共查询到20条相似文献,搜索用时 268 毫秒
1.
2.
应用BP神经网络方法建立了珠江三角洲地壳稳定性的评价模型。首先在前人研究基础上,分析了珠江三角洲的地震活动、断层发育程度、地壳垂直形变、第四系厚度及地热分布等特征,然后收集相应的数据,建立这些影响因子与地壳稳定性之间相关性的转化原则,对这些数据进行标准化转化,建立并训练BP人工神经网络模型,由模型的实际输出插值得出珠江三角洲地壳稳定性的等值线图。与前人对该区地壳稳定性的定性及定量分析对比表明,该模型的评价结果与前人研究结果基本一致,因此基于神经网络的珠江三角洲地壳稳定性评价模型是比较可靠的。 相似文献
3.
4.
5.
6.
7.
黄土地震滑坡是陇西地区黄土丘陵地区的主要地质灾害之一,快速评价黄土斜坡的地震稳定性是陇西地区工程建设规划选址以及地震应急救援的需求。在野外调查及遥感解译获取坡高H、坡角α及估计烈度值I的基础上,运用逻辑回归分析方法,拟合得到研究区黄土斜坡地震稳定性的快速评价经验公式,经回判、判别校验及实例判别应用证明,该经验公式适用于快速评估陇西地区内黄土斜坡的地震稳定性。该文提出的方法对黄土地区城市建设规划和地震应急救援有重要的应用价值。 相似文献
8.
在平面应变条件下,采用极限平衡和有限元法对锚固边坡稳定性评价过程的关键问题进行研究。将条分法对锚固边坡安全系数的定义推广到有限元法中,通过弹塑性有限元分析计算结构整体应力场,再结合虎克-捷夫法完成最危险滑动面的优化搜索。以天然边坡、渗流作用下锚固边坡及开挖锚固边坡为例,对比分析了条分法、有限元极限平衡法及有限元强度折减法三者在安全系数大小、滑动面形状、位置及对锚固作用处理上的差异。结合工程实例分析发现:同条分法相比,有限元方法所得到的安全系数更大,滑动面也更深,其中,有限元极限平衡法具有良好的计算精度,而条分法在一定程度上削弱了锚固效应,有限元强度折减法在一定程度上会放大了锚固结构的稳定效果。 相似文献
9.
基于条分模式的边坡可靠度近似计算方法 总被引:1,自引:0,他引:1
通过对边坡稳定分析方法中的条分理论和响应面法的研究,针对边坡可靠性计算往往没有明确的解析表达式,以及稳定性系数计算方法和响应面法(RSM)的特点,将响应面法中的有限元数值模拟以条分模式中的稳定性系数隐式方程的迭代计算方法代替,建立了条分模式下的边坡可靠性计算的极限状态方程,从而形成了一种新的边坡稳定可靠性响应面分析方法。本文提出的改进的响应面法原理简单,计算效率较高并具有一定的精度,适用于对边坡可靠度的近似计算。 相似文献
10.
鉴于边坡稳定性评价的复杂性及其影响因素的不确定性和模糊性,运用模糊物元分析理论,分别使用层次分析法和熵权法计算各影响因子的主、客观权重值,建立兼顾主、客观因素的组合权重模糊物元评价模型。该模型有效避免了权重分配困难的问题,既能得到综合评价信息,也能反映评价对象的稳定状态。主、客观权重法既利用了样本资料的统计信息,又反映了专家的理论知识和经验,可得到较为客观、合理的指标权重。工程实例分析表明,该方法能准确反映边坡稳定性状况,为边坡稳定性的综合评价提供一条新的思路。 相似文献
11.
Nibedita Bisoyi Harish Gupta Narayan Prasad Padhy Govind Joseph Chakrapani 《国际泥沙研究》2019,34(2):125-135
Most of the studies on Artificial Neural Network (ANN) models remain restricted to smaller rivers and catchments. In this paper, an attempt has been made to correlate variability of sediment loads with rainfall and runoff through the application of the Back Propagation Neural Network (BPNN) algorithm for a large tropical river. The algorithm and simulation are done through MATLAB environment. The methodology comprised of a collection of data on rainfall, water discharge, and sediment discharge for the Narmada River at various locations (along with time variables) and application to develop a threelayer BPNN model for the prediction of sediment discharges. For training and validation purposes a set of 549 data points for the monsoon (16 June-15 November) period of three consecutive years (1996–1998) was used. For testing purposes, the BPNN model was further trained using a set of 732 data points of monsoon season of four years (2006–07 to 2009–10) at nine stations. The model was tested by predicting daily sediment load for the monsoon season of the year 2010–11. To evaluate the performance of the BPNN model, errors were calculated by comparing the actual and predicted loads. The validation and testing results obtained at all these locations are tabulated and discussed. Results obtained from the model application are robust and encouraging not only for the sub-basins but also for the entire basin. These results suggest that the proposed model is capable of predicting the daily sediment load even at downstream locations, which show nonlinearity in the transportation process. Overall, the proposed model with further training might be useful in the prediction of sediment discharges for large river basins. 相似文献
12.
以沈阳地铁一号线重启区间隧道为研究背景,采用基于均匀试验设计法的有限元数值分析法确定隧道围岩土体物理力学参数与地面沉降之间的关系,并以此作为神经网络的输入样本,通过BP神经网络对样本的训练、学习,建立隧道围岩土体力学参数与地面沉降之间的映射关系,然后利用这种映射关系,根据地铁开挖引发的地面沉降实测值反演岩土体的物理力学参数,最后根据参数反演结果,建立有限元应力应变模型预测地面沉降,并与实测值相比较,以检验BP神经网络地面沉降位移反分析方法的有效性和合理性。 相似文献
13.
基于人工神经网络的地震活动性研究 总被引:3,自引:1,他引:2
人工神经网络通过神经元之间的相互作用来完成整个网络的信息处理,具有自学习和自适应等一系列优点,因而用它来进行地震活动性研究是可行的。针对地震活动性问题,初步建立了基于人工神经网络的计算分析系统,给出了应用实例。 相似文献
14.
15.
Much of the nonlinearity and uncertainty regarding the flood process is because hydrologic data required for estimation are often tremendously difficult to obtain. This study employed a back‐propagation network (BPN) as the main structure in flood forecasting to learn and to demonstrate the sophisticated nonlinear mapping relationship. However, a deterministic BPN model implies high uncertainty and poor consistency for verification work even when the learning performance is satisfactory for flood forecasting. Therefore, a novel procedure was proposed in this investigation which integrates linear transfer function (LTF) and self‐organizing map (SOM) to efficiently determine the intervals of weights and biases of a flood forecasting neural network to avoid the above problems. A SOM network with classification ability was applied to the solutions and parameters of the BPN model in the learning stage, to classify the network parameter rules and to obtain the winning parameters. The outcomes from the previous stage were then used as the ranges of the parameters in the recall stage. Finally, a case study was carried out in Wu‐Shi basin to demonstrate the effectiveness of the proposal. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
16.
藻类垂向分布异质性导致了遥感反演的湖泊表层叶绿素a浓度结果与单元水柱内藻类生物量间不存在一一对应的关系,因此有效确定藻类垂向分布结构是遥感反演湖泊藻类生物量的基础.受自身因素和外环境条件的影响,藻类垂向分布结构呈现出多种类型,其中高斯类型应用最广.本文基于3200组HydroLight模拟的高斯垂向数据构建BP神经网络,实现用MODIS数据相对应的3个波段的遥感反射比R_(rs)(469)、R_(rs)(555)、R_(rs)(645)和表层叶绿素a浓度共同估算高斯垂向分布结构参数h和σ.经巢湖地面实测数据验证显示,h和σ的估算值与实测值的相关系数分别为0.97和0.95,对应的相对误差分别为13.20%和12.36%,两者相对误差同时小于30%的占总数据量的87.5%,表明该BP神经网络估算巢湖藻类高斯垂向分布结构的有效性和准确性,为基于卫星遥感数据获取湖泊藻类生物量提供了重要的理论基础. 相似文献
17.
应用人工神经网络的方法,利用30次强震震后1天和2天内的地震资料作为学习样本,对广西及其邻区发生的4次地震的震型作了早期预测判定,结果表明应用效果较好,正确率达75%。该方法值得进一步研究。 相似文献
18.
作者前文曾对土坝震害给出速评分析结果,但回判标准差仍嫌偏大。本文对资料进行了筛选,去掉烈度为V度和X度的部分震例,震例数由180个减少到186个。考虑到震害与影响震害的诸因素间可能存在高度非线性关系,本文采用人工神经元网络方法对土坝的震害进行预测。结果表明,回判标准差由0.708降低为0.486,即降低了31.4%。 相似文献
19.
20.
Chih-Chiang Lu Chu-Hui Chen Tian-Chyi J. Yeh Cheng-Mau Wu I-Fang Yau 《Stochastic Environmental Research and Risk Assessment (SERRA)》2006,20(1-2):6-22
Typhoons and storms have often brought heavy rainfalls and induced floods that have frequently caused severe damage and loss of life in Taiwan. Our ability to predict sewer discharge and forecast floods in advance during storm seasons plays an important role in flood warning and flood hazard mitigation. In this paper, we develop an integrated model (TFMBPN) for forecasting sewer discharge that combines two traditional models: a transfer function model and a back propagation neural network. We evaluated the integrated model and the two traditional models by applying them to a sewer system of Taipei metropolis during three past typhoon events (NARI, SINLAKU, and NAKR). The performances of the models were evaluated by using predictions of a total of 6 h of sewer flow stages, and six different evaluation indices of the predictions. Finally, an overall performance index was determined to assess the overall performance of each model. Based on these evaluation indices, our analysis shows that TFMBNP yields accurate results that surpass the two traditional models. Thus, TFMBNP appears to be a promising tool for flood forecasting for the Taipei metropolis sewer system. For publication in Stochastic Environmental Research and Risk Analysis. 相似文献