0° is calculated from the palaeomagnetic directions of 11 localities. This pole position agrees with the two other Late Jurassic poles from the northern part of the Yangtze craton. A characteristic Late Jurassic pole is calculated from the three poles (68.6°N, 236.0°E with A 95 = 8.0°) for the northern part of the Yangtze craton. This pole position is significantly different from that for the southern part of the Yangtze craton. This suggests that the southern part of the Yangtze craton was subjected to southward extrusion by 1700 ± 1000  km with respect to the northern part. Intracraton deformation occurred within the Yangtze craton.  相似文献   

18.
19.
20.
In this paper the effect of a delayed onset of glaciation in the Barents Sea on glacial isostatic adjustment is investigated. The model calculations solve the sea-level equation governing the total mass redistributions associated with the last glaciation cycle on a spherically symmetric, linear, Maxwell viscoelastic earth for two different scenarios for the growth phase of the Barents Sea ice sheet. In the first ice model a linear growing history is used for the Barents Sea ice sheet, which closely relates its development to the build-up of other major Late Pleistocene ice sheets. In the second ice model the accumulation of the Barents Sea ice sheet is restricted to the last 6 ka prior to the last glacial maximum.
The calculations predict relative sea levels, present-day radial velocities, and gravity anomalies for the area formerly covered by the Weichselian ice sheet. The results show that observed relative sea levels in the Barents Sea are appropriate for distinguishing between the different glaciation histories. In particular, present-day observables such as the free-air gravity anomaly over the Barents Sea, and the present-day radial velocities are sensitive to changes in the glaciation history on this scale.
A palaeobathymetry derived from relative sea-level predictions before the last glacial maximum based on the second ice model essentially agrees with a palaeobathymetry derived by Lambeck (1995). The additional emerged areas provide centres for the build-up of an ice sheet and thus support the theory of Hald, Danielsen & Lorentzen (1990) and Mangerud et al. (1992) that the Barents Sea was an essentially marine environment shortly before the last glacial maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号