首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Land use and land cover (LULC) over Africa have changed substantially over the last 60 years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties of model simulated response in the African monsoon system and Sahel precipitation due to LULC change using a set of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Although the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature. The relationship between the model responses to LULC change and the climatologists of the control simulations is also examined. Simulations that are climatologically too dry or too wet compared to observations and reanalyses have weak response to land use change because they are in moisture or energy limited regimes respectively. The ones that lie in between have stronger response to the LULC changes, showing a more significant role in land–atmosphere interactions. Much of the change in precipitation is related to changes in circulation, particularly to the response of the intensity and latitudinal position of the African Easterly Jet, which varies with the changes in meridional surface temperature gradients. The study highlights the need for measurements of the surface fluxes across the meridional cross-section of the Sahel to evaluate models and thereby allowing human impacts such as land use change on the monsoon to be projected more realistically.  相似文献   

2.
This article presents the results of a study of the relationship between rainfall and Normalized Difference Vegetation Index (NDVI) in East Africa and the Sahel. Monthly data for the years 1982 to 1985 have been analyzed. We have evaluated NDVI-rainfall relationships by vegetation type, using the major formations described by White (1983). In the article, a comparison of the differential response of vegetation growth to rainfall in the two study regions is emphasized. The most important conclusions of our research are as follows:
  1. The spatial patterns of annually-integrated NDVI closely reflect mean annual rainfall.
  2. There is a good relationship between rainfall variations and NDVI on seasonal and interannual time scales for areas where mean annual rainfall ranges from approximately 200 to 1200 mm.
  3. In most cases, NDVI is best correlated with the rainfall total for the concurrent plus two antecedent months; the correlation is better in the Sahel than in East Africa.
  4. The ratios of NDVI to rainfall are considerably higher in East Africa than in the Sahel.
  5. Mean annually-integrated NDVI is linearly related to mean annual rainfall in the Sahel. In East Africa the relationship is approximately log-linear; above some threshold value of rainfall, NDVI values level off and vary minimally with rainfall.
Two possible explanations of this last conclusion are suggested: above this threshold, rainfall is no longer the limiting factor in vegetation growth and/or NDVI is not a good indicator of vegetation growth. The latter is a likely possibility since NDVI directly reflects photosynthetic activity and becomes a poor indicator of biomass (i.e., growth) as high canopy densities are reached. The NDVI-rainfall relationship for East Africa is markedly similar to the relationship between NDVI and Leaf Area Index demonstrated by Sellers (1985) and Asrar et al. (1984).  相似文献   

3.
Most coupled general circulation models suffer from a prominent warm sea surface temperature bias in the southeast tropical Atlantic Ocean off the coast of Africa. The origin of the bias is not understood and remains highly controversial. Previous studies suggest that the origin of the bias stems from systematic errors of atmospheric models in simulating surface heat flux and coastal wind, or poorly simulated coastal upwelling. In this study, we show, using different reanalysis and observational data sets combined with a set of eddy-resolving regional ocean model simulations, that systematic errors in ocean models also make a significant contribution to the bias problem. In particular (1) the strong warm bias at the Angola-Benguela front that is maintained by the local wind and the convergence of Angola and Benguela Currents is caused by an overshooting of the Angola Current in ocean models and (2) the alongshore warm bias to the south of the front is caused by ocean model deficiencies in simulating the sharp thermocline along the Angola coast, which is linked to biases in the equatorial thermocline, and the complex circulation system within the Benguela upwelling zone.  相似文献   

4.
The regional model REMO, which is the atmospheric component of the coupled atmosphere–ice–ocean–land climate model system BALTIMOS, is tested with respect to its ability to simulate the atmospheric boundary layer over the open and ice-covered Baltic Sea. REMO simulations are compared to ship, radiosonde, and aircraft observations taken during eight field experiments. The main results of the comparisons are: (1) The sharpness and strength of the temperature inversion are underestimated by REMO. Over open water, this is connected with an overestimation of cloud coverage and moisture content above the inversion. (2) The vertical temperature stratification in the lowest 200 m over sea ice is too stable. (3) The horizontal inhomogeneity of sea ice concentration as observed by aircraft could not be properly represented by the prescribed ice concentration in REMO; large differences in the surface heat fluxes arise especially under cold-air advection conditions. The results of the comparisons suggest a reconsideration of the parameterization of subgrid-scale vertical exchange both under unstable und stable conditions.  相似文献   

5.
Monin–Obukhov similarity theory (MOST) is commonly used to model the wind-speed profile at altitudes relevant to wind-power production (e.g. 10–200 m). Though reasonably accurate for unstable to weakly stable stratification, this approach becomes less accurate under increasingly stable stratification, largely due to the constant-flux surface layer assumed by MOST becoming shallower than the altitude range of interest. Furthermore, above the surface layer, the Coriolis force has a considerable influence on the wind-speed profile (in particular in the formation of low-level jets) that cannot be modelled using similarity theory. Our goal is to compare the accuracy of alternative extrapolation models that are more physically appropriate above the surface layer. Using data from the 213-m Cabauw meteorological tower in the Netherlands between July 2007 and June 2008, it is shown that MOST is accurate only at low altitudes and low stability, and breaks down at high altitudes and high stability. Local similarity is generally more accurate than MOST across all altitudes and stabilities, though the model requires turbulent flux data at multiple altitudes that is generally impractical. In contrast, a two-layer MOST–Ekman model is found to be comparable to the other models at low stability ranges and considerably more accurate in the high stability range, while requiring only a measure of surface stability and the geostrophic wind.  相似文献   

6.
The preparation of time- and space-dependent input surface parameters for the climate model REMO was one task of the Baltimos project “Validation of Boundary Layer Parameters and Extension of Boundary conditions of Climate Model REMO”. The leaf area index (LAI) is one of these parameters. It is used in REMO as defined value per month for each land-use class with a defined seasonal trend during the year. Since 1982 at the Institute of Meteorology of the Free University Berlin, a high-resolved AVHRR data set of the NOAA satellite has been available (1/100 degree, approximately 1?×?1 km at nadir in a geographic coordination system) (Koslowsky 1996). The vegetation periods of the years 1997 until 2001 were selected from the dataset to estimate the LAI within the Baltimos region on the basis of an algorithm by Sellers et al. (J Climate 9:706–737, 1996) and a modified United States Geological Survey (USGS) land-use classification. The calculated high-resolved NOAA LAI values were converted to the 1/6 degree grid of the REMO climate model. Then, they were compared to the fixed LAI values, which are used in the model.  相似文献   

7.
This study investigates the global warming response of the Walker Circulation and the other zonal circulation cells (represented by the zonal stream function), in CMIP3 and CMIP5 climate models. The changes in the mean state are presented as well as the changes in the modes of variability. The mean zonal circulation weakens in the multi model ensembles nearly everywhere along the equator under both the RCP4.5 and SRES A1B scenarios. Over the Pacific the Walker Circulation also shows a significant eastward shift. These changes in the mean circulation are very similar to the leading mode of interannual variability in the tropical zonal circulation cells, which is dominated by El Niño Southern Oscillation variability. During an El Niño event the circulation weakens and the rising branch over the Maritime Continent shifts to the east in comparison to neutral conditions (vice versa for a La Niña event). Two-thirds of the global warming forced trend of the Walker Circulation can be explained by a long-term trend in this interannual variability pattern, i.e. a shift towards more El Niño-like conditions in the multi-model mean under global warming. Further, interannual variability in the zonal circulation exhibits an asymmetry between El Niño and La Niña events. El Niño anomalies are located more to the east compared with La Niña anomalies. Consistent with this asymmetry we find a shift to the east of the dominant mode of variability of zonal stream function under global warming. All these results vary among the individual models, but the multi model ensembles of CMIP3 and CMIP5 show in nearly all aspects very similar results, which underline the robustness of these results. The observed data (ERA Interim reanalysis) from 1979 to 2012 shows a westward shift and strengthening of the Walker Circulation. This is opposite to what the results in the CMIP models reveal. However, 75 % of the trend of the Walker Circulation can again be explained by a shift of the dominant mode of variability, but here towards more La Niña-like conditions. Thus in both climate change projections and observations the long-term trends of the Walker Circulation seem to follow to a large part the pre-existing dominant mode of internal variability.  相似文献   

8.
Lin Feng  Tim Li  Weidong Yu 《Climate Dynamics》2014,43(7-8):2033-2042
The cause of severe droughts over the Southwest China (SWC) during the local dry season is investigated based on the station rainfall data and the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data during 1951–2010. The droughts are in general consistent with local anomalous descent in the middle troposphere. The diagnosis of the vertical motion (omega) equation indicates that the local descent is primarily maintained by the anomalous cold temperature advection processes. Both the advection of anomalous temperature by mean wind and the advection of mean temperature by anomalous wind contribute to maintaining the anomalous descent over the SWC region. A composite analysis shows that the circulation anomaly over SWC is induced by remote forcing from the tropical Pacific and North Atlantic Oceans. During La Niña years, enhanced heating over the Maritime Continent induces anomalous downward motion over SWC through the connection of local Hadley circulation. Adiabatic warming associated with the downward motion helps to set up and maintain the local anomalous anticyclone. Another possible route is through the North Atlantic-Asia teleconnection, in which downstream Rossby wave energy propagation plays a crucial role. A negative-phase North Atlantic Oscillation may trigger a large-scale wave train pattern that induces an anomalous anticyclone over the subtropical Asia and promotes the dry condition over SWC.  相似文献   

9.
Subtropical and extratropical proxy records of wind field, sea level pressure (SLP), temperature and hydrological anomalies from South Africa, Australia/New Zealand, Patagonian South America and Antarctica were used to reconstruct the Indo-Pacific extratropical southern hemisphere sea-level pressure anomaly (SLPa) fields for the Medieval Climate Anomaly (MCA ~700–1350 CE) and transition to the Little Ice Age (LIA 1350–1450 CE). The multivariate array of proxy data were simultaneously evaluated against global climate model output in order to identify climate state analogues that are most consistent with the majority of proxy data. The mean SLP and SLP anomaly patterns derived from these analogues illustrate the evolution of low frequency changes in the extratropics. The Indo-Pacific extratropical mean climate state was dominated by a strong tropical interaction with Antarctica emanating from: (1) the eastern Indian and south-west Pacific regions prior to 1100 CE, then, (2) the eastern Pacific evolving to the central Pacific La Niña-like pattern interacting with a +ve SAM to 1300 CE. A relatively abrupt shift to –ve SAM and the central Pacific El Niño-like pattern occurred at ~1300. A poleward (equatorward) shift in the subtropical ridge occurred during the MCA (MCA–LIA transition). The Hadley Cell expansion in the Australian and Southwest Pacific, region together with the poleward shift of the zonal westerlies is contemporaneous with previously reported Hadley Cell expansion in the North Pacific and Atlantic regions, and suggests that bipolar climate symmetry was a feature of the MCA.  相似文献   

10.
Atlantic and Pacific El Niño are the leading tropical oceanic variability phenomena at interannual timescales. Recent studies have demonstrated how the Atlantic Niño is able to influence on the dynamical processes triggering the development of the Pacific La Niña and vice versa. However, the stationarity of this interbasin connection is still controversial. Here we show for the first time that the Atlantic–Pacific Niños connection takes place at particular decades, coinciding with negative phases of the Atlantic Multidecadal Oscillation (AMO). During these decades, the Atlantic–Pacific connection appears as the leading coupled covariability mode between Tropical Atlantic and Pacific interannual variability. The mode is defined by a predictor field, the summer Atlantic Sea Surface Temperature (SST), and a set of predictand fields which represent a chain of atmospheric and oceanic mechanisms to generate the Pacific El Niño phenomenon: alteration of the Walker circulation, surface winds in western Pacific, oceanic Kelvin wave propagating eastward and impacting on the eastern thermocline and changes in the Pacific SST by internal Bjerknes feedback. We suggest that the multidecadal component of the Atlantic acts as a switch for El Niño prediction during certain decades, putting forward the AMO as the modulator, acting through changes in the equatorial Atlantic convection and the equatorial Pacific SST variability. These results could have a major relevance for the decadal prediction systems.  相似文献   

11.
Non-stationary extreme value analysis in a changing climate   总被引:1,自引:0,他引:1  
This paper introduces a framework for estimating stationary and non-stationary return levels, return periods, and risks of climatic extremes using Bayesian inference. This framework is implemented in the Non-stationary Extreme Value Analysis (NEVA) software package, explicitly designed to facilitate analysis of extremes in the geosciences. In a Bayesian approach, NEVA estimates the extreme value parameters with a Differential Evolution Markov Chain (DE-MC) approach for global optimization over the parameter space. NEVA includes posterior probability intervals (uncertainty bounds) of estimated return levels through Bayesian inference, with its inherent advantages in uncertainty quantification. The software presents the results of non-stationary extreme value analysis using various exceedance probability methods. We evaluate both stationary and non-stationary components of the package for a case study consisting of annual temperature maxima for a gridded global temperature dataset. The results show that NEVA can reliably describe extremes and their return levels.  相似文献   

12.
13.
A composite analysis of Northern Hemisphere’s mid-winter tropospheric anomalies under the conditions of strong and weak stratospheric polar vortex was performed on NCEP/NCAR reanalysis data from 1948 to 2013 considering, as additional grouping criteria, the coincidental states of major seasonally relevant climate phenomena, such as El Niño-Southern Oscillation (ENSO), Quasi Biennial Oscillation and strong volcanic eruptions. The analysis reveals that samples of strong polar vortex nearly exclusively occur during cold ENSO states, while a weak polar vortex is observed for both cold and warm ENSO. The strongest tropospheric and near-surface anomalies are found for warm ENSO and weak polar vortex conditions, suggesting that internal tropospheric circulation anomalies related to warm ENSO constructively superpose on dynamical effects from the stratosphere. Additionally, substantial differences are found between the continental winter warming patterns under strong polar vortex conditions in volcanically-disturbed and volcanically-undisturbed winters. However, the small-size samples obtained from the multi-compositing prevent conclusive statements about typical patterns, dominating effects and mechanisms of stratosphere-troposphere interaction on the seasonal time scale based on observational/reanalysis data alone. Hence, our analysis demonstrates that patterns derived from observational/reanalysis time series need to be taken with caution as they not always provide sufficiently robust constraints to the inferred mechanisms implicated with stratospheric polar vortex variability and its tropospheric and near-surface signature. Notwithstanding this argument, we propose a limited set of mechanisms that together may explain a relevant part of observed climate variability. These may serve to define future numerical model experiments minimizing the sample biases and, thus, improving process understanding.  相似文献   

14.
This study set out to model potential date palm distribution under current and future climate scenarios using an emission scenario, in conjunction with two different global climate models (GCMs): CSIRO-Mk3.0 (CS), and MIROC-H (MR), and to refine results based on suitability under four nonclimatic parameters. Areas containing suitable physicochemical soil properties and suitable soil taxonomy, together with land slopes of less than 10° and suitable land uses for date palm (Phoenix dactylifera) were selected as appropriate refining tools to ensure the CLIMEX results were accurate and robust. Results showed that large regions of Iran are projected as likely to become climatically suitable for date palm cultivation based on the projected scenarios for the years 2030, 2050, 2070, and 2100. The study also showed CLIMEX outputs merit refinement by nonclimatic parameters and that the incremental introduction of each additional parameter decreased the disagreement between GCMs. Furthermore, the study indicated that the least amount of disagreement in terms of areas conducive to date palm cultivation resulted from CS and MR GCMs when the locations of suitable physicochemical soil properties and soil taxonomy were used as refinement tools.  相似文献   

15.
This study proposes an overview of the main synoptic, medium-range and intraseasonal modes of convection and precipitation in northern spring (March–June 1979–2010) over West and Central Africa, and to understand their atmospheric dynamics. It is based on daily National Oceanic and Atmospheric Administration outgoing longwave radiation and Cloud Archive User Service Tb convection data, daily TRMM and Global Precipitation Climatology Project rainfall products and daily ERA-Interim reanalysis atmospheric fields. It is first shown that mesoscale convective systems can be modulated in terms of occurrences number and intensity at such time scales. Based on empirical orthogonal function analyses on the 2–90-day filtered data it is shown that the main mode of convective and rainfall variability is located along the Guinean coast with a moderate to weak extension over Central Africa. Corresponding regressed deseasonalised atmospheric fields highlight an eastward propagation of patterns consistent with convectively coupled equatorial Kelvin wave dynamics. Then a singular spectrum analysis combined with a Hierarchical Ascendant Classification enable to define objectively the main spectral bands of variability within the 2–90-day band, and highlight three main bands, 2–8-, 8–22- and 20–90-day. Within these three bands, space–time spectral decomposition is used to identify the relative impacts of convectively coupled equatorial Kelvin, Rossby and inertia–gravity waves, as well as Madden–Julian Oscillation (MJO) signal. It confirms that eastward propagating signals (convectively coupled equatorial Kelvin wave and MJO) are highly dominant in these convection and precipitation variability modes over the Guinean coast during northern spring. So, while rain-producing individual systems are moving westward, their activity are highly modulated by sub-regional and regional scales envelops moving to the east. This is a burning issue for operational forecasting centers to be able to monitor and predict such eastward propagating envelops of convective activity.  相似文献   

16.
By using the monthly ERA-40 reanalysis data and observed rainfall data, we investigated the effect of the Indian summer monsoon (ISM) on the South Asian High (SAH) at 200 hPa, and the role played by the SAH in summer rainfall variation over China. It is found that in the interannual timescale the east–west shift is a prominent feature of the SAH, with its center either over the Iranian Plateau or over the Tibetan Plateau. When the ISM is stronger (weaker) than normal, the SAH shifts westward (eastward) to the Iranian Plateau (Tibetan Plateau). The east–west position of SAH has close relation to the summer rainfall over China. A westward (eastward) location of SAH corresponds to less (more) rainfall in the Yangtze-Huai River Valley and more (less) rainfall in North China and South China. A possible physical process that the ISM affects the summer rainfall over China via the SAH is proposed. A stronger (weaker) ISM associated with more (less) rainfall over India corresponds to more (less) condensation heat release and anomalous heating (cooling) in the upper troposphere over the northern Indian peninsula. The anomalous heating (cooling) stimulates positive (negative) height anomalies to its northwest and negative (positive) height anomalies to its northeast in the upper troposphere, causing a westward (eastward) shift of the SAH with its center over the Iranian Plateau (Tibetan Plateau). As a result, an anomalous cyclone (anticyclone) is formed over the eastern Tibetan Plateau and eastern China in the upper troposphere. The anomalous vertical motions in association with the circulation anomalies are responsible for the rainfall anomalies over China. Our present study reveals that the SAH may play an important role in the effect of ISM on the East Asian summer monsoon.  相似文献   

17.
The gas-phase reaction of ClONO2 with HCl was investigated using two large-volume environmental chambers with analysis by in situ long pathlength Fourier transform infrared absorption spectroscopy. In these chambers the reaction was observed to proceed, at least in part, by heterogenous routes, and an upper limit to the rate constant for the homogeneous gas-phase reaction of geneous routes, and an upper limit to the rate constant for the homogeneous gas-phase reaction of $$k\left( {{\text{ClONO}}_{\text{2}} + {\text{HCl}}} \right) < 1.5 \times 10^{ - 19} {\text{ cm}}^{\text{3}} {\text{ molecule}}^{{\text{ - 1}}} {\text{ s}}^{{\text{ - 1}}}$$ Was derived at 298±2K. Assuming that this room-temperature upper limit to the rate constant is applicable to stratospheric temperatures, this homogeneous gas-phase reaction can be estimated to be of negligible importance as a ClONO2 loss process in the stratosphere.  相似文献   

18.
SST errors in the tropical Atlantic are large and systematic in current coupled general-circulation models. We analyse the growth of these errors in the region of the south-eastern tropical Atlantic in initialised decadal hindcasts integrations for three of the models participating in the Coupled Model Inter-comparison Project 5. A variety of causes for the initial bias development are identified, but a crucial involvement is found, in all cases considered, of ocean-atmosphere coupling for their maintenance. These involve an oceanic “bridge” between the Equator and the Benguela-Angola coastal seas which communicates sub-surface ocean anomalies and constitutes a coupling between SSTs in the south-eastern tropical Atlantic and the winds over the Equator. The resulting coupling between SSTs, winds and precipitation represents a positive feedback for warm SST errors in the south-eastern tropical Atlantic.  相似文献   

19.
Ground based measurements which were carried out in the Northern Sahel in southern Tunisia showed the following results:
  1. The albedo difference between ground and protected land is about 10%, half of the amount Charney (1975) used in his model.
  2. Bare soil is always warmer during times of bright sunshine than vegetated soil, which is in agreement with Jackson and Idso (1975). Temperature differences in excess of the 10 °C were observed between plants and the surrounding soil.
  3. For bare soil, the surface temperature increases with declining albedo. However the opposite holds true for plants. Here, when lowering the albedo, a decrease in temperature was found.
  4. In a sand dune field, the surface temperature depends strongly on the exposure. Surface temperature differences of 8 °C were observed for slopes of different exposures for measurements carried out around noon.
  相似文献   

20.
The Upper Brahmaputra River Basin is prone to natural disasters and environmental stresses (floods, droughts and bank erosion, delayed rainfall, among others) creating an environment of uncertainty and setting the basin back in terms of socio-economic development. The climate change literature shows that agriculture and ecosystems and their services are highly climate sensitive, yet they are the main sources of livelihood that supports a large proportion of residents of the tributaries of the Brahmaputra River Basin. The continuous depletion of ecosystems and loss of agricultural outputs resulting from environmental stressors has a substantial impact on the socio-economic wellbeing of the basins residents, particularly the vulnerable rural poor. This paper uses spatially explicit data from Census, Household Surveys and Earth Observation to develop a transferable methodological approach which investigates the extent of dependence on agriculture and ecosystems as a source of livelihood in the contrasting sub-basins of the Brahmaputra River in the State of Assam, India and Bhutan, and the risk to these livelihood dependencies in these sub-basins due to potential environmental impacts of climate change. The results from this study constitute a case study in the development of a systematic and spatially explicit set of tools that inform and assist policy makers in the appropriate interventions to secure the livelihood benefits of sustainably managed agriculture in the face of environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号