首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Against a backdrop of rising sea temperatures and ocean acidification which pose global threats to coral reefs, excess nutrients and turbidity continue to be significant stressors at regional and local scales. Because interventions usually require local data on pollution impacts, we measured ecological responses to sewage discharges in Surin Marine Park, Thailand. Wastewater disposal significantly increased inorganic nutrients and turbidity levels, and this degradation in water quality resulted in substantial ecological shifts in the form of (i) increased macroalgal density and species richness, (ii) lower cover of hard corals, and (iii) significant declines in fish abundance. Thus, the effects of nutrient pollution and turbidity can cascade across several levels of ecological organization to change key properties of the benthos and fish on coral reefs. Maintenance or restoration of ecological reef health requires improved wastewater management and run-off control for reefs to deliver their valuable ecosystems services.  相似文献   

2.
Cover of the main reef benthic groups, and abundances and taxonomic richness of octocorals were surveyed in the reefs of Hong Kong, and related to spatial and water quality gradients. Nutrient and particle concentrations are high throughout the area, with concentrations declining from the south towards the north-eastern region. Regression tree analyses showed that hard coral cover was most strongly related to water clarity, that macroalgal cover was highest in areas with high wave action and high water clarity, and that crustose coralline algae were negatively related to sedimentation. Octocoral communities (42 species in 23 genera) were dominated by zooxanthellae-free taxa; those few species with zooxanthellae were restricted to reefs with low wave action and high water clarity in the north-eastern region. The water quality gradient spans from conditions that are marginal for zooxanthellate octocorals while still supporting diverse scleractinian communities, towards an estuarine endpoint where zooxanthellate octocorals cease to exist and hard coral communities are reduced to a few resilient colonies. The data suggest that the types, abundances and richness of zooxanthellate octocorals, and the shift from zooxanthellate to azooxanthellate octocoral communities, may act as useful indicators of water clarity in regions where long-term water quality data are unavailable.  相似文献   

3.
Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef (One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 microM NH4+; 2.3 microM PO4(-3)) rapidly declined, reaching near-background levels (mean = 0.9 microM NH4+; 0.5 microM PO4(-3)) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 microM NH4+; 5.1 microM PO4(-3)) declining to means of 11.3 microM NH4+ and 2.4 microM PO4(-3) at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients. ENCORE has shown that reef organisms and processes investigated in situ were impacted by elevated nutrients. Impacts were dependent on dose level, whether nitrogen and/or phosphorus were elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment were visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs. inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies.  相似文献   

4.
A recent comprehensive survey covering 125 sites in Hong Kong waters recorded 29 soft coral species in 14 genera, 38 species of gorgonians in 19 genera and six species of black corals in two genera. Environmental variabilities based on water quality data collected by Hong Kong Environmental Protection Department were analyzed using multivariate statistics to find variables that are significantly correlated with coral distribution patterns. Eleven water quality zones with similar environmental variabilities were recognized, which could further be classified into five groups, namely Inner Bay, Outer Bay, Eastern, Western and Southern waters. LINKTREE analysis provided an overall trend indicating the importance of salinity, sediment and nutrient loadings in affecting octocoral and black coral distribution from west to east of Hong Kong waters, and from inner to outer bays. Furthermore, water turbidity and wave exposure could also affect the coral distribution patterns from north, northeast to southern waters.  相似文献   

5.
Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species with diverse life-history and stress-response patterns from a heavily exploited reef system, showed that proximity to potential sources of stressors may not always prove an adequate proxy for assigning potential risks to reef health, and that hypothesized patterns of coral cover, population size-structure, growth, and mortality are not always directly related to water quality gradients.  相似文献   

6.
7.
Inshore coral reefs adjacent to the wet tropics in North Queensland, Australia, are regularly exposed to flood plumes from coastal river systems. Changes in the nature of these plumes have been linked to the declining health of coral reefs in the region. The effect of flood plumes on the health of inshore corals was investigated by quantifying aspects of the demography of populations of corymbose and digitate Acropora at three groups of Island reefs along a gradient of exposure and decreasing water quality (High Island >Frankland's >Fitzroy). The size-structures of colonies, the rates of sexual recruitment, and the growth and survival of juveniles, all varied among the Island reefs. Juvenile and adult sized colonies were far more abundant at the Fitzroy Island reefs, than at the High or Frankland Island reefs that were more exposed to flood plumes. Additionally, there were up to eight times as many sexual recruits at the Fitzroy Island reefs, compared with the High Island reefs. However, the rates of growth and survival of the juvenile sized corals at the Fitzroy Island reefs were lower than at the more exposed reefs. The comparatively low abundance of adult corals at the exposed reefs is most likely due to their histories of disturbance from crown-of-thorns and coral bleaching, but the lack of subsequent recovery due to their low levels of larval recruitment. If a stock-recruitment relationship is typical for these groups of reefs, then the low rates of recruitment may be linked to the low density of adult colonies. Alternately, direct or indirect effects of chronic exposure to poor water quality may have resulted in less suitable substrata for larval settlement. We discuss these results and provide examples of how information about population structure and dynamics can be used in simple matrix models to quantify the current and future health of populations of corals under various scenarios.  相似文献   

8.
9.
This paper reviews and evaluates the current state of knowledge on the direct effects of terrestrial runoff on (1) the growth and survival of hard coral colonies, (2) coral reproduction and recruitment, and (3) organisms that interact with coral populations (coralline algae, bioeroders, macroalgae and heterotrophic filter feeders as space competitors, pathogens, and coral predators). The responses of each of these groups are evaluated separately against the four main water quality parameters: (1) increased dissolved inorganic nutrients, (2) enrichment with particulate organic matter, (3) light reduction from turbidity and (4) increased sedimentation. This separation facilitates disentangling and understanding the mechanisms leading to changes in the field, where many contaminants and many responses co-occur. The review also summarises geographic and biological factors that determine local and regional levels of resistance and resilience to degradation. It provides a conceptual aid to assess the kind of change(s) likely to occur in response to changing coastal water quality.  相似文献   

10.
The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management.  相似文献   

11.
Kenya     
The Kenya coast is bathed by the northward-flowing warm waters of the East Africa Coastal Current, located between latitudes 1 and 5° S. With a narrow continental shelf, the coastal marine environments are dominated by coral reefs, seagrass beds and mangroves, with large expanses of sandy substrates where river inputs from Kenya's two largest rivers, the Tana and Athi rivers, prevent the growth of coral reefs. The northern part of the coast is seasonally influenced by upwelling waters of the Somali Current, resulting in lower water temperatures for part of the year. The coast is made up of raised Pleistocene reefs on coastal plains and hills of sedimentary origin, which support native habitats dominated by scrub bush and remnant pockets of the forests that used to cover East Africa and the Congo basin. The marine environment is characterized by warm tropical conditions varying at the surface between 25°C and 31°C during the year, stable salinity regimes, and moderately high nutrient levels from terrestrial runoff and groundwater. The semi-diurnal tidal regime varies from 1.5 to 4 m amplitude from neap to spring tides, creating extensive intertidal platform and rocky-shore communities exposed twice-daily during low tides. Fringing reef crests dominate the whole southern coast and parts of the northern coast towards Somalia, forming a natural barrier to the wave energy from the ocean. Coral reefs form the dominant ecosystem along the majority of the Kenya coast, creating habitats for seagrasses and mangroves in the lagoons and creeks protected by the reef crests. Kenya's marine environment faces a number of threats from the growing coastal human population estimated at just under three million in 2000. Extraction of fish and other resources from the narrow continental shelf, coral reef and mangrove ecosystems increases each year with inadequate monitoring and management structures to protect the resource bases. Coastal development in urban and tourist centers proceeds with little regard for environmental and social impacts. With a faltering economy, industrial development in Mombasa proceeds with few checks on pollution and other impacts. In 1998 Kenya's coral reefs suffered 50–80% mortality from the El Niño-related coral bleaching event that affected the entire Indian Ocean. The institutional, human resource and legal infrastructure for managing the coastal environment has in the past been low, however these are rapidly improving with the revitalization of national institutions and the passing in 1999 of an Environment Act. Marine Protected Areas are the key tool currently used in management of marine ecosystems, and focus principally on coral reefs and biodiversity protection. New initiatives are underway to improve application of fisheries regulations, and to use Integrated Coastal Area Management (ICAM) as a framework for protecting marine and coastal environments.  相似文献   

12.
Dynamite damage was investigated on 60 reefs in the Egyptian Red Sea. 65% of the investigated reefs had signs of dynamite damage, mostly in leeward areas (58%). Significant changes in coral and fish community composition within dynamited sites were observed. Coral cover decreased, the amount of bare substratum and rubble increased, fish communities in dynamited areas suffered a decrease in species richness and abundance. Due to a stable pattern of coral community differentiation on northern Red Sea reefs (windward Acropora, leeward Porites) most damage is on near-climax Porites reef slopes or Porites carpets. Natural regeneration of such communities is likely to be very slow, possibly taking several hundred years. Rehabilitation would be difficult since coral transplants would have to mimic the previously existing community.  相似文献   

13.
Coral reefs in Jakarta Bay have been subjected to scientific studies since the 1920s. Also from that time on biological collections were made. The reefs in the Jakarta Bay have been under long-term natural and anthropogenic stress. With the biological collections and historical documents the coral species richness in Jakarta Bay around 1920 was reconstructed. New data from this bay and the adjacent offshore Thousand Islands archipelago were obtained during a 2005 research expedition. A comparison of the coral assemblages between 1920 and 2005 reveals a clear decline in species numbers. The most prominent results include the near-shore disappearance of species belonging to the families Acroporidae, Milleporidae, and to a lesser extent Poritidae. The overall coral species composition of the reefs has changed considerably, which is partly reflected in a strong decline in coral species richness. About half the number of species recorded in 1920 was found again in 2005.  相似文献   

14.
Well‐sorted detrital limestone is one of the typical lithofacies of the latest interval of the Pleistocene Ryukyu Group, which is exposed in the Ryukyu Archipelago in southwestern Japan. The depositional environments of the limestone are interpreted to be extremely shallow and to include back‐reef lagoons or moats and subaerial sand dunes. However, detailed micropaleontological analyses have not been performed on this limestone. In this study, the interpretation of the depositional environments and paleo‐water depths was improved by quantitative examination of foraminiferal assemblages for the well‐sorted detrital limestone of the Minatogawa Formation in the southern part of Okinawa Island. Thin sections of limestone collected from the Minatogawa (Horikawa) quarry were subjected to sedimentological and foraminiferal analyses. Comparison with modern foraminiferal distribution within the Ryukyu Archipelago indicates that back‐reef and fore‐reef dwelling foraminifers characterize the fossil assemblages from the well‐sorted detrital limestone (bioclastic grainstone). Three ratios of indicator foraminiferal taxa (ratios of back‐reef to fore‐reef taxa, planktonic foraminifers to Amphistegina lobifera and Amphistegina lessonii, and Calcarina gaudichaudii to other Calcarina species), as well as multivariate analyses suggest that the well‐sorted detrital limestone was deposited in fore‐reef setting shallower than 40 m in water depth. A comparable depth range was reconstructed from the coral assemblage in the associated coral limestone, suggesting that the Minatogawa Formation was deposited in a gently inclined ramp setting with patch reefs and/or fringing reefs. Stratigraphic changes in paleo‐water depth, together with evidence of several unconformities associated with paleosol layers suggest that there were repeated transgressions and regressions, with an amplitude up to several tens of meters, when the Minatogawa Formation was deposited.  相似文献   

15.
In July 2001, the National Museum of Marine Biology and Aquarium, co-sponsored by the Kenting National Park Headquarters and Taiwan's National Science Council, launched a Long-Term Ecological Research (LTER) program to monitor anthropogenic impacts on the ecosystems of southern Taiwan, specifically the coral reefs of Kenting National Park (KNP), which are facing an increasing amount of anthropogenic pressure. We found that the seawater of the reef flats along Nanwan Bay, Taiwan's southernmost embayment, was polluted by sewage discharge at certain monitoring stations. Furthermore, the consequently higher nutrient and suspended sediment levels had led to algal blooms and sediment smothering of shallow water corals at some sampling sites. Finally, our results show that, in addition to this influx of anthropogenically-derived sewage, increasing tourist numbers are correlated with decreasing shallow water coral cover, highlighting the urgency of a more proactive management plan for KNP's coral reefs.  相似文献   

16.
A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species.  相似文献   

17.
Coral community structure is often governed by a suite of processes that are becoming increasingly influenced by land-use changes and related terrestrial discharges. We studied sites along a watershed gradient to examine both the physical environment and the associated biological communities. Transplanted corals showed no differences in growth rates and mortality along the watershed gradient. However, coral cover, coral richness, and coral colony density increased with increasing distance from the mouth of the bay. There was a negative relationship between coral cover and mean suspended solids concentration. Negative relationships were also found between terrigenous sedimentation rates and the richness of adult and juvenile corals. These results have major implications not only for Pacific islands but for all countries with reef systems downstream of rivers. Land development very often leads to increases in river runoff and suspended solids concentrations that reduce coral cover and coral diversity on adjacent reefs.  相似文献   

18.
《Marine pollution bulletin》2011,62(7-12):598-611
From 2008 onwards, the coral reefs of Koné (New Caledonia) will be subjected to a major anthropogenic perturbation linked to development of a nickel mine. Dredging and sediment runoff may directly damage the reef environment whereas job creation should generate a large demographic increase and thus a rise in fishing activities. This study analyzed reef fish assemblages between 2002 and 2007 with a focus on spatio-temporal variability. Our results indicate strong spatial structure of fish assemblages through time. Total species richness, density and biomass were highly variable between years but temporal variations were consistent among biotopes. A remarkable spatio-temporal stability was observed for trophic (mean 4.6% piscivores, 53.1% carnivores, 30.8% herbivores and 11.4% planktivores) and home range structures of species abundance contributions. These results are discussed and compared with others sites of the South Pacific. For monitoring perspectives, some indicators related to expected disturbances are proposed.  相似文献   

19.
Successful settlement and recruitment of corals is critical to the resilience of coral reefs. Given that many degraded reefs are dominated by benthic algae, recovery of coral populations after bleaching and other disturbances requires successful settlement amidst benthic algae. Algal turfs often accumulate sediments, sediments are known to inhibit coral settlement, and reefs with high inputs of terrestrial sediments are often dominated by turfs. We investigated the impacts of two algal turf assemblages, and of sediment deposits, on settlement of the coral Acropora millepora (Ehrenberg). Adding sediment reduced coral settlement, but the effects of different algal turfs varied. In one case, algal turfs inhibited coral settlement, whereas the other turf only inhibited settlement when combined with sediments. These results provide the first direct, experimental evidence of effects of filamentous algal turfs on coral settlement, the variability in those effects, and the potential combined effects of algal turfs and trapped sediments.  相似文献   

20.
Coral reef fish communities in the Seychelles are highly diverse and remain less affected by the direct impacts of human activities than those on many other coral reefs in the Indian Ocean. These factors make them highly suitable for a detailed survey of the impacts of the 1998 mass coral mortality, which devastated the coral faunas of the region. Using underwater visual census (UVC) techniques. fish communities were sampled in three localities in the southern Seychelles and one locality in the northern (granitic) Seychelles. Initial surveys were undertaken from the latter site in 1997. Surveys were undertaken at all sites during the coral bleaching episode in 1998 prior to any major changes in the reef fish communities. Repeat surveys were undertaken in 1999 one year after the coral mortality. Over 250 fish species were sampled from 35 families. Results suggest that changes in the overall fish community structures are not great, despite massive changes in the benthic cover. Significant changes have been observed in a number of individual species. These include those most heavily dependent on live coral cover for shelter or sustenance. Future potential changes are discussed, and potential management interventions are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号