首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A subset of world ocean monthly mean temperature climatology generated by Levitus and Boyer (1994), is utilised to describe the observed seasonal variability of the characteristics of the near-surface isothermal layer and thermocline for the entire tropical Indian Ocean (TIO). The most salient features of the observed annual cycle are described in terms of amplitude and phase of the annual and semi-annual frequencies employing Fourier analysis technique. On the annual mode, the near-surface isothermal layer depth (ILD), exhibits larger variability away from the equator with peak values in the northernmost Arabian Sea, the northernmost Bay of Bengal and the southern TIO, while on the semi-annual mode, it shows larger variability in the central Arabian Sea. The variability of the near-surface isothermal layer temperature (ILT), on the annual mode, is very weak in the warmpool region, and increases with latitude, while on the semi-annual mode, it shows larger variability in the northwestern Arabian Sea. The variability of 20°C isotherm topography (D20), on the annual mode, is weakest in the equatorial region and largest in the coastal regions of the Arabian Sea and the Bay of Bengal and in the southern T10, while on the semi-annual mode, it is prominent in the eastern and western equatorial regions. The thermocline gradient (TG) is very sharp below the warmpool region and diffuses meridionally. On the annual mode, it shows larger variability in the southern TIO, off Somalia and northernmost Arabian Sea, while on the semiannual mode, it shows larger variability in the southwestern Arabian Sea and eastern equatorial Indian Ocean. The relationship between near-surface isothermal layer and thermocline characteristics over an annual cycle are explored through correlation analysis. The correlation between ILD and ILT is strong over much of the basin with the exception of the equatorial and coastal upwelling/downwelling zones where internal ocean dynamics are important. In the southern TIO, entrainment of colder waters appears to be important in maintaining the annual cycle of ILT as strong correlation is noticed between ILT and TG. In the Indo-Pacific throughflow region and another region west of it, the annual Rossby waves appear to control D20, as correlations between D20 and other fields are strong in these regions. A similar strong correlation between D20 and ILD is also noticed in the southeastern Arabian Sea where mode-2 Rossby waves identified in numerical model solutions.With 5 Figures  相似文献   

2.
In the present study, interannual fluctuations of the mixed layer depth (MLD) in the tropical Indian Ocean are investigated from a long-term (1960–2007) eddy permitting numerical simulation and a new observational dataset built from hydrographic in situ data including Argo data (1969–2008). Both datasets show similar interannual variability patterns in relation with known climate modes and reasonable phase agreement in key regions. Due to the scarcity of the observational dataset, we then largely rely on the model to describe the interannual MLD variations in more detail. MLD interannual variability is two to four times smaller than the seasonal cycle. A large fraction of MLD interannual variations is linked to large-scale climate modes, with the exception of coastal and subtropical regions where interannual signature of small-scale structures dominates. The Indian Ocean Dipole is responsible for most variations in the 10°N–10°S band, with positive phases being associated with a shallow MLD in the equatorial and south-eastern Indian Ocean and a deepening in the south-central Indian Ocean. The El Niño signature is rather weak, with moderate MLD shoaling in autumn in the eastern Arabian Sea. Stronger than usual monsoon jets are only associated with a very modest MLD deepening in the southern Arabian Sea in summer. Finally, positive Indian Ocean Subtropical Dipoles are associated with a MLD deepening between 15 and 30°S. Buoyancy fluxes generally appear to dominate MLD interannual variations except for IOD-induced signals in the south-central Indian Ocean in autumn, where wind stirring and Ekman pumping dominate.  相似文献   

3.
4.
Decadal and interannual variability of the Indian Ocean Dipole   总被引:1,自引:1,他引:1  
This study investigates the decadal and interannual variability of the Indian Ocean Dipole (IOD). It is found that the long-term IOD index displays a decadal phase variation. Prior to 1920 negative phase dominates but after 1960 positive phase prevails. Under the warming background of the tropical ocean, a larger warming trend in the western Indian Ocean is responsible for the decadal phase variation of the IOD mode. Due to reduced latent heat loss from the local ocean, the western Indian Ocean warming may be caused by the weakened Indian Ocean westerly summer monsoon. The interannual air-sea coupled IOD mode varies on the background of its decadal variability. During the earlier period (1948-1969), IOD events are characterized by opposing SST anomaly (SSTA) in the western and eastern Indian Ocean, with a single vertical circulation above the equatorial Indian Ocean. But in the later period (1980-2003), with positive IOD dominating, most IOD events have a zonal gradient perturbation on a uniform positive SSTA. However, there are three exceptionally strong positive IOD events (1982, 1994, and 1997), with opposite SSTA in the western and eastern Indian Ocean, accompanied by an El Nifio event. Consequently, two anomalous reversed Walker cells are located separately over the Indian Ocean and western-eastern Pacific; the one over the Indian Ocean is much stronger than that during other positive IOD events.  相似文献   

5.
The variability of the Indian Ocean on interannual and decadal timescales is investigated in observations, coupled model simulation and model experiment. The Indian Ocean Dipole (IOD) mode was specifically analyzed using a data-adaptive method. This study reveals one decadal mode and two interannual modes in the sea surface temperature (SST) of the IOD. The decadal mode in the IOD is associated with the Pacific Decadal Oscillation (PDO) of the North Pacific SST. The two interannual modes are related to the biennial and canonical components of El Niño-Southern Oscillation (ENSO), consistent with previous studies. This study hypothesizes that the relation between the Indian Ocean and the North Pacific on decadal scale may be through the northerly winds from the western North Pacific. The long simulation of Community Climate System Model version 4 also indicates the presence of IOD modes associated with the decadal PDO and canonical ENSO modes. However, the model fails to simulate the biennial ENSO mode in the Indian Ocean. The relation between the Indian Ocean and North Pacific Ocean is further supported by the regionally de-coupled model experiment.  相似文献   

6.
We use a heat- and salt-conserving ocean state estimation product to study the seasonal cycles of the mixed layer (ML) temperature (MLT) and salinity (MLS) balances over the southwestern tropical Indian Ocean (SWTIO) thermocline ridge (STR; 50°–75°E, 12°–5°S). For seasonal MLT, surface heat flux and ocean processes are both important. They tend to re-enforce each other during peak cooling (May–June) and warming (November) periods, but not during transition periods. The dominant ocean process is wind-driven vertical mixing. It is modulated by the variable strength of the monsoon winds (which affect the vertical diffusivity), and to a lesser extent by variability of thermocline depth (which influences the vertical stratification across the ML base). For example, thermocline shoaling in April–July alters the vertical stratification near the ML base; thus, when the monsoon winds heighten (June–September) and the vertical diffusivity increases (deepening the ML base), relatively cool subsurface water is near the ML base and easily incorporated into the ML by vertical mixing. However, vertical advection as a direct response to thermocline shoaling has little affect on MLT. This explains why MLT and thermocline depth are not positively correlated here on the seasonal timescale (as they are on the interannual timescale). Meridional advection associated with Ekman transport driven by the monsoon winds plays a secondary role. Seasonal MLS, however, is dominated by meridional advection. Vertical process effects on MLS are small, due to a weak salinity gradient near the ML base throughout the year.  相似文献   

7.
The interannual variability in the tropical Indian Ocean, and in particular the Indian Ocean dipole mode (IODM), is investigated using both observations and a multi-decadal simulations performed by the coupled atmosphere-ocean general circulation model SINTEX. Overall, the characteristics of the simulated IODM are close to the features of the observed mode. Evidence of significant correlations between sea level pressure anomalies in the southeastern Indian Ocean and sea surface temperature anomalies in the tropical Indian and Pacific Oceans have been found both in observations and a multi-decadal simulation. In particular, a positive SLP anomaly in the southeastern part of the basin seems to produce favorable conditions for the development of an IODM event. The role played by the ocean dynamics both in the developing and closing phases of the IODM events is also investigated. Our results suggest that, during the developing phase, the heat content and SST variability associated with the IODM are influenced by a local response of the ocean to the winds, and a remote response with the excitation of Kelvin and Rossby waves. Ocean wave dynamics appear to be important also during the dying phase of the IODM, when equatorial downwelling Kelvin waves transport positive heat content anomalies from the western to the eastern part of the basin, suppressing the zonal heat content anomaly gradient. The results obtained from the model suggest a mechanism for the IODM. This mechanism is generally consistent with the characteristics of the observed IODM. Furthermore, it might give some clue in understanding the correlation between IODM and ENSO activity found both in the model and in the observations.  相似文献   

8.
The empirical orthogonal function (EOF) analysis of subsurface temperature shows a dominant north-south mode of interannual variability in the Tropical Indian Ocean (TIO) at around 100 m depth (thermocline). This subsurface mode (SSM) of variability evolves in September-November (SON) as a response to Indian Ocean Dipole and intensifies during December-February (DJF) reinforced by El Niño and Southern Oscillation (ENSO) forcing. The asymmetry in the evolution of positive and negative phases of SSM and its impacts on the modulation of surface features are studied. The asymmetry in the representation of anomalous surface winds along the equator and off-equatorial wind stress curl anomalies are primarily responsible for maintaining the asymmetry in the subsurface temperature through positive and negative phases of the SSM. During the positive phase of SSM, downwelling Rossby waves generated by anticyclonic wind stress curl propagate towards the southwestern TIO (SWTIO), the thermocline ridge region of mean upwelling. The warmer subsurface water associated with the downwelling Rossby waves upwells in the region of mean upwelling and warms the surface resulting in strong subsurface-surface coupling. Such interaction processes are however weak during the negative phase of SSM. The asymmetry in the subsurface-surface interaction during the two phases of SSM and its impact on the modulation of surface features of TIO are also reported. In addition to the ENSO forcing, self-maintenance of SSM during DJF season is evident in the positive SSM (PSSM) years through modulation of subsurface surface coupling and air-sea coupling. This positive feedback during PSSM years is maintained by the deepening thermocline, warm SSTs and convection. The asymmetry in the thermocline evolution is more evident in the SWTIO and southern TIO.  相似文献   

9.
Interannual variations of subsurface influence on SST in the Indian Ocean show strong seasonality. The subsurface influence on SST confines to the southern Indian Ocean (SIO) in boreal winter and spring; it is observed on both sides of the equator in boreal summer and fall. Interannual long Rossby waves are at the heart of this influence, and contribute significantly to the coupled climate variability in the tropical Indian Ocean (TIO). Principal forcing mechanism for the generation of these interannual waves in the Indian Ocean and the relative influence of two dominant interannual signals in the tropics, namely El Niño and Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), are also discussed. Two distinct regions dominated by either of the above climate signals are identified. IOD dominates the forcing of the off-equatorial Rossby waves, north of 10°S, and the forcing comes mainly from the anomalous Ekman pumping associated with the IOD. However, after the demise of IOD activity by December, Rossby waves are dominantly forced by ENSO, particularly south of 10°S.It is found that the subsurface feedback in the northern flank of the southern Indian Ocean ridge region (north of 10°S) significantly influences the central east African rainfall in boreal fall. The Indian Ocean coupled process further holds considerable capability of predicting the east African rainfall by one season ahead. Decadal modulation of the subsurface influence is also noticed during the study period. The subsurface influence north of 10°S coherently varies with the IOD, while it varies coherently with the ENSO south of this latitude.  相似文献   

10.
The shallow meridional overturning circulation (upper 1000 m) in the northern Indian Ocean and its interannual variability are studied, based on a global ocean circulation model (MOM2) with an integration of 10 years (1987-1996). It is shown that the shallow meridional overturning circulation has a prominent seasonal reversal characteristic. In winter, the flow is northward in the upper layer and returns southward at great depth. In summer, the deep northward inflow upwells north of the equator and returns southward in the Ekman layer. In the annual mean, the northward inflow returns through two branches: one is a southward flow in the Ekman layer, the other is a flow that sinks near 10°N and returns southward between 500 m and 1000 m. There is significant interannual variability in the shallow meridional overturning circulation, with a stronger (weaker) one in 1989 (1991) and with a period of about four years. The interannual variability of the shallow meridional overturning circulation is intimately r  相似文献   

11.
采用1951—2012年GPCP、中国160站台站降水资料及NOAA海表温度资料,分析了中国东部夏季降水及热带印度洋偶极子(IOD)的年际变化特征,以及两者的年代际变化关系。结果表明,中国东部夏季降水主要呈现两种模态分布,即"+-+"三极型和"-+"偶极型。并且在1953—1973年和2002—2012年中国东部夏季降水分别存在准2 a和4 a的震荡周期,年际变化明显。相关性分析发现,夏季IOD时间序列与中国东部夏季降水场的第三模态所对应的时间序列场呈负相关关系,且通过了信度为0.05的显著性检验,说明夏季IOD与中国东部夏季降水第三模态相关性较好。  相似文献   

12.
The first two leading modes of interannual variability of sea surface temperature in the Tropical Indian Ocean (TIO) are governed by El Niño Southern Oscillation and Indian Ocean Dipole (IOD) respectively. TIO subsurface however does not co-vary with the surface. The patterns of the first mode of TIO subsurface temperature variability and their vertical structure are found to closely resemble the patterns of IOD and El Niño co-occurrence years. These co-occurrence years are characterized by a north–south subsurface dipole rather than a conventional IOD forced east–west dipole. This subsurface dipole is forced by wind stress curl anomalies, driven mainly by meridional shear in the zonal wind anomalies. A new subsurface dipole index (SDI) has been defined in this study to quantify the intensity of the north–south dipole mode. The SDI peaks during December to February (DJF), a season after the dipole mode index peaks. It is found that this subsurface north–south dipole is a manifestation of the internal mode of variability of the Indian Ocean forced by IOD but modulated by Pacific forcing. The seasonal evolution of thermocline, subsurface temperature and the corresponding leading modes of variability further support this hypothesis. Positive wind stress curl anomalies in the south and negative wind stress curl anomalies in the north of 5°S force (or intensify) downwelling and upwelling waves respectively during DJF. These waves induce strong subsurface warming in the south and cooling in the north (especially during DJF) and assist the formation and/or maintenance of the north–south subsurface dipole. A thick barrier layer forms in the southern TIO, supporting the long persistence of anomalous subsurface warming. To the best of our knowledge the existence of such north–south subsurface dipole in TIO is being reported for the first time.  相似文献   

13.
Based on the Simple Ocean Data Assimilation (SODA) reanalysis product, the interannual variability of the upper-ocean ITF volume transport from 1958 to 2001 is investigated. The wavelet analysis shows a second prominent interannual oscillation with a period of about 2–4 years. To reveal any relationship between this band-scale oscillation of the upper-ocean ITF and Indian Ocean Dipole (IOD), correlation and wavelet analyses are used. The correlation coefficient between the upper-ocean ITF and IOD reaches –0.35 with the upper-ocean ITF lagging the IOD index by 8 months. The dipole structure of IOD event is reproduced by the correlation with the upper-ocean ITF lagging the SST anomaly over the tropical Indian Ocean by 8 months from 1958 to 2001. The upper-ocean ITF and IOD show high coherency from about 1975 to 2001. The fact that the wavelet power spectrum of the upper-ocean ITF shows similar structure to that of IOD index supports this high coherency. These analyses suggest that the 2–4-year band-scale oscillation of the upper-ocean ITF is uniquely related to IOD over the tropical Indian Ocean.  相似文献   

14.
Tropical cyclones (TCs) over Southeast Indian Ocean (SEIO) have the notable interannual variability caused by ENSO and Indian Ocean Dipole (IOD). In the September–November of El Niño and October–November of positive IOD (PIOD), SEIO TCs is far less than its climatology. However, it is hard to separately understand El Niño and PIOD's impact on SEIO TCs due to their similar occurrence time and time scale. Unlike El Niño and PIOD, SEIO TCs is remarkably more than its climatology only in September–November of negative IOD (NIOD) instead of La Niña. Consequently, it is concluded NIOD mainly affects SEIO TCs’ increase. Diagnose results suggest the relative humidity (RH) contributes mostly to the TCs’ increase, vertical wind shear provides the secondary positive contribution, vorticity term also makes a weak positive contribution and PI term's contribution even may be negligible. The study still uncovers the process of RH change: NIOD reaches its peak period and changes atmosphere circulation to make a positive low-level vorticity anomaly over SEIO. Vorticity anomaly strengthens upward motion. The vertical velocity anomaly and climatogical specific humidity (SH) work together to make vertical advection play a dominant role in SH variation. SH's change mainly reflects in RH variation. Eventually, all of these associates with NIOD lead to more SEIO TCs in September–November and the significance of difference is above 99%.  相似文献   

15.
El Ni?o Southern Oscillation (ENSO) and given phases of the Madden?CJulian Oscillation (MJO) show similar regional signatures over the Equatorial Indian Ocean, consisting in an enhancement or reversing of the convective and dynamic zonal gradients between East Africa and the Maritime Continent of Indonesia. This study analyses how these two modes of variability add or cancel their effects at their respective timescales, through an investigation of the equatorial cellular circulations over the central Indian Ocean. Results show that (1) the wind shear between the lower and upper troposphere is related to marked regional rainfall anomalies and is embedded in larger-scale atmospheric configurations, involving the Southern Oscillation; (2) the intraseasonal (30?C60?days) and interannual (4?C5?years) timescales are the most energetic frequencies that modulate these circulations, confirming the implication of the MJO and ENSO; (3) extreme values of the Indian Ocean wind shear result from the combination of El Ni?o and the MJO phase enhancing atmospheric convection over Africa, or La Ni?a and the MJO phase associated with convective activity over the Maritime Continent. Consequences for regional rainfall anomalies over East Africa and Indonesia are then discussed.  相似文献   

16.
Mohapatra  Sandeep  Gnanaseelan  C.  Deepa  J. S. 《Climate Dynamics》2020,54(7):3475-3487
Climate Dynamics - The Tropical Indian Ocean (TIO) is seen to exhibit robust warming after the 1950s. Most of the previous studies on the Indian Ocean (IO) surface and subsurface temperature...  相似文献   

17.
18.
19.
20.
The low-frequency atmosphere-ocean coupled variability of the southern Indian Ocean(SIO) was investigated using observation data over 1958-2010.These data were obtained from ECMWF for sea level pressure(SLP) and wind,from NCEP/NCAR for heat fluxes,and from the Hadley Center for SST.To obtain the coupled air-sea variability,we performed SVD analyses on SST and SLP.The primary coupled mode represents 43% of the total square covariance and is featured by weak westerly winds along 45-30 S.This weakened subtropical anticyclone forces fluctuations in a well-known subtropical dipole structure in the SST via wind-induced processes.The SST changes in response to atmosphere forcing and is predictable with a lead-time of 1-2 months.Atmosphere-ocean coupling of this mode is strongest during the austral summer.Its principle component is characterized by mixed interannual and interdecadal fluctuations.There is a strong relationship between the first mode and Antarctic Oscillation(AAO).The AAO can influence the coupled processes in the SIO by modulating the subtropical high.The second mode,accounting for 30% of the total square covariance,represents a 25-year period interdecadal oscillation in the strength of the subtropical anticyclone that is accompanied by fluctuations of a monopole structure in the SST along the 35-25 S band.It is caused by subsidence of the atmosphere.The present study also shows that physical processes of both local thermodynamic and ocean circulation in the SIO have a crucial role in the formation of the atmosphere-ocean covariability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号