首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
Artificial neural network (ANN) modeling has been performed to predict turbulent boundary layer characteristics for rough terrain based on experimental tests conducted in a boundary-layer wind tunnel to simulate atmospheric boundary layer using passive roughness devices such as spires, barriers, roughness elements on the floor, and slots in the extended test section. Different configurations of passive devices assisted to simulate urban terrains. A part of the wind tunnel test results are used as training sets for the ANN, and the other part of the test results are used to compare the prediction results of the ANN. Two ANN models have been developed in this study. The first one has been used to predict mean velocity, turbulence intensity, and model length scale factor. Results show that ANN is an efficient, accurate, and robust modeling procedure to predict turbulent characteristics of wind. In particular, it was found that the ANN-predicted wind mean velocities are within 4.7%, turbulence intensities are within 6.2%, and model length scale factors are within 3.8% of the actual measured values. In addition, another ANN model has been developed to predict instantaneous velocities that enables calculating the power spectral density of longitudinal velocity fluctuations. Results show that the predicted power spectra are in a good agreement with the power spectra obtained from measured instantaneous velocities.  相似文献   

2.
Precise urban atmospheric boundary layer (ABL) wind tunnel simulations are essential for a wide variety of atmospheric studies in built-up environments including wind loading of structures and air pollutant dispersion. One of key issues in addressing these problems is a proper choice of simulation length scale. In this study, an urban ABL was reproduced in a boundary layer wind tunnel at different scales to study possible scale effects. Two full-depth simulations and one part-depth simulation were carried out using castellated barrier wall, vortex generators, and a fetch of roughness elements. Redesigned “Counihan” vortex generators were employed in the part-depth ABL simulation. A hot-wire anemometry system was used to measure mean velocity and velocity fluctuations. Experimental results are presented as mean velocity, turbulence intensity, Reynolds stress, integral length scale of turbulence, and power spectral density of velocity fluctuations. Results suggest that variations in length-scale factor do not influence the generated ABL models when using similarity criteria applied in this study. Part-depth ABL simulation compares well with two full-depth ABL simulations indicating the truncated vortex generators developed for this study can be successfully employed in urban ABL part-depth simulations.  相似文献   

3.
The boundary layer wind tunnel at the Technische Universit?t München was tested for atmospheric boundary layer (ABL) simulations. The ABLs developing above rural, suburban, and urban terrains were reproduced using the Counihan method, i.e., castellated barrier wall, vortex generators, and a fetch of surface roughness elements. A series of flow-characteristic evaluations was performed to investigate the flow development and uniformity. Experimental results presented as mean velocity, turbulence intensity, integral length scale of turbulence, Reynolds stress, and power spectral density of velocity fluctuations were compared with the ESDU data and/or theoretical models. Generated ABL wind-tunnel simulations compare well with the rural, suburban, and urban ABLs. In the test section area used for experiments on structural models, the ABL simulation is developed and uniform. Results of this study indicate the boundary layer wind tunnel at the Technische Universit?t München can be successfully employed in a broad spectrum of engineering, environmental, and micrometeorological studies, where it is required to accurately reproduce ABL characteristics.  相似文献   

4.
The role of shear and inversion strength on the decay of convective turbulence during sunset over land is systematically studied by means of large-eddy simulations. Different decay rates have been found for the vertical and horizontal velocity fluctuations, resulting in an increase of the anisotropy for all the studied cases. Entrainment, which persists during the decay process, favours the appearance of vertical upward movements associated with a conversion from kinetic to potential energy. Particular attention is paid to the evolution of the characteristic length scale of the various turbulent variables during this process. The length scale evolution is found to depend on the wind shear characteristics, but not on the strength of the inversion. In general the length scales of the variables grow during decay because small-scale fluctuations dissipate faster than large-scale fluctuations. Only the length scale of the vertical velocity component remains nearly constant during decay. Spectral analysis of the variance budgets shows that pressure correlations are responsible for fixing this length scale, effectively compensating the strong but oscillating influence of buoyancy. In the shear cases, after an initial period of growth, the length scales start to decrease once the buoyancy-generated variance has sufficiently subsided. Also here the effect of pressure redistribution is crucial, as it transfers the spectral influence of shear to the other velocity components.  相似文献   

5.
Wind Gust and Turbulence Statistics of Typhoons in South China   总被引:1,自引:0,他引:1       下载免费PDF全文
The wind data of four typhoons were obtained and analyzed. The wind speeds were measured by sonic anemometers at four observation sites in Guangdong and Hainan provinces. Detailed analysis of the wind data was conducted to investigate the turbulence characteristics of the typhoons. Characteristics of the gust factor and the turbulence integral scale of the typhoons were concluded with high confidence. The relationships among the gust factor, gust duration time, mean wind speed, roughness length, and turbulence intensity were described. The turbulence integral scale was found to be closely related to the segment length and turbulence intensity.  相似文献   

6.
曾庆存  程雪玲  吴琳 《大气科学》2018,42(3):448-462
对我们在南海海域建立的大气边界层观测站的资料进行分析表明,在冷涌和热带气旋(包括强台风)过境的大风期间,在边界层底层10 min平均的水平风速u基本不随高度而变,甚至大都伴随有明显的上升气流w。而且风场脉动中含有强相干性的阵风扰动( v g,频率位于1/60~1/600 Hz频段),以及近于随机性的高频湍流脉动( v t,频率大于1/60 Hz),它们的特性以及w都可以很好地用水平风速u来参数化表示。取实测的(u,w)和脉动 v '= v g+ v t,或取实测的u与参数化的 v g、 v t和w,应用拉格朗日随机模式作数值模拟,结果表明:由破头浪发射出来的浪花和飞沫水滴(半径rp为10~500 μm)有相当大的一部分可以飞离大气底层而进入100 m高以上的大气中,继而对进入大气中的海盐气溶胶通量有重要贡献,不可以被忽略。在水滴的垂直传输过程中,阵风扰动起了极重要的作用,而在w>0且较显著时w更起重要作用。我们对上扬率(可上升至100 m以上高度的水滴数与由海面发射出的水滴数之比)作出了初步的参数化公式,有很高的精度,主要的参量是无量纲量u2/(rqg),其中rp和g分别是水滴半径和重力加速度。  相似文献   

7.
上海徐家汇地区建筑分布密集且高低不一,是典型的具有非均一下垫面特征的城市地貌。本文利用该地区的地理信息研究了粗糙度长度的分布规律,并基于80m高度的风速实测数据,对台风"灿鸿"和良态风作用下的平均风速、湍流强度、阵风因子等参数与粗糙度长度之间的关系进行了分析。结果表明:不同风向角对应的计算扇区内建筑物高度、分布密度的差别导致了粗糙度长度值随风向角发生明显变化,但是变化幅度随着计算扇区的增大而减小;台风"灿鸿"作用下的平均风速最大值大于良态风,两者对应的粗糙度长度变化范围差别甚微,但是台风作用下的粗糙度长度中位数较小且分布相对集中;台风"灿鸿"作用下各向湍流强度均随着平均风速的增加呈明显的减小趋势,但不随粗糙度长度变化;良态风作用下,各向湍流强度不随平均风速变化,而随着粗糙度长度的增加而增加;台风"灿鸿"和良态风作用下,各向阵风因子均随湍流强度的增加而增大,但前者作用下的阵风因子略大于后者。  相似文献   

8.
The fluctuations of the instantaneous values of line integrated concentrations across plumes from point sources diffusing in turbulent shear flows, and in grid generated turbulence, have been studied experimentally using a fast response system which measured the attenuation of the intensity of an infrared beam crossing the plume. Analysis of the measurements show that the dimensionless statistical properties of the fluctuations at different distances from the source at each flow are approximately similar, in the sense that they depend primarily on the relative off-center location of the line of integration and almost independent of the distance from the source and the nature of the turbulence in the flows, as long as the characteristic length of the mean plume is not large compared to the size of the large eddies. The characteristic time of the fluctuations, on the other hand, was found to grow with the distance from the source and the autocorrelations of the fluctuations, particularly in the case of a plume diffusing in grid generated turbulence, were it found to be proportional to the lateral size of the mean plume. A—5/3 decay law of the power spectrum of the fluctuations was observed in the low frequency range which corresponds to the scale of the large eddies. The decay of the fluctuations caused by smaller eddies was much faster, as expected.  相似文献   

9.
Large-scale turbulence structures in the near-neutral atmospheric boundary layer (ABL) are investigated on the basis of observations made from the 213-m tall meteorological tower at Tsukuba, Japan. Vertical profiles of wind speed and turbulent fluxes in the ABL were obtained with sonic anemometer-thermometers at six levels of the tower. From the archived data, 31 near-neutral cases are selected for the analysis of turbulence structures. For the typical case, event detection by the integral wavelet transform with a large time scale (180 s) from the streamwise velocity component (u) at the highest level (200 m) reveals a descending high-speed structure with a time scale of approximately 100 s (a spatial scale of 1 km at the 200-m height). By applying the wavelet transform to the u velocity component at each level, the intermittent appearance of large-scale high-speed structures extending also in the vertical is detected. These structures usually make a large contribution to the downward momentum transfer and induce the enhancement of turbulent kinetic energy. This behaviour is like that of “active” turbulent motions. From the analysis of the two-point space–time correlation of wavelet coefficients for the u velocity component, the vertical extent and the downward influence of large-scale structures are examined. Large fluctuations in the large-scale range (wavelet variance at the selected time scale) at the 200-m level tend to induce the large correlation between the higher and lower levels.  相似文献   

10.
The nocturnal atmospheric boundary layer (ABL) poses several challenges to standard turbulence and dispersion models, since the stable stratification imposed by the radiative cooling of the ground modifies the flow turbulence in ways that are not yet completely understood. In the present work we perform direct numerical simulation of a turbulent open channel flow with a constant (cooling) heat flux imposed at the ground. This configuration provides a very simplified model for the surface layer at night. As a result of the ground cooling, the Reynolds stresses and the turbulent fluctuations near the ground re-adjust on times of the order of L/u τ , where L is the Obukhov length scale and u τ is the friction velocity. For relatively weak cooling turbulence survives, but when ReL=Lut/n <~100{Re_L=Lu_\tau/\nu \lesssim 100} turbulence collapses, a situation that is also observed in the ABL. This criterion, which can be locally measured in the field, is justified in terms of the scale separation between the largest and smallest structures of the dynamic sublayer.  相似文献   

11.
A dynamic procedure is developed to compute the model coefficients in the recently introduced modulated gradient models for both momentum and scalar fluxes. The magnitudes of the subgrid-scale (SGS) stress and the SGS flux are estimated using the local equilibrium hypothesis, and their structures (relative magnitude of each of the components) are given by the normalized gradient terms, which are derived from the Taylor expansion of the exact SGS stress/flux. Previously, the two model coefficients have been specified on the basis of theoretical arguments. Here, we develop a dynamic SGS procedure, wherein the model coefficients are computed dynamically according to the statistics of the resolved turbulence, rather than provided a priori or ad hoc. Results show that the two dynamically calculated coefficients have median values that are approximately constant throughout the turbulent atmospheric boundary layer (ABL), and their fluctuations follow a near log-normal distribution. These findings are consistent with the fact that, unlike eddy-viscosity/diffusivity models, modulated gradient models have been found to yield satisfactory results even with constant model coefficients. Results from large-eddy simulations of a neutral ABL and a stable ABL using the new closure show good agreement with reference results, including well-established theoretical predictions. For instance, the closure delivers the expected surface-layer similarity profiles and power-law scaling of the power spectra of velocity and scalar fluctuations. Further, the Lagrangian version of the model is tested in the neutral ABL case, and gives satisfactory results.  相似文献   

12.
We investigate the coherent structure of atmosphere turbulence over very large roughness within a fully rough, high Reynolds number turbulent flow. The horizontal distributions of coherent turbulence were determined by multipoint measurements of velocity fluctuations using sonic anemometers in a comprehensive outdoor scale model experiment for urban climate (COSMO). COSMO is made up of 512 cubical obstacles, each 1.5 m on a side, arranged in a rectangular pattern on a flat 50 m × 100 m concrete plate. A total of 15 sets of sonic anemometers were aligned horizontally within the logarithmic layer above this site. The velocity fluctuations observed in COSMO were decomposed into active and inactive contributions by applying a spatial-filtering method, and which used a simple moving average along the spanwise direction of the predominant flow as a filter function. The size of the filter should be between the sizes of the active and inactive fluctuations. This method potentially eliminates the considerable portion of low frequency modes included in the horizontal velocity fluctuation, while preserving well the Reynolds stress. The structural characteristics of the active turbulence were qualitatively similar to those measured over various surface configurations. Overall, the observed structures of the active turbulence are composed of very large streaks of low momentum fluid elongated in the streamwise direction with some sub-structures included in the streaks. The sub-structures were the main cause of the ejections, which accompany horizontal vortices. The active motion, including the streaky structures, did not reproduce the lower frequency peak of the bi-modal distribution of the horizontal velocity spectra, but reproduced the higher frequency mode that robustly follows inner-layer similarity (i.e. Monin–Obukhov similarity).  相似文献   

13.
This paper describes how to measure turbulence in the atmospheric boundary layer (ABL) in order to address certain problems in modern atmospheric physics. These problems mainly relate to the Earth's energy budget (including the hydrological cycle) and biogeochemical cycles. Starting from the main characteristic numbers and the basic equations of atmospheric turbulent flow, we show what turbulence parameters are important to measure. Special attention is given to the various methods used to compute the turbulent fluxes. We analyse the range of scales which has to be measured to properly capture the eddies contributing to the turbulent transfers. This range of scales determines what sensors can be used in the atmospheric surface layer and in the ABL. We describe the most widely used instruments and their performances. The principal platforms used to deploy these instruments are examined. Aircraft are described in more details, because they allow a thorough exploration of the ABL. In the last section, some examples of ABL turbulence signals measured in various conditions are presented. These examples illustrate horizontally homogeneous turbulence as well as inhomogeneous signals for which standard analysis techniques cannot be used. We show how some recent techniques, like wavelet transforms, can help to investigate this kind of signal. At the end, we present what would be interesting to do in the near future for the study of ABL turbulence.  相似文献   

14.
徐大海 《气象学报》1992,50(2):140-151
本文给出了平稳、均匀湍流中平衡涡度及非平衡涡度偏差的定义,建立了Euler及Lagra-nge湍流的随机动力微分方程,解出了各自相关函数。在各向同性及冻结湍流假设中使用Bla-ton公式按上述相关函数解出了Langrange时间尺度与Euler尺度比的表达式,其渐近值恰为全方向湍流度的倒数的1/2~(1/2)倍即0.71/i。  相似文献   

15.
A Lagrangian stochastic model for the motion of heavy particles has been developed by coupling a stochastic model for the motion of fluid elements to the Stokes equations of motion of a particle in a turbulent flow. The effects of crossing trajectories and continuity are incorporated by generalising Csanady's (1963) ideas developed for stationary homogeneous turbulence; effects of turbulence inhomogeneity and nonstationarity are embodied in the stochastic model for the fluid motion.The model has been used particularly to examine the effects of turbulence nonstationarity through simulations of the dispersion of heavy particles in the decaying homogeneous turbulence which is obtained by Taylor-transforming grid turbulence. Significant differences from the stationary case occur, mainly as a result of the growth of the turbulent time scale with time.The importance of the source location in influencing both passive scalar and particle dispersion in grid turbulence is highlighted by the model and can be simply accounted for by nondimensionalisation using the r.m.s. turbulence velocity at the source and the mean travel time from the grid to the source as velocity and time scales, respectively. Reconciliation of the three different experiments of Snyder and Lumley (1971), Wells and Stock (1983) and Ferguson (1986) reporting heavy particle flow and dispersion statistics in wind tunnel grid turbulence has been attempted using this nondimensionalisation. A good correspondence between the various data sets was not obtained because the source in the Wells and Stock, and Ferguson experiments was located at the grid where the self-similar development of the turbulence which underlies the scaling is not appropriate.The model matches the data for the heaviest particles used by Snyder and Lumley reasonably well. For very light particles, it correctly reverts to the passive scalar limit, while the experimental data in general do not properly approach this limit.  相似文献   

16.
用连续子波变换提取城市冠层大气湍流的相干结构   总被引:4,自引:2,他引:4       下载免费PDF全文
陈炯  郑永光  胡非 《大气科学》2003,27(2):182-190
切变湍流的相干结构是湍流研究中的重大发现,它表明湍流在表面上看来不规则运动中具有可检测的有序运动,这种相干结构在切变湍流的脉动生成和发展中起着主宰作用.因此识别和提取相干结构对于认识和研究湍流是非常重要的.用数字滤波法将包含相干结构的大尺度信号提取出来以后,再用子波分析,根据子波能量极大值的判别方法,分别确定出大气湍流三个方向上的速度脉动信号相干结构的频率或时间尺度,然后由确定尺度上的连续子波反演公式,提取出大气湍流三个方向上的速度脉动信号相干结构所对应的波形.  相似文献   

17.
The TRAC98 experimental campaign (Turbulence Radar Aircraft Cells) devoted to coherent structures analysis took place over the Beauce plain (France) during summer 1998. It allowed us to collect a large dataset of airborne measurements in addition to various ground measurements. This study aims at diagnosing the occurrence of coherent structures within the atmospheric boundary layer (ABL) through airborne measurements. The statistical analysis performed as a first step from turbulent parameters underlined the homogeneity of the ABL over the Beauce plain. However mixed-layer scaling failed at the top of the ABL, even when taking into account the entrainment rate. Coherent structures were detected through the analysis of ABL isotropy, using the opportunity of sampling with two perpendicular crossing planes, one of them being aligned with the wind. This approach allowed us to determine an organization scheme of the ABL for three of the five flights (ARAT30, MIV30 and MIV27). For the ARAT30 flight, the analysis was pursued by focusing on measurements of fluctuations in the inner flight legs. In this way, the low-level cloud cover has been investigated from the downward visible radiation (VISD). The results indicated an anisotropy of the horizontal cloud size. Secondly, the variations of some parameters were analysed through lagged correlation functions. This allowed us to infer relationships between the vertical velocity, VISD, mixing ratio and lifting condensation level. Length scales have also been extracted, and confirmed the ABL organization during the ARAT30 flight. Finally, the anisotropy observed in various flights has been investigated with respect to the underestimation of the latent heat fluxes revealed by the imbalance of the surface energy budget.  相似文献   

18.
A wind-tunnel experiment was carried out to test a hypothesis that the turbulence characteristics in the near-neutral surface layer are largely determined by detached eddies from above. The surrogate detached eddies were generated by using an active turbulence grid installed at the front of the test section and the parameters of the grid were chosen such that the fully developed logarithmic layer downstream consists of a turbulent flow that has similar normalized intensity to that typically observed in the near-neutral atmospheric surface layer. The effects of the detached eddies on turbulence characteristics were investigated by comparison with a second experiment without detached eddies. The influence of the detached eddies on the logarithmic layer was mostly on the coherent structures; the logarithmic layer with the detached eddies revealed a multi-layer structure similar to that found in the atmosphere where the lower part of the surface layer is dominated by sweep-like events and the upper part by ejection-like events. Our experiments show that the mean velocity gradient and the Reynolds shear stress were, however, not affected significantly by the detached eddies and hence the eddy viscosity.  相似文献   

19.
宋薇  彭珍  邹钧  孙鉴泞 《气象科学》2024,44(1):157-165
本文利用位于南京市郊区的南京大学仙林校区SORPES观测站多层湍流观测数据分析了湍流谱特征,以白天不稳定条件下垂直速度能谱谱峰对应的长度尺度也就是离地高度为判据,探讨了运用该方法确定复杂下垫面零平面位移的可行性。统计分析表明,该方法确定的长度尺度呈现出较为一致的概率分布形状,概率最大的长度尺度对应于离地高度,在复杂下垫面情况下这个高度就是零平面位移高度到观测高度之间的距离,将观测点的离地高度减去这个距离就能得到零平面位移。本文同时运用不稳定条件下垂直速度方差在近地层中的相似关系来确定零平面位移,并与谱方法得到的结果进行对比。结果表明,谱方法和方差法得到的零平面位移非常接近。  相似文献   

20.
Measurements of concentration fluctuation intensity, intermittency factor, and integral time scale were made in a water channel for a plume dispersing in a well-developed, rough surface, neutrally stable, boundary layer, and in grid-generated turbulence with no mean velocity shear. The water-channel simulations apply to full-scale atmospheric plumes with very short averaging times, on the order of 1–4 min, because plume meandering was suppressed by the water-channel side walls. High spatial and temporal resolution vertical and crosswind profiles of fluctuations in the plume were obtained using a linescan camera laser-induced dye tracer fluorescence technique. A semi-empirical algebraic mean velocity shear history model was developed to predict these concentration statistics. This shear history concentration fluctuation model requires only a minimal set of parameters to be known: atmospheric stability, surface roughness, vertical velocity profile, and vertical and crosswind plume spreads. The universal shear history parameter used was the mean velocity shear normalized by surface friction velocity, plume travel time, and local mean wind speed. The reference height at which this non-dimensional shear history was calculated was important, because both the source and the receptor positions influence the history of particles passing through the receptor position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号