首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The applicability of the Gravity Recovery and Climate Experiment (GRACE) to adequately represent broad-scale patterns of groundwater storage (GWS) variations and observed trends in groundwater-monitoring well levels (GWWL) is examined in the Canadian province of Alberta. GWS variations are derived over Alberta for the period 2002–2014 using the Release 05 (RL05) monthly GRACE gravity models and the Global Land Data Assimilation System (GLDAS) land-surface models. Twelve mean monthly GWS variation maps are generated from the 139 monthly GWS variation grids to characterize the annual GWS variation pattern. These maps show that, overall, GWS increases from February to June, and decreases from July to October, and slightly increases from November to December. For 2002–2014, the GWS showed a positive trend which increases from west to east with a mean value of 12 mm/year over the province. The resulting GWS variations are validated using GWWLs in the province. For the purpose of validation, a GRACE total water storage (TWS)-based correlation criterion is introduced to identify groundwater wells which adequately represent the regional GWS variations. GWWLs at 36 wells were found to correlate with both the GRACE TWS and GWS variations. A factor f is defined to up-scale the GWWL variations at the identified wells to the GRACE-scale GWS variations. It is concluded that the GWS variations can be mapped by GRACE and the GLDAS models in some situations, thus demonstrating the conditions where GWS variations can be detected by GRACE in Alberta.  相似文献   

2.
This paper presents an investigation into increased deformation of Aquifer II caused by groundwater pumping from the aquifer in Changzhou, China. As groundwater levels of aquifers have been decreasing in recent decades due to uncontrolled water pumping, land subsidence is becoming a serious geohazard in Changzhou. Based on recently reported field data, the compression of aquitards has not increased compared to that of aquifers with the same scale of layer thickness. The Cosserat continuum model was adopted to analyse the observed phenomenon in this study. A classic Cauchy continuum model is also used for comparison. The comparison between these two models indicates that the proposed approach can interpret the increased deformation well, and the classic Cauchy continuum model underestimates the aquifer deformation as it does not consider shear displacement and macro-rotation. A discussion on the relationship between the groundwater level in the aquifer and subsidence is then undertaken. The results show that the severity of the annual subsidence is correlated with the variation in groundwater level in Aquifer II. To mitigate the subsidence hazards, countermeasures should be adopted to avoid the shear stress in aquifers which results from the high hydraulic gradient, by the appropriate allocation of pumping wells and by restricting groundwater withdrawal volume from each pumping operation.  相似文献   

3.
Groundwater models simulating flow in buried valleys interacting with regional aquifers are often based on hydrogeological models interpreted from dense geophysical datasets and scarce borehole data. For three simple synthetic cases, it is demonstrated that alternative methods of inversion of transient electro-magnetic (TEM) data can lead to very different interpretations of the hydrogeology inside and surrounding a buried valley. The alternative interpreted hydrogeological models are used in numerical modelling of groundwater flow to a pumping well. It is demonstrated that the alternative models result in quite different groundwater-model predictions of capture zone, recharge area, and groundwater age for the pumping well. It is briefly demonstrated that model calibration against hydraulic head data is not likely to improve the predictions or to identify the structural error of the interpreted hydrogeological models. It is therefore concluded that when TEM-based resistivity models are interpreted to construct the hydrogeological framework of a groundwater model, it must be done cautiously with support from deep borehole information. Too much reliance on geophysical mapping can lead to seriously wrong hydrogeological models and correspondingly wrong groundwater-model predictions.  相似文献   

4.
In coastal lowland plains, increased water demand on a limited water resource has resulted in declining groundwater levels, land subsidence and saltwater encroachment. In southwestern Kyushu, Japan, a sinking of the land surface due to over pumping of groundwater has long been recognized as a problem in the Shiroishi lowland plain. In this paper, an integrated model was established for the Shiroishi site using the modular finite difference groundwater flow model, MODFLOW, by McDonald and Harbaugh (1988) and the modular three-dimensional finite difference groundwater solute transport model, MT3D, by Zheng (1990) to simulate groundwater flow hydraulics, land subsidence, and solute transport in the alluvial lowland plain. Firstly, problems associated with these groundwater resources were discussed and then the established model was applied. The simulated results show that subsidence rapidly occurs throughout the area with the central prone in the center part of the plain. Moreover, seawater intrusion would be expected along the coast if the current rates of groundwater exploitation continue. Sensitivity analysis indicates that certain hydrogeologic parameters such as an inelastic storage coefficient of soil layers significantly contribute effects to both the rate and magnitude of consolidation. Monitoring the present salinization process is useful in determining possible threats to fresh groundwater supplies in the near future. In addition, the integrated numerical model is capable of simulating the regional trend of potentiometric levels, land subsidence and salt concentration. The study also suggests that during years of reduced surface-water availability, reduction of demand, increase in irrigation efficiency and the utilization of water exported from nearby basins are thought to be necessary for future development of the region to alleviate the effects due to pumping.  相似文献   

5.
6.
Considering the importance of groundwater resources in water-supply demands in arid and semiarid areas such as Iran, it is essential to investigate the risk of groundwater pollution. Nitrate is one of the main pollutants that penetrate into the groundwater from various sources such as chemical fertilizers, pesticides, and domestic and industrial sewage. Unfortunately currently, nitrate contamination of the aquifers is a serious problem in Iran. The Karaj aquifer is not exempted, and the nitrate pollution zone, with concentrations far beyond the permitted limit (50 mg/L), expands fast. In this paper, the long-term groundwater-quality data (from 2000 to 2013) collected from Alborz Province Water and Wastewater Company were analyzed using ArcGIS10 and statistical software, and the spatial and temporal patterns of nitrate pollution in drinking-water wells in the Karaj plain and effective parameters (such as depth to groundwater level, hydraulic gradient, land use, precipitation, and urban, agricultural and industrial wastewater) were investigated. The authors also investigated the status of nitrate concentration variation using the concepts of geostatistics, based on determinations from 62 to 194 surveyed wells with a suitable distribution across the plain. With respect to the relationship between quality parameters, hydrogeological status of the aquifer and land usage, causes of the increase in the concentration of nitrate in the water and its trend were investigated as well. Results revealed that the nitrate levels in the northern portion of the study area were the highest with maximum concentrations of 181.7 mg/L from 2000 to 2013. Based on nitrate concentration distribution maps, the levels of nitrate increased from 2006 onwards to 26–100 mg/L. Unfortunately from 2008 to 2012, a pollution zone with a nitrate water concentration of 101–150 mg/L has been observed and even a concentration of 180 mg/L has been determined. In 2000, the entire aquifer area has been drinkable but with the increase in nitrate concentration, the area with undrinkable water has expanded to 21% in 2003, 24% in 2005, 33% in 2007, 39% in 2009, 43% in 2011 and 44% in 2013. The results of this study could provide valuable information with on the status of nitrate water concentrations in the Karaj plain which demands proper strategies and qualitative approaches in the future.  相似文献   

7.
在广泛调研总结国内外次要组分背景值研究的基础上,对比分析各方法的优缺点,提出水化学分析与数理统计法相结合的地下水次要组分视背景值研究体系。该方法体系首先在次要组分与主要组分之间进行因子分析,建立次要组分与主要组分的联系,运用三倍标准差准则识别主要组分粗大误差的异常值,利用Piper图水化学类型对异常值进行分析检验,从宏观上分析识别水化学影响明显异常的次要组分数据,再运用平均值加减2倍标准差迭代法和概率图法组合分析识别异常值。完成异常值剔除的数据取95百分位数作为次要组分视背景值的上限阈值。该方法有利于把握数据的整体统计特征,同时能避免主观确定阈值的误差,对异常数据的剔除高效充分。上述方法体系运用在柳江盆地表明,与4种常用数理统计学方法相比,该方法体系计算出的次要组分视背景值的可靠性与稳定性更高,同时能解释引起次要组分异常的原因及背景控制因素。运用水化学分析与数理统计法体系,较为科学合理地计算出了柳江盆地浅层地下水次要组分硝酸盐、偏硅酸、铝、氟和溴的视背景值阈值,分别为75.1、27.4、0.11、0.30和0.32mg·L~(-1)。硝酸盐视背景值阈值偏高,反映出柳江盆地广泛的农牧业养殖及生活污水排放已不可避免地对地下水产生了一定的影响。  相似文献   

8.
Industrially sourced dense non-aqueous phase liquids (DNAPLs) contaminated an alluvial aquifer in France decades ago. The location(s) and nature of the pollution source zone(s) were unknown, and the dissolved concentrations of volatile organic compounds in the monitoring wells varied greatly with time. The aquifer was in hydraulic equilibrium with an artificial canal whose water level was highly variable (up to 5 m). These variations propagated into the aquifer, causing changes in the groundwater flow direction; a transient numerical model of flow and solute transport showed that they correlate with the concentration variations because the changes in the flow direction resulted in the contaminant plume shifting. The transient hydrogeological numerical model was built, taking into account solvent biodegradation with first-order chain, since biodegradation has a significant influence on the pollutant concentration evolution. The model parameterization confirms the position of the source zones among the potential troughs in the bedrock where DNAPLs could have accumulated. The groundwater model was successfully calibrated to reproduce the observed concentration variations over several years and allowed a rapid validation of the hypotheses on the functioning of the polluted system.  相似文献   

9.
Hydrogeology Journal - Coefficients B and C of the Jacob (1947) equation, usually derived from step-drawdown tests, are commonly attributed to “aquifer losses” and “well...  相似文献   

10.
C-N-S反应体系是地下水系统中氧化还原敏感组分循环和能量流动的关键系统,但它如何与Fe、Mn循环过程、相关功能微生物代谢路径耦合并控制氧化还原敏感组分的迁移转化却并不清楚。本文在对国内外相关文献进行归纳总结的基础上,把地下水中的氧化还原敏感组分分为氧化富集型和还原富集型,较为系统地梳理了地下水系统C、N、S循环驱动的典型氧化还原敏感组分(主要以U、Cr、Fe、As为例)迁移转化过程,指出了该领域的主要研究热点,包括C-N反应体系中典型氧化还原敏感组分的迁移转化、C-S反应体系中还原富集型组分活化和氧化富集型组分固定机理、典型氧化还原敏感组分之间的相互作用、微生物作用下典型氧化还原敏感组分的转化和富集等,并提出基于代谢路径的C-N-S反应体系及其驱动下地下水典型氧化还原敏感组分转化过程和富集机理,将成为本领域的发展趋势。  相似文献   

11.
抽出 -处理系统设计多侧重于考虑修复初期的效率,在修复后期通常效率低下,产生拖尾现象,其优化的关键在于布设的井群系统能否高效抽出受污染的地下水体。利用溶质运移数值模拟可为井群布设和抽水方案优化提供依据。本研究旨在优化我国北方某化肥厂高浓度氨氮污染的地下水体的抽出 -处理修复系统,节约时间和成本。在水文地质调查及氨氮浓度监测的基础上,综合考虑井数、抽水天数和总抽水量三个变量,采用中轴线法与三角形法结合的布井方法,利用GMS软件反复试算,筛选出三种较优抽水方案并进一步模拟优化,最终从中选出最优抽水方案。结果,相比最初方案(方案1),最优方案(方案3)将修复周期缩短了23个月,抽水总量减少了约31.9×104 m3,而抽水井数量仅增加了1口。该模型进行了稳定流水位拟合验证和4期非稳定流实测溶质浓度验证,较符合实际。结果表明,针对抽水井数量不足引起的拖尾问题,关键因素在于合理的井位布设与分阶段的抽水模式。在修复过程中,及时对地下水中污染物进行监测,并随着污染羽变化过程及时调整抽水方案,保证高浓度区一直有抽水井进行较大流量抽水,可有效提高修复效率并缩短修复周期。  相似文献   

12.
Yildirim  Gokhan  Rahman  Ataur 《Natural Hazards》2022,111(1):305-332
Natural Hazards - An understanding on different aspects of droughts is crucial for effective water resources management. Australia has experienced notable droughts in recent years. The present...  相似文献   

13.
A method based on concept of fuzzy set theory has been used for decision-making for the assessment of physico-chemical quality of groundwater for drinking purposes. Conventional methods for water quality assessment do not consider the uncertainties involved either in measurement of water quality parameters or in the limits provided by the regulatory bodies. Fuzzy synthetic evaluation model gives the certainty levels for the quality class of the water based on the prescribed limit of various regulatory bodies and opinion of the experts from the field of drinking water quality. In this paper, application of fuzzy rule based optimization model is illustrated with twenty groundwater samples from Sohna town of Gurgaon district of Southern Haryana, India. These samples were analysed for 15 different physico-chemical parameters, out of them nine important parameters were used for the quality assessment using fuzzy synthetic evaluation approach. From this study, it has been concluded that all the water samples are in acceptable category whose certainty level ranges from 44 to 100%. Water from these sources can be used for the drinking purposes if alternate water source is not available without any health concern on the basis of physico-chemical characteristics.  相似文献   

14.
Groundwater plays a major life support to mankind. It is the major source to meet the domestic, irrigation and industrial water demands. The depletion of groundwater through excessive consumption and less recharge in the study area has detoriated the quality of groundwater. The present study has analyzed the pre- and post-monsoon physicochemical data of groundwater samples from 49 different bore wells in Virudunagar district. Spatial distribution maps were prepared for various physicochemical parameters using geographic information system. These maps are further classified according to highest desirable, maximum permissible and not permissible prescribed by the World Health Organization. Furthermore, a water quality index (WQI) map was also generated to understand the groundwater quality in the study area. It was observed that the groundwater in the area is hard and alkaline in nature and the WQI reveals that most part of the study area fall under fair water quality class. Also, the effect of recharge during monsoon period has diluted the geochemistry of the groundwater. The application of GIS and WQI in the study area is a promising tool to understand the spatial pattern of groundwater quality and its management.  相似文献   

15.
地下水位变化与库岸滑坡体稳定性关系的研究   总被引:1,自引:0,他引:1  
姜晨光  李少红  贺勇  张清峰  姜勇 《岩土力学》2008,29(Z1):403-406
水库蓄水后的库岸滑坡是水利工程的一个顽疾,模清库岸滑坡的诱因、特征与规律对于防范水库风险具有重要的科学意义,大量的监测和研究显示水库库岸的稳定性与地下水位的变化有着极为密切的关联关系,以大量的库岸滑坡原位监测数据为基础,通过计算机建模技术,获得了地下水位变化与库岸滑坡体稳定性间关系的经验型数学模型,介绍了库岸滑坡原位监测的基本方法。  相似文献   

16.
Dissolution of fluoride in groundwater: a water-rock interaction study   总被引:4,自引:0,他引:4  
  相似文献   

17.
With the rapid development and use of ground-source heat-pump (GSHP) systems in China, it has become imperative to research the effects of associated long-term pumping and recharge processes on ground deformation. During groundwater GSHP operation, small particles can be transported and deposited, or they can become detached in the grain skeleton and undergo recombination, possibly causing a change in the ground structure and characteristics. This paper presents a mathematical ground-deformation model that considers particle transportation and deposition in porous media based on the geological characteristics of a dual-structure stratum in Wuhan, eastern China. Thermal effects were taken into consideration because the GSHP technology used involves a device that uses heat from a shallow layer of the ground. The results reveal that particle deposition during the long-term pumping and recharge process has had an impact on ground deformation that has significantly increased over time. In addition, there is a strong correlation between the deformation change (%) and the amount of particle deposition. The position of the maximum deformation change is also the location where most of the particles are deposited, with the deformation change being as high as 43.3%. The analyses also show that flow of groundwater can have an effect on the ground deformation process, but the effect is very weak.  相似文献   

18.
In this study, with investigation of validity limits of analytical equations in computing groundwater seepage discharge into tunnels in different values of r/h (tunnel radius/water table height above tunnel), using optimization by regression analysis, we have tried to converge the results of analytical equations for any value of r/h. There are various experimental, analytical and numerical methods by which it is possible to calculate the amount of groundwater seepage into tunnels. Due to their simplicity and practical base theory, analytical methods have been applied more frequently. Studies imply that amount of real seepage into tunnel is significantly less than what is anticipated from analytical equations; on the other hand, the results of seepage calculations using these equations are depended on tunnel geometry and medium conditions. Previous investigations confirmed that in a tunnel for which, r/h is more than 0.4; these results are highly different both from one another and from the real seepage inflow. In this paper, optimization has been successfully performed on analytical equations so that the results of these methods are converged to each other for any value of r/h.  相似文献   

19.
An innovative approach to solve the problem of lowering water table was carried out in a quarry lake south of the city of Milan (northern Italy): the project, based upon pumping out water at a rate of 1,000 L/s can be considered a strategic medium to long-term solution to hinder the rise of groundwater level interfering with underground structures (foundation, construction, subway) in urban areas. The basic idea is to pump a high groundwater rate as close as possible to the stagnation point of the piezometric depression located in the city. After a pilot-test was carried out in November 1998, experimental activities started in July 2001 and lasted one year; water withdrawal was discharged into artificial channels used in agricultural practice. Maximum drawdowns measured in the quarry lake by the monitoring network resulted in more than 5 m, and a significant drawdown was registered up to 1.5 km of distance from the quarry in the important historical site of Chiaravalle Abbey, threatened by groundwater rise. The results of this pumping activity confirm the importance of the project, its lower cost compared with traditional solutions (such as drainage by wells) and remarkable effects on the improvement of surface water quality. A groundwater model was implemented to evaluate further scenarios of discharge rate and pumping location, too.  相似文献   

20.
The sustainable use of groundwater has become increasingly challenging due to extreme hydrological events and anthropogenic activity. In this study, the basin-scale groundwater response to precipitation variation was analyzed using an integrated model that comprises lumped models for land and river recharges and a distributed model for groundwater. The integrated model was applied to the Chih-Ben watershed, Taiwan, using 20?years (1988?C2007) of data. The hydrological data were analyzed for trends using statistical tests. Based on decreasing trends in precipitation and groundwater levels and an increasing trend in stream flow, the oblique-cut method was applied to precipitation and excess infiltration to assess land and streambed recharge. Distributed numerical groundwater modeling was used to simulate the basin-scale groundwater responses to precipitation variation and anthropogenic pumping. The model was calibrated using stable-isotope and groundwater-level data. The safe yields were estimated for the Chih-Ben watershed for dry, wet, and normal precipitation scenarios. The safe yield of groundwater was shown to vary with precipitation, which does not guarantee the sustainable use of groundwater resources. Instead, water resources should be assessed at a basin scale, taking into account the whole ecosystem, rather than only considering water for human consumption in the alluvium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号