首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
观测表明近百年全球在变暖,特别是自1970年以来更加明显,相应海平面上升、冰雪融化、异常与极端天气以及气候事件频发,给社会与经济造成极大影响。值得注意的是,在21世纪的未来80年是否会继续保持增暖的趋势,以及这种变暖在历史上的地位和从古气候暖期所获得的启示,本文将集中在这个问题上。  相似文献   

2.
1引言近一百多年全球地面平均温度(常指2 m大气温度,Global mean surface temperature,简称GMST)有明显的年代际增温趋势,同时存在显著波动特征。从观测和模拟的结果来看,20世纪中期和21世纪初期是两个明显的增暖停滞时期,增温幅度很小。21世纪初期的Hiatus事件中,GMST增温幅度明显小于1979-2005年的0.18 °C /10yr[1]。最早关注此次Hiatus事件的是Carter[2],他发现1998-2005年间GMST并未增加。2009年,Easterling等[3]和Knight等[4]先后对此次事件进行了研究。随着Hiatus现象的持续,科学界才越来越重视,探讨其成因、影响以及未来是否仍将持续的问题[5]。我国科学家就此问题也进行了积极探索[6]。  相似文献   

3.
Change in climate variability in the 21st century   总被引:3,自引:0,他引:3  
As climate changes due to the increase of greenhouse gases, there is the potential for climate variability to change as well. The change in variability of temperature and precipitation in a transient climate simulation, where trace gases are allowed to increase gradually, and in the doubled CO2 climate is investigated using the GISS general circulation model. The current climate control run is compared with observations and with the climate change simulations for variability on three time-scales: interannual variability, daily variability, and the amplitude of the diurnal cycle. The results show that the modeled variability is often larger than observed, especially in late summer, possibly due to the crude ground hydrology. In the warmer climates, temperature variability and the diurnal cycle amplitude usually decrease, in conjunction with a decrease in the latitudinal temperature gradient and the increased greenhouse inhibition of radiative cooling. Precipitation variability generally changes with the same sign as the mean precipitation itself, usually increasing in the warmer climate. Changes at a particular grid box are often not significant, with the prevailing tendency determined from a broader sampling. Little change is seen in daily persistence. The results are relevant to the continuing assessments of climate change impacts on society, though their use should be tempered by appreciation of the model deficiencies for the current climate.  相似文献   

4.
21st century climate change in the Middle East   总被引:1,自引:0,他引:1  
This study examined the performance and future predictions for the Middle East produced by 18 global climate models participating in the Intergovernmental Panel on Climate Change Fourth Assessment Report. Under the Special Report on Emission Scenarios A2 emissions scenario the models predict an overall temperature increase of ~1.4 K by mid-century, increasing to almost 4 K by late-century for the Middle East. In terms of precipitation the southernmost portion of the domain experiences a small increase in precipitation due to the Northward movement of the Inter-Tropical Convergence Zone. The largest change however is a decrease in precipitation that occurs in an area covering the Eastern Mediterranean, Turkey, Syria, Northern Iraq, Northeastern Iran and the Caucasus caused by a decrease in storm track activity over the Eastern Mediterranean. Other changes likely to impact the region include a decrease of over 170,000 km2 in viable rainfed agriculture land by late-century, increases in the length of the dry season that reduces the length of time that the rangelands can be grazed, and changes in the timing of the maximum precipitation in Northern Iran that will impact the growing season, forcing changes in cropping strategy or even crop types.  相似文献   

5.
21世纪平流层温度变化和臭氧恢复   总被引:3,自引:2,他引:3  
胡永云  夏炎  高梅  吕达仁 《气象学报》2008,66(6):880-891
温室气体增加和可能的臭氧恢复将是影响21世纪平流层温度变化的两个主要因素。温室气体增加的辐射效应将导致平流层变冷,而臭氧恢复将导致平流层变暖。为探讨平流层温度在这两种相反因素作用下的变化趋势,研究中使用了观测的臭氧和温度资料以及4个有代表性的IPCC AR4海气耦合的全球环流模式的模拟结果(GISS-ER、GFDL CM20、NCAR CCSM3和UKMO-HadCM3)。观测分析结果表明,在近10年来臭氧柱含量和平流层低层温度均有升高的趋势,平流层中层温度仍然延续20世纪后20年的变冷趋势。IPCC-AR4的模拟结果表明,单纯温室气体增加将造成平流层变冷。可是,在同时考虑温室气体增加和臭氧层恢复的情况下,模拟结果表明平流层中上层仍将维持变冷的趋势,而下层则存在变暖的趋势,但几个模式给出的变暖趋势有差别。UKMO-HadCM3给出的模拟结果是在3种温室气体排放情况下平流层低层均呈现较强的变暖趋势,变暖的层次可达40 hPa;GFDL-CM20和NCAR-CCSM3给出的变暖趋势较弱一些,并且变暖主要位于60 hPa以下的层次。  相似文献   

6.
The energy contribution of anthropogenic climatic fluctuations has been estimated to a gain of 15–20 TW, in comparison with a gain or deficit of 100–300 TW from natural processes responsible for the observed climatic fluctuations of the last 200 years. A dominant role of an increase of CO2 by a factor 2–5 in the next century, accompanied by side effects acting in the same direction, seems to be most likely. Under the assumption of constant natural factors anthropogenic warming and its effects on the Arctic sea-ice may successively lead to climatic states as in 1931–60, in the early Middle Age (900–1200) and in the climatic optimum period ca. 5000 BP. Finally it may result in a complete destruction of the Arctic sea-ice with a drastic shift of all climatic belts towards north, extending even to the interior Tropics.  相似文献   

7.
Human activities affect the impact of the nitrogen cycle on both the environment and climate. The rate of anthropogenic nitrogen fixation from atmospheric N2 may serve as an indicator to the magnitude of this impact, acknowledging that relationship to be effect-dependent and non-linear. Building on the set of Representative Concentration Pathway (RCP) scenarios developed for climate change research, we estimate anthropogenic industrial nitrogen fixation throughout the 21st century. Assigning characteristic key drivers to the four underlying scenarios we arrive at nitrogen fixation rates for agricultural use of 80 to 172 Tg N/yr by 2100, which is slightly less to almost twice as much compared with the fixation rate for the year 2000. We use the following key drivers of change, varying between scenarios: population growth, consumption of animal protein, agricultural efficiency improvement and additional biofuel production. Further anthropogenic nitrogen fixation for production of materials such as explosives or plastics and from combustion are projected to remain considerably smaller than that related to agriculture. While variation among the four scenarios is considerable, our interpretation of scenarios constrains the option space: several of the factors enhancing the anthropogenic impact on the nitrogen cycle may occur concurrently, but never all of them. A scenario that is specifically targeted towards limiting greenhouse gas emissions ends up as the potentially largest contributor to nitrogen fixation, as a result of large amounts of biofuels required and the fertilizer used to produce it. Other published data on nitrogen fixation towards 2100 indicate that our high estimates based on the RCP approach are rather conservative. Even the most optimistic scenario estimates that nitrogen fixation rate will remain substantially in excess of an estimate of sustainable boundaries by 2100.  相似文献   

8.
With down-scaled output from two General Circulation Models (the Geophysical Fluid Dynamics Laboratory, or GFDL, and the Parallel Climate Model, or PCM) and two emissions scenarios (A2 and B1), we project future trends in temperature and precipitation for the Tahoe basin. With the GFDL, we also project drought conditions and (through the use of a distributed hydrologic model) flood frequency. The steepest trend (GFDL with A2) indicates a 4–5°C warming by the end of the 21st century. Trends in annual precipitation are more modest with a dip in the latter half of the 21st century indicated by the GFDL/A2 case, but not the others. Comparisons with the Palmer Drought Severity Index show that drought will increase, in part due to the declining role of the snowpack as a reservoir for soil moisture replenishment. Analysis of flood frequency for the largest watershed in the basin indicates that the magnitude of the 100-yr flood could increase up to 2.5-fold for the middle third of the century, but decline thereafter as the climate warms and dries. These trends have major implications for the management of land and water resources in the Tahoe basin, as well as for design and maintenance of infrastructure.  相似文献   

9.
Snowfall changes in mountain areas in response to anthropogenic forcing could have widespread hydrological, ecological and economic impacts. In this paper, the robustness of snowfall changes over the French Alps projected during the 21st century and the associated uncertainties are studied. In particular, the role of temperature changes on snowfall changes is investigated. Those issues are tackled through the analysis of the results of a very large ensemble of high-resolution regional climate projections, obtained either through dynamical or statistical downscaling. We find that, at the beginning and at the end of the cold season extending from November to March (included), temperature change is an important source of spread in snowfall changes. However, no link is found between temperature and snowfall changes in January and February. At the beginning and at the end of the cold season, the rate of change in snowfall per Kelvin does not depend much on the bias correction step, the period or the greenhouse gas scenario but mostly on the downscaling method and the climate models, the latter uncertainty source being dominant.  相似文献   

10.
11.
We provide an assessment of surface temperature changes in mountainous areas of the world using a set of climate projections at a 0.5° resolution for two 30-year periods (2040–2069 and 2070–2099), using four Intergovernmental Panel for Climate Change (IPCC) emission scenarios and five AOGCM. Projected average temperature changes varied between +3.2 °C (+0.4 °C/per decade) and +2.1 °C (+0.26 °C/per decade) for 2055 and +5.3 °C (+0.48 °C/per decade) and +2.8 °C for 2085 (+0.25 °C/per decade). The temperature is expected to rise by a greater amount in higher northern latitude mountains than in mountains located in temperate and tropical zones. The rate of warming in mountain systems is projected to be two to three times higher than that recorded during the 20th century. The tendency for a greater projected warming in northern latitude mountain systems is consistent across scenarios and is in agreement with observed trends. In light of these projections, warming is considered likely to affect biodiversity (e.g., species extinctions, changes in the composition of assemblages), water resources (e.g., a reduction in the extent of glaciated areas and snow pack), and natural hazards (e.g., floods). Accurate estimate of the effects of climate change in mountain systems is difficult because of uncertainties associated with the climate scenarios and the existence of non-linear feedbacks between impacts.  相似文献   

12.
13.
14.
Arctic climate change in 21st century CMIP5 simulations with EC-Earth   总被引:2,自引:2,他引:2  
The Arctic climate change is analyzed in an ensemble of future projection simulations performed with the global coupled climate model EC-Earth2.3. EC-Earth simulates the twentieth century Arctic climate relatively well but the Arctic is about 2 K too cold and the sea ice thickness and extent are overestimated. In the twenty-first century, the results show a continuation and strengthening of the Arctic trends observed over the recent decades, which leads to a dramatically changed Arctic climate, especially in the high emission scenario RCP8.5. The annually averaged Arctic mean near-surface temperature increases by 12 K in RCP8.5, with largest warming in the Barents Sea region. The warming is most pronounced in winter and autumn and in the lower atmosphere. The Arctic winter temperature inversion is reduced in all scenarios and disappears in RCP8.5. The Arctic becomes ice free in September in all RCP8.5 simulations after a rapid reduction event without recovery around year 2060. Taking into account the overestimation of ice in the twentieth century, our model results indicate a likely ice-free Arctic in September around 2040. Sea ice reductions are most pronounced in the Barents Sea in all RCPs, which lead to the most dramatic changes in this region. Here, surface heat fluxes are strongly enhanced and the cloudiness is substantially decreased. The meridional heat flux into the Arctic is reduced in the atmosphere but increases in the ocean. This oceanic increase is dominated by an enhanced heat flux into the Barents Sea, which strongly contributes to the large sea ice reduction and surface-air warming in this region. Increased precipitation and river runoff lead to more freshwater input into the Arctic Ocean. However, most of the additional freshwater is stored in the Arctic Ocean while the total Arctic freshwater export only slightly increases.  相似文献   

15.
Summary The first GCM climate change projections to include dynamic vegetation and an interactive carbon cycle produced a very significant amplification of global warming over the 21st century. Under the IS92a business as usual emissions scenario CO2 concentrations reached about 980ppmv by 2100, which is about 280ppmv higher than when these feedbacks were ignored. The major contribution to the increased CO2 arose from reductions in soil carbon because global warming is assumed to accelerate respiration. However, there was also a lesser contribution from an alarming loss of the Amazonian rainforest. This paper describes the phenomenon of Amazonian forest dieback under elevated CO2 in the Hadley Centre climate-carbon cycle model.  相似文献   

16.
新疆未来暖湿化的预估分析可为区域气候变化减缓和适应提供重要的科学基础。国际耦合模式比较计划第六阶段(CMIP6)全球气候模式在三种共享社会经济路径(SSPs)下的结果显示,新疆地区未来2021~2100年总体呈现气温升高、降水增加的“暖湿化”现象,但这种变化的具体数值和空间分布存在一定差异。其中SSP2-4.5情景下,相对于1995~2014年,预估2021~2040年新疆地区年平均气温将升高1.2℃左右,年平均降水将增加6.8%。对极端事件的预估结果表明,新疆地区未来暖事件将增加,冷事件将减少;极端强降水事件将增多,且高排放情景下的增加更为显著。新疆地区的未来预估分析,将有助于对新疆地区灾害风险时空变化格局的认识,对未来农业方面等风险防范也有重要的指示作用。  相似文献   

17.
21世纪中国东北地区气候变化预估   总被引:11,自引:3,他引:11       下载免费PDF全文
利用各国政府间气候变化专门委员会(IPCC)第4次科学评估报告中全球气候系统模式组考虑人类排放情景的计算结果,计算与分析了多个气候模式对21世纪中国东北地区气候变化的集成预估结果。多模式集成预估结果表明:到21世纪后期,由于人类排放增加的影响,中国东北地区气温将可能较目前变暖3.0℃或以上,降水将可能增加。需要注意这种气候变化对中国东北地区社会经济的长远影响。  相似文献   

18.
Presented are the results of studying the spatial correlations between the air temperature over the European part of Russia and the sea surface temperature in different parts of the Atlantic, Pacific, and Indian oceans. The analysis of correlations demonstrated the existence of synchronous variations. Depending on the area, these variations can be in phase or in antiphase, that is manifested in the presence of positive and negative teleconnections. Perhaps, the obtained statistical teleconnections are the effects of some global natural fluctuation processes of the climate system taking place synchronously throughout the globe and controlled by the general mechanism.  相似文献   

19.
We analyze a mini ensemble of regional climate projections over the CORDEX Africa domain carried out with RegCM4 model as part of the Phase I CREMA experiment (Giorgi 2013). RegCM4 is driven by the HadGEM2-ES and MPI-ESM global models for the RCP8.5 and RCP4.5 greenhouse gas and aerosol concentration scenarios. The focus of the analysis is on seasonal and intraseasonal monsoon characteristics. We find two prominent change signals. Over West Africa and the Sahel MPI produces a forward shift in the monsoon season in line with previous findings, and this shift is also simulated by the RegCM4. Furthermore, the regional model produces a widespread decrease of monsoon precipitation (when driven by both MPI and HadGEM) associated with decreased easterly wave activity in the 6–9 days regime and with soil moisture-precipitation interactions. South of the equator we find an extension of the dry season with delayed onset and anticipated recession of the monsoon and a narrowing and strengthening of the ITCZ precipitation band. This signal is consistent in all global and regional model projections, although with different spatial detail. We plan to enlarge this mini-ensemble as a further contribution to the CORDEX project to better assess the robustness of the signals found in this paper.  相似文献   

20.
Emily BLACK 《大气科学进展》2024,(2):209-220+387-404
Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop cultivation. Increases in the frequency of these rare events in a future warmer climate would have significant societal impact. This study uses an ensemble of 10 Coupled Model Intercomparison Project(CMIP) models to investigate the projected change in agricultural flash drought dur...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号