首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由台风低压倒槽引发的山东暴雨过程研究   总被引:3,自引:1,他引:3  
赵宇  崔晓鹏  王建国 《气象学报》2008,66(3):423-436
2004年8月26-28日发生在山东省的大到暴雨过程主要是由"艾莉"台风减弱的低压和西风带冷空气远距离相互作用造成的,台风倒槽的发展与低空东南气流的加强及台风低压外围热量和动量的向北输送密切相关.采用双向三重嵌套网格非静力模式MM5对这一过程进行了数值模拟,研究了台风倒槽的中尺度结构特征,并通过涡度收支探讨了台风倒槽及中尺度低涡发生发展的物理过程.结果表明,强降水是在台风倒槽顶部强风中心与弱风中心之间的强辐合作用下触发的,台风倒槽的增强和中尺度低涡的形成是低空急流及其动力作用的结果,降水的非绝热加热也起着重要作用.涡度方程的收支诊断表明,对流层低层的散度项、对流层中层的水平平流项和铅直输送项是正涡度的主要贡献者,在同一等压面上散度项和水平平流项的作用是相反的.对流层中层铅直输送项的贡献为正,扭转项为负贡献,涡度变化的总趋势是它们相互作用的净结果.等压面上相对涡度的变化趋势并不是均匀的,中尺度低涡的东南象限相对涡度局地变化较强,这是强降水发生在此的重要原因.低层正涡度的增加是由水平辐合引起的,而高层正涡度的增加是涡度由低层向高层垂直输送的结果.因此台风倒槽的发展和中尺度低涡的形成主要是由于低层的涡度制造,另一方面来自中低层涡度的垂直输送.  相似文献   

2.
引发暴雨天气的中尺度低涡的数值研究   总被引:1,自引:1,他引:0  
2008年7月17—19日发生在山东的大到暴雨天气是由“海鸥”台风和副热带高压共同向山东输送水汽,与弱冷空气相互作用造成的。对流层低层的中尺度低涡是暴雨天气的直接制造者。利用常规观测资料和中尺度模式WRF(Weather Research and Forecasting)的模拟资料对该中尺度低涡的结构及形成机制进行了分析研究。结果表明,数值模拟可以清楚地捕捉到中尺度低涡东移过程中有新的涡旋中心形成,并与原来的涡旋中心合并的过程,而不是简单的沿切变线东移。中尺度低涡形成在增温增湿明显、上升运动为主的对流区内;中尺度低涡形成后其中心转为下沉运动,对流区东移,降水区位于低涡的东北和东南象限。中尺度低涡上空近地面层的冷池、600~400hPa的弱冷空气堆、900~850hPa的弱风区及高低空急流耦合发展是中尺度低涡形成和发展阶段的重要特征。中尺度低涡减弱阶段,下沉运动变强,低空急流和高空出流都明显减弱。涡度方程的收支表明,对流层低层的散度项、倾侧项及对流层中层的水平平流项和铅直输送项是正涡度的主要贡献者。中低层的水平辐合、涡度由低层向高层的垂直输送都有利于中尺度低涡的形成和发展。倾侧项对中尺度低涡的形成也有重要贡献。中尺度低涡形成后期,低层辐合、高层辐散及垂直输送的减弱导致正涡度制造的减弱,从而使中尺度低涡减弱。  相似文献   

3.
屠妮妮  李跃清 《干旱气象》2014,32(6):962-971
利用NCEP再分析格点资料、常规观测资料、自动站降水资料、0.1°×0.1°的FY-2E云顶亮温资料,对2013年6月29日至7月1日发生在四川东部的大暴雨过程进行分析,结合涡度收支方程重点分析了引发这次大暴雨的西南涡结构。结果表明:在西南低涡发生发展过程中,对低涡发展起直接作用的是水平辐合辐散项和水平平流项,低涡形成前水平辐合辐散项起主要贡献,低涡形成后水平平流项贡献增大,并在对流层中低层以正贡献为主,扭转项贡献最小,而垂直输送项在低涡形成前期以正贡献为主,低涡减弱阶段以负贡献为主;在西南低涡形成前期,对流层高层有位涡大值区向下传输至中层,中高层正位涡叠加在低层负位涡之上,有利于低层低涡的发展及不稳定能量的存储与释放,是低涡维持发展的重要因素。  相似文献   

4.
针对2020年8月11—12日四川盆地西部特大暴雨过程中尺度系统演变特征和维持机制,利用欧洲中心ERA5逐小时再分析资料以及FY-4A的云顶相当黑体温度TBB资料进行诊断分析。(1)本次过程发生在500 hPa巴湖长波槽分裂短波和高原低槽东移发展在四川盆地停滞,副高加强西伸形成阻挡的形势下,同时200 hPa有南亚高压和高空分流区配合。(2)在上述有利的背景条件下,中尺度系统活动经历了中尺度辐合扰动-西南涡生成发展-低空急流影响-西南涡再次发展增强等4个阶段,西南涡两个阶段的发展对降水影响最大,初生发展阶段雨强最强,再次发展阶段强降雨范围最大。(3)西南涡在暖区内初生发展,对流不稳定性强,地面潜热和感热加热以及500 hPa层以下水汽凝结潜热加热均十分显著,在较强暖湿平流作用下,配合低层涡度拉伸项和扭转项的动力作用加强,西南涡迅速发展,但低层辐合相对较弱,正涡度柱高度仅发展至500 hPa。(4)西南涡再次发展阶段冷平流入侵,大气斜压性增强,中高层感热和凝结潜热加热作用加大,“低层辐合-中高层辐散”的动力机制显著加强,配合垂直向上输送正涡度和涡度拉伸项的动力发展作用,西南涡发展旺盛,正...  相似文献   

5.
一次台风变性并入东北冷涡过程的动力诊断分析   总被引:1,自引:0,他引:1  
梁钊明  王东海 《大气科学》2015,39(2):397-412
台风北移变性并入东北冷涡是造成东北地区夏季大范围暴雨的主要形式之一, 但其中的热动力结构变化特征及其物理机制尚不清晰。本文利用美国国家环境预报中心(NCEP)的再分析资料对一次台风变性并入东北冷涡过程进行动力诊断分析, 分析结果显示:冷涡冷空气的不断侵入以及台风移动形成的相对冷平流使得台风暖心结构消亡, 其低层低压辐合和高层高压辐散结构消失, 变性并入东北冷涡后气旋整层偏冷, 低层出现冷中心。台风变性并入东北冷涡过程中, 冷涡中心附近高空急流南侧的反气旋切变抑制气旋直接往高空发展, 而急流轴左侧的热动力分布特征有利于垂直涡度的发展, 变性后的气旋环流向冷涡的移近有利于急流轴维持倾斜, 从而促进气旋向高空冷涡倾斜发展。同时, 冷空气在气旋低层附近堆积导致等假相当位温线发生倾斜, 造成垂直涡度在气旋中层倾斜发展。台风变性并入东北冷涡后, 高空冷涡槽底的正垂直涡度平流促进气旋由中层直接向高层发展, 而高空冷涡槽底急流促进正垂直涡度平流的维持。气旋高空环流的发展反过来削弱了东北冷涡的高层环流, 导致高空冷涡中心出现北撤。  相似文献   

6.
引发华北特大暴雨过程的中尺度对流系统结构特征研究   总被引:12,自引:5,他引:7  
赵宇  崔晓鹏  高守亭 《大气科学》2011,35(5):945-962
利用常规观测资料、FY2C卫星TBB资料以及NCEP再分析资料对2005年7月22~24日发生在华北地区的大到暴雨天气过程进行了观测分析和模拟研究.结果表明,“海棠”台风减弱的低压倒槽内发生发展的两个中尺度对流系统是暴雨的直接影响系统,中尺度对流系统发展到成熟阶段首先在对流层中层形成中尺度低涡,然后向低层发展.水汽辐合...  相似文献   

7.
利用地面加密自动站观测资料以及NCEP再分析资料,对1211号“海葵”台风登陆后在江苏引发的两段降水对流特征差异明显的大暴雨天气进行对比分析。结果表明:第一段区域性大暴雨天气发生在台风环流中心及北侧偏东风急流附近,此时台风环流完整,中心维持正压结构,环流中心及其北侧偏东急流附近伴有较大范围的水汽辐合和强上升运动,有利于区域性大暴雨天气发生,但降水发生在近乎中性的层结下,降水分布较均匀,发展平缓,降水期间对流活动较弱;第二段大暴雨则发生在远离环流中心的台风倒槽顶部,降水期间暴雨区中高层伴有较明显的冷平流,有利于对流不稳定层结发展,降水发展过程中,地面风场出现中尺度扰动,增强了局地辐合和气旋性涡度,加之地面锋区发展,促进了中尺度对流系统的形成和发展,此段降水中尺度特征显著,发展迅速,雨强大,伴有明显的对流特征,导致出现局地特大暴雨天气。  相似文献   

8.
一次西南低涡东移引发长江中下游暴雨的诊断研究   总被引:1,自引:0,他引:1  
刘晓波  储海 《气象》2015,41(7):825-832
利用常规观测资料和NECP再分析资料,对2013年6月6—7日西南低涡东移加强发展造成长江中下游大暴雨过程进行了诊断分析,重点探讨了西南低涡东移和发展维持的物理机制以及最强降水的变化特征。结果表明,沿着700 hPa高空切变线东移的西南低涡是造成此次长江中下游地区暴雨的直接影响系统,西南低涡沿着700 hPa切变线东移发展,深厚阶段正涡度柱伸展到400 hPa高度,自下而上呈近垂直结构。西南低涡附近低层辐合与高层辐散的大尺度环境条件、西南低涡与西南低空急流耦合发展动力结构、低空暖平流和高空槽前正涡度平流输送等条件是导致西南低涡东移到长江中下游后加强发展的主要因子。与西南低涡相伴随的强降雨区主要位于低涡南部3个纬距以内,该处的西南季风和副高西南侧东南气流两支水汽输送的汇合为暴雨发生提供了充沛的水汽和对流不稳定能量,而对流层中低层携带的冷空气侵入低层低涡的后部,不仅加强了低涡的斜压性,也促进了上冷下暖不稳定层结的产生和发展,为强降水的发生提供了不稳定对流触发条件。  相似文献   

9.
江西一次暴雨过程的诊断分析   总被引:3,自引:0,他引:3  
利用NCEP 1°×1°再分析资料、地面与探空资料、卫星资料等,对2012年5月12日发生在江西省中部的一次暴雨过程进行诊断分析。结果表明:本次暴雨过程发生在冷锋南侧地面倒槽区,由高层西风槽、低层低空急流及切变线、低涡共同影响所致。中低层西南气流的加强,一方面使暴雨区有充足的水汽输送,同时也使该区对流不稳定度加大,加强了暴雨区上空的对流上升运动。中尺度辐合线是强对流暴雨的触发机制,而冷锋影响使地面东风气流加强,冷空气入侵致中尺度辐合线演变为中尺度低压,中尺度低压是江西短时强降水长时间持续的机制;500hPa高空槽东移,槽前正涡度平流向江西上空输送,利于低层低涡生成和维持、上升运动加强,从而导致降水增强。冷空气影响初始阶段,〉10mm·h-1 的中尺度雨团产生在中尺度辐合线及其所演变成低压的1、2象限即中尺度辐合线或中尺度低压偏北一侧,随着冷空气的进一步入侵,中尺度雨团产生于中尺度低压的偏南一侧。  相似文献   

10.
一次引发暴雨的东北低涡的涡度和水汽收支分析   总被引:11,自引:0,他引:11  
对2005年7月25~29日引发较大范围持续性暴雨的东北低涡的结构、涡度和水汽收支进行了分析研究,结果表明:1)东北低涡是一个较深厚的冷性涡旋.初期,气旋性涡度出现在对流层中层,然后向中低层及高层伸展.而低涡加强阶段,气旋性涡度在对流层高层增加得最快,并逐渐向中低层传播,诱发地面气旋的发展;由于高低空锋生的相互作用,在低涡南部形成了深厚的近乎垂直的低层略前倾的"弓形"锋区.2)对涡度收支的计算表明,水平涡度平流项和水平辐散项对低涡的发展、加强起到最主要的作用.但在不同阶段,这两项的作用和大小各不相同.3) 对流层高层位涡大值区在低涡东部向下传播,有利于低涡的发展加强,与低涡暴雨的落区位置较为接近.此外对卫星云顶亮度温度(TBB)的分析,发现低涡暴雨典型的涡旋云带中对流活动旺盛的地区与局地暴雨的位置对应.4) 低涡暴雨的水汽初期主要来自北部,随着低纬地区西南季风的增强,沿副高西侧从低纬到中高纬建立起一条较强的水汽输送带,东北地区水汽收支以南北向的辐合为主.5)将2005年和1998年夏季6~8月的东北低涡暴雨个例的天气形势配置进行逐月比较,发现持续的较大范围的低涡暴雨过程与亚洲中高纬的阻塞形势、低涡的维持、西太平洋副热带高压的位置及夏季风和低纬系统的水汽输送有密切的关系.  相似文献   

11.
热带气旋远距离暴雨(TRP)往往成为高影响天气,是业务预报难点。本文用地面、探空观测资料、雷达遥感资料以及NCEP一日四次0.5°×0.5°再分析资料,对2018年第22号台风“山竹”登陆广东期间在长江三角洲(简称长三角)地区引起的远距离暴雨过程进行分析。结果表明:(1)这是一次发生在副热带高压(简称副高)控制范围内的热带气旋远距离暴雨,低层受台风倒槽影响。(2)这次过程第一阶段暴雨主要是在强的对流不稳定条件下,由对流层低层“山竹”倒槽中的辐合线触发对流产生,同时对流层高层“山竹”的极向流出汇入加大了中纬度西风风速,在长三角地区上空产生辐散,有利于上升运动的维持。第二阶段,对流不稳定条件有所减弱,但前一阶段强回波产生的低层偏北外出气流与东南风形成辐合线,辐合线上还有中γ尺度的涡旋产生,又促进了对流发展。850 hPa台风倒槽北端形成一个低涡,500 hPa副高边缘发展出一个短波槽,暴雨的动力条件更为有利。(3)长三角的3个强降水中心分别在长江口、杭州湾北岸的嘉兴沿海及宁波沿海,都是在水陆边界附近。(4)远距离暴雨区的涡度收支诊断发现:暴雨的初始扰动主要由近地层水平辐合辐散项提供,850 hPa的水平辐合辐散项和扭曲项共同作用形成和加强低涡,并通过垂直运动上传使中层700~500 hPa附近涡度增长,进而发展出500 hPa短波槽。850 hPa涡度来自于台风倒槽和副高边缘的偏南急流。(5)在这次远距离暴雨过程中,台风“山竹”与海上西太平洋副高之间形成偏南低空急流,向长三角输送水汽,这与典型TRP事件相似。不同之处在于:典型TRP中暴雨的初始扰动一般由西风槽提供,而这次过程主要由低空台风倒槽和偏南急流提供,涡度上传形成高空短波槽,是不同于典型TRP事件的一个物理过程。  相似文献   

12.
0509号台风麦莎的结构与外围暴雨分布特征   总被引:11,自引:5,他引:11  
何立富  尹洁  陈涛  罗金秀 《气象》2006,32(3):93-100
利用地面加密观测资料、FY-2C卫星TBB资料和NCEP再分析资料,对2005年8月6~8日0509号台风麦莎登陆后环流结构及暴雨分布特征进行了综合分析。结果表明:台风麦莎具有明显不对称结构,台风东侧和北侧的积云对流较为旺盛;台风环流地面正涡度中心位于台风东侧,并随着台风北上移向台风东北象限并加强。地面强辐合区随着倒槽发展向偏北方向伸展;850hPa台风环流场表现为东侧和北侧的环流强盛,偏东风低空急流在台风北上过程中从东南风急流转为东北风急流;台风东侧暖,西侧冷,其东北侧有强暖平流输送。200hPa高空急流发展,急流入口区右侧强辐散有利于台风登陆后长时间维持。500hPa强上升运动区与台风外围暴雨区有较好对应关系。  相似文献   

13.
利用WRF中尺度数值模式,模拟2008年6月20-21日江淮一次β中尺度切变线、低涡降水过程。分析发现:低层大尺度的0.5×10 -6m2·S-1·K·kg-1的大值位涡为切变线暴雨提供了背景场,在其南部边缘,低层的切变辐合及云水形成的非绝热加热,导致了正位涡的增长,使低层正涡度加大引起降水加强。低层的正位涡通过上升运动向上传递,导致了高层位涡正异常,高层位涡的正异常又可导致低层的气旋性涡度进一步加大并使降水加大;β中尺度低涡的生成与大别山地形关系不大,主要是由对流层高层正位涡异常引起,但是低涡的维持及降水与大别山的地形坡度密切相关,当地形平坦时,不利于低涡维持和降水加强,当具有大别山的地形坡度时,不论山脉的高低都有利于低涡维持和降水加强。  相似文献   

14.
2012年庆阳市一次短时大暴雨的诊断   总被引:2,自引:0,他引:2  
庆阳市2012年7月21日区域性大暴雨创造了环县1957年建站以来的历史极值,导致了人民财产的重大损失。本文利用常规资料、自动站等探测资料以及历史相似个例,对2012年7月21日庆阳市出现的区域性大暴雨天气进行分析。结果表明:(1)高空低槽伴随地面冷锋东移,受西太平洋副热带高压的阻挡移动缓慢,副高、大陆高压不断加强,造成贝加尔湖冷空气在两高之间大量堆积,为这场大暴雨发生奠定了基础;(2)2012年第8号台风“韦森特”登陆前,台风低压和副热带高压之间形成的强气压梯度导致通向庆阳市的南风低空急流建立并加强,为此次大暴雨的发生提供了充分的水汽条件;(3)在高空槽前正涡度平流的作用下,对流层中低层出现明显的辐合,产生强烈上升运动,低层暖湿气流抬升促使对流不稳定能量爆发,从而形成局地强对流和暴雨;(4)导致庆阳区域性大暴雨的中尺度对流系统起源于河套地区低层涡旋的发展,在中尺度涡旋向东北和向东扩展过程中,尺度明显增大,整个系统低层具有明显的气旋性切变和气旋性涡度,在有利的环境条件下整个中尺度对流系统的东移和发展壮大,最终导致庆阳市区域性大暴雨的发生。  相似文献   

15.
The strong heavy rainfall on 3-5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the mei-yu season. Simulation results from the ARPS (Advanced Regional Prediction) data analysis system (ADAS) and WRF model were used to study the development of the mesoscale convective system (MCS) and mesoscale convective vortex (MCV). It is confirmed that the MCV formed during the development of a...  相似文献   

16.
The heavy rainfall caused by interactions between the monsoon depression and the middle-latitude systems in Australia has been investigated in this paper. For a better understanding of the Australian monsoon depression (AMD) and its synoptic-scale interaction with the middle-latitude systems, some key meteorological parameters have been calculated, including the vorticity budget, moisture budget, temperature advection, frontogenesis function and potential vorticity. The results show that interaction between the lower and mid-latitude systems does exist leading to the merging of the extratropical low with frontal systems and the AMD, meanwhile both the low-level cold air from the mid-latitude and the warm moist air that was lifted by the front were very favorable for the formation and the intensification of heavy rainfall, which was quite different from the rainfall caused by the AMD alone. Second, the obvious temperature advection and gradient were detected, so the baroclinicity was favorable to the intensification of the front, as well as to the development of the upper-level jet. Next, isentropic analysis revealed that the south-west cold-flow sank and met the warm flow coming from the northern part of Australia, thereby forming the obvious baroclinic zone in the lower troposphere. A high-PV anomaly area located in the upper level of the troposphere, which overlaid the low-level frontogenesis zone, also existed. The upper-level PV maximum extended downwards forming a vertical PV column when the extratropical low intensified. Furthermore, the AMD is a warm-cored vortex located in middle and upper troposphere with a deep and thick moisture layer, and there were some differences in the vorticity and moisture budgets of the two different stages. Finally, based on the above-mentioned analysis, a conceptual model describing the interactions between the lower and middle-latitude systems in the southern hemisphere was proposed.  相似文献   

17.
通过对四川盆地西部一次持续性暴雨过程的半理想数值模拟,研究了青藏高原热力作用对四川盆地持续性暴雨过程的影响。研究表明,高原的热力作用对于下游地区有着显著的影响,主要表现为:(1)关闭高原地面感热和潜热后,高原地区和四川盆地西部的降水明显减弱,而盆地中东部降水却有所加强,且四川盆地降水的日变化特征稍有减弱;(2)500 hPa青藏高原上的短波槽减弱,位于四川盆地中西部的背风槽强度、范围有所减弱,但低层盆地东部的气旋性涡旋加强;(3)涡度收支的定量分析发现,关闭高原热力作用后,盆地东部对流层低层垂直风切变的增强使得夜间倾斜项的正贡献增强,从而使该区域涡旋发展加强,盆地东部降水增强。  相似文献   

18.
Typhoon Meranti originated over the western North Pacific off the south tip of the Taiwan Island in 2010.It moved westward entering the South China Sea,then abruptly turned north into the Taiwan Strait,got intensified on its way northward,and eventually made landfall on Fujian province.In its evolution,there was a northwest-moving cold vortex in upper troposphere to the south of the Subtropical High over the western North Pacific(hereafter referred to as the Subtropical High).In this paper,the possible impacts of this cold vortex on Meranti in terms of its track and intensity variation is investigated using typhoon best track data from China Meteorological Administration,analyses data of 0.5×0.5 degree provided by the global forecasting system of National Centers for Environmental Prediction,GMS satellite imagery and Taiwan radar data.Results show as follows:(1)The upper-level cold vortex was revolving around the typhoon anticlockwise from its east to its north.In the early stage,due to the blocking of the cold vortex,the role of the Subtropical High to steer Meranti was weakened,which results in the looping of the west-moving typhoon.However,when Meranti was coupled with the cold vortex in meridional direction,the northerly wind changed to the southerly at the upper level of the typhoon;at the same time the Subtropical High protruded westward and its southbound steering flow gained strength,and eventually created an environment in which the southerly winds in both upper and lower troposphere suddenly steered Meranti to the north;(2)The change of airflow direction above the typhoon led to a weak vertical wind shear,which in return facilitated the development of Meranti.Meanwhile,to the east of typhoon Meranti,the overlapped southwesterly jets in upper and lower atmosphere accelerated its tangential wind and contributed to its cyclonic development;(3)The cold vortex not only supplied positive vorticity to the typhoon,but also transported cold advection to its outer bands.In conjunction with the warm and moist air masses at the lower levels,the cold vortex increased the vertical instability in the atmosphere,which was favorable for convection development within the typhoon circulation,and its warmer center was enhanced through latent heat release;(4)Vertical vorticity budget averaged over the typhoon area further shows that the intensification of a typhoon vorticity column mainly depends on horizontal advection of its high-level vorticity,low-level convergence,uneven wind field distribution and its convective activities.  相似文献   

19.
Based on intensive automatic weather station data, satellite cloud imagery, NCEP reanalyzed data, and the simulation results from mesoscale numerical models, this study analyzes the characteristics and formation mechanisms of the mesoscale convection system (MCS) during the extreme precipitation event that was triggered by a weakened low-pressure inverted trough of Typhoon Haikui on August 10/2012. The results of this study show that cold air at the rear of a northeastern cold vortex creates thermodynamic conditions favorable to the development of extreme precipitation. The main body of the cold air is northward located so that the cold air invades only the middle layer of the periphery of the inverted trough. Thus, the cold air minimally affects the lower layer, which results in a vertically distributed structure of the temperature advection that augments the formation and development of convective instability stratification. In the middle troposphere, the cold air encounters the convergent, ascending, warm moist air from the low-pressure inverted trough, leading to frontogenesis. The frontogenesis enhances wind convergence which, in turn, further enhances the frontogenesis, and the positive feedback between these two forces augments the development of meso- and small-scale convection systems in the rainstorm region and its vicinity, which strengthens the upward transportation of water vapor from low layers and thickening of water vapor convergence and results in local heavy rains.  相似文献   

20.
一次台风远距离暴雨中的干侵入分析   总被引:1,自引:3,他引:1  
李媛  赵宇  李婷  李敏  侯红运 《气象科学》2014,34(5):536-542
利用常规观测资料和NCEP再分析资料,对2008年7月17—19日发生在山东地区的台风远距离暴雨过程进行了观测分析和模拟研究。结果表明:降水期间有来自中高层的干冷空气的侵入,主要有两种表现形式:对流层顶附近向下的干空气侵入和对流层低层由西北向南的干空气侵入。干侵入存在于300~600 hPa之间,高层略微落后于低层,不利于对流不稳定的发展。但干冷空气侵入使得等相当位温面倾斜,有利于条件性对称不稳定的发展。干侵入使原来不饱和湿空气出现饱和,有利于降水增幅,雨区始终位于500 hPa干区前沿。高层正位涡扰动沿相当位温密集带向低层输送,500 hPa位涡高值区与降水有较好的同位相关系,对降水的发展和移动有一定的指示意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号