首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of time-dependent large-scale forcing (LSF), solar zenith angle (SZA), and sea surface temperature (SST) on time-mean rainfall processes during Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) are examined by conducting a control experiment and a series of sensitivity experiments with a two-dimensional cloud-resolving model. The model is forced by time-dependent LSF, SZA, and SST in the control experiment. The sensitivity experiments are forced only by either time-dependent LSF, or SZA, or SST while others are replaced with their time averages. When the model is imposed by time-dependent LSF, time dependence of SZA and SST has no discernable effect on surface rainfall, but it affects rainfall processes. The rainfall is reduced by 15% when the time-dependent LSF is replaced by its time mean. The reduction of rainfall is associated with the suppression of water vapor convergence as a result of low correlation between upward motion and water vapor variation.  相似文献   

2.
The short-term tropical surface rainfall processes in rainfall regions (raining stratiform and convective regions) and rainfall-free regions (non-raining stratiform and clear-sky regions) are investigated based on the hourly data from a two-dimensional cloud-resolving model simulation. The model is integrated over a 21-day period with imposed zonally uniform vertical velocity, zonal wind, horizontal temperature and vapor advection, and sea surface temperature from the Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment (TOGA COARE). The analysis of the model domain-mean surface rainfall budget reveals that surface rainfall is mainly associated with water vapor convergence and local atmospheric drying. The mean surface rainfall lags the mean water vapor convergence by 3?h. The convective?Cstratiform rainfall separation analysis shows that convective rainfall is associated with water vapor convergence, whereas stratiform rainfall is related to the local atmospheric drying and hydrometeor loss/convergence. The transport of water vapor from rainfall-free regions to rainfall regions creates the main water vapor source for rainfall while it balances local atmospheric drying in rainfall-free regions. Surface evaporation plays a minor role in short-term surface rainfall processes.  相似文献   

3.
Two experiments were carried out using a two-dimensional cloud-resolving model to study the effects of diurnally varying sea surface temperature (SST) on diurnal variations of tropical convective and stratiform rainfall. Experiment SST29 is imposed by a constant SST of 29°C, whereas experiment SST29D is imposed by a diurnally varying SST with a time-mean of 29°C and a diurnal difference of 1°C. Both experiments are also zonally uniformly imposed by a zero vertical velocity and a constant zonal wind, and are integrated for 40 days to reach quasi-equilibrium states. The model domain mean surface rain rate is larger in SST29D than in SST29 in the late afternoon, when the ocean surface is warmer in SST29D. Convective-stratiform rainfall partitioning analysis reveals that the late-afternoon convective rainfall is larger in SST29D than in SST29, whereas the stratiform rainfalls are similar in both experiments. Further analysis of surface rainfall and cloud microphysical budgets over convective regions shows that, in the late afternoon, the larger amount of water vapor is pumped into the non-raining region through the larger surface evaporation associated with the warmer SST. This water vapor is then transported into convective regions to produce more vapor condensation and greater collection of cloud water by raindrops and larger convective rainfall in SST29D than in SST29.  相似文献   

4.
The sensitivity of precipitation to sea surface temperature(SST) and its diurnal variation is investigated through a rainfall partitioning analysis of two-dimensional cloud-resolving model experiments based on surface rainfall budget.For all experiments,the model is set up using zero vertical velocity and a constant zonal wind and is integrated over 40 days to reach quasi-equilibrium states.The 10-day equilibrium grid-scale simulation data and a time-invariant SST of 29°C are used in the control experiment.In the sensitivity experiments,time-invariant SSTs are 27°C and 31°C with an average value of 29°C when the minimum and maximum values of diurnal SST differences are 1°C and 2°C,respectively.The results show that the largest contribution to total rainfall is from the rainfall with water vapor convergence and local atmospheric drying and hydrometeor gain/divergence(~30%) in all experiments.When SST increases from 27°C to 29°C,the contribution from water vapor convergence decreases.The increase of SST reduces the contribution of the rainfall with water vapor convergence primarily through the decreased contribution of the rainfall with local atmospheric drying and hydrometeor gain/divergence and the rainfall with local atmospheric moistening and hydrometeor loss/convergence.The inclusion of diurnal variation of SST with the diurnal difference of 1°C decreases the rainfall contribution from water vapor convergence primarily through the decreased contribution of the rainfall with local atmospheric moistening and hydrometeor loss/convergence.The contribution of the rainfall from water vapor convergence is barely changed as the diurnal difference of SST increases from 1°C to 2°C.  相似文献   

5.
Sea surface temperature (SST) variations include negative feedbacks from the atmosphere, whereas SST anomalies are specified in stand-alone atmospheric general circulation simulations. Is the SST forced response the same as the coupled response? In this study, the importance of air–sea coupling in the Indian and Pacific Oceans for tropical atmospheric variability is investigated through numerical experiments with a coupled atmosphere-ocean general circulation model. The local and remote impacts of the Indian and Pacific Ocean coupling are obtained by comparing a coupled simulation with an experiment in which the SST forcing from the coupled simulation is specified in either the Indian or the Pacific Ocean. It is found that the Indian Ocean coupling is critical for atmospheric variability over the Pacific Ocean. Without the Indian Ocean coupling, the rainfall and SST variations are completely different throughout most of the Pacific Ocean basin. Without the Pacific Ocean coupling, part of the rainfall and SST variations in the Indian Ocean are reproduced in the forced run. In regions of large mean rainfall where the atmospheric negative feedback is strong, such as the North Indian Ocean and the western North Pacific in boreal summer, the atmospheric variability is significantly enhanced when air–sea coupling is replaced by specified SST forcing. This enhancement is due to the lack of the negative feedback in the forced SST simulation. In these regions, erroneous atmospheric anomalies could be induced by specified SST anomalies derived from the coupled model. The ENSO variability is reduced by about 20% when the Indian Ocean air–sea coupling is replaced by specified SST forcing. This change is attributed to the interfering roles of the Indian Ocean SST and Indian monsoon in western and central equatorial Pacific surface wind variations.  相似文献   

6.
This study investigates the effects of vertical wind shear on the torrential rainfall response to the large-scale forcing using a rainfall separation analysis of a pair of two-dimensional cloud-resolving model sensitivity experiments for a pre-summer heavy rainfall event over southern China from 3-8 June 2008 coupled with National Centers for Environmental Prediction(NCEP)/Global Data Assimilation System(GDAS) data.The rainfall partitioning analysis based on the surface rainfall budget indicates that the exclusion of vertical wind shear decreases the contribution to total rainfall from the largest contributor,which is the rainfall associated with local atmospheric drying,water vapor divergence,and hydrometeor loss/convergence,through the reduction of the rainfall area and reduced rainfall during the rainfall event.The removal of vertical wind shear increases the contribution to total rainfall from the rainfall associated with local atmospheric drying,water vapor convergence,and hydrometeor loss/convergence through the expansion of the rainfall area and enhanced rainfall.The elimination of vertical wind shear enhances heavy rainfall and expands its area,whereas it reduces moderate rainfall and its area.  相似文献   

7.
The effects of sea surface temperature(SST) and its diurnal variation on diurnal variation of rainfall are examined in this study by analyzing a series of equilibrium cloud-resolving model experiments which are imposed with zero large-scale vertical velocity.The grid rainfall simulation data are categorized into eight rainfall types based on rainfall processes including water vapor convergence/divergence,local atmospheric drying/moistening,and hydrometeor loss/convergence or gain/divergence.The rainfall contributions of the rainfall types with water vapor convergence are insensitive to the increase in SST from 27°C to 29°C during the nighttime,whereas they are decreased during the daytime.The rainfall contributions of the rainfall types with water vapor convergence are decreased as the SST increases from 29°C to 31°C but the decreases are larger during the nighttime than during the daytime.The rainfall contributions of the rainfall types with water vapor convergence are decreased by the inclusion of diurnal variation of SST with diurnal difference of 1°C during the nighttime,but the decreases are significantly slowed down as the diurnal difference of SST increases from 1°C to 2°C.The rainfall contributions of the rainfall types with water vapor convergence are insensitive to the inclusion of diurnal variation of SST during the daytime.  相似文献   

8.
The present study investigates the interdecadal change in the relationship between southern China (SC) summer rainfall and tropical Indo-Pacific sea surface temperature (SST). It is found that the pattern of tropical Indo-Pacific SST anomalies associated with SC summer rainfall variability tends to be opposite between the 1950–1960s and the 1980-1990s. Above-normal SC rainfall corresponds to warmer SST in the tropical southeastern Indian Ocean (SEIO) and cooler SST in the equatorial central Pacific (ECP) during the 1950–1960s but opposite SST anomalies in these regions during the 1980–1990s. A pronounced difference is also found in anomalous atmospheric circulation linking SEIO SST and SC rainfall between the two periods. In the 1950–1960s, two anomalous vertical circulations are present between ascent over SEIO and ascent over SC, with a common branch of descent over the South China Sea that is accompanied by an anomalous low-level anticyclone. In the 1980–1990s, however, a single anomalous vertical circulation directly connects ascent over SC to descent over SEIO. The change in the rainfall–SST relationship is likely related to a change in the magnitude of SEIO SST forcing and a change in the atmospheric response to the SST forcing due to different mean states. A larger SEIO SST forcing coupled with a stronger and more extensive western North Pacific subtropical high in recent decades induce circulation anomalies reaching higher latitudes, influencing SC directly. Present analysis shows that the SEIO and ECP SST anomalies can contribute to SC summer rainfall variability both independently and in concert. In comparison, there are more cases of concerted contributions due to the co-variability between the Indian and Pacific Ocean SSTs.  相似文献   

9.
The surface rainfall processes and diurnal variations associated with tropical oceanic convection are examined by analyzing a surface rainfall equation and thermal budget based on hourly zonal-mean data from a series of two-dimensional cloud-resolving simulations. The model is integrated for 21 days with imposed large-scale vertical velocity, zonal wind, and horizontal advection obtained from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) in the control experiment. Diurnal analysis shows that the infrared radiative cooling after sunset, as well as the advective cooling associated with imposed large-scale ascending motion, destabilize the atmosphere and release convective available potential energy to energize nocturnal convective development. Substantial local atmospheric drying is associated with the nocturnal rainfall peak in early morning, which is a result of the large condensation and deposition rates in the vapor budget. Sensitivity experiments show that diurnal variations of radiation and large-scale forcing can produce a nocturnal rainfall peak through infrared and advective cooling, respectively.  相似文献   

10.
In this study,two convective-stratiform rainfall partitioning schemes are evaluated using precipitation and cloud statistics for different rainfall types categorized by applying surface rainfall equation on grid-scale data from a two-dimensional cloud-resolving model simulation.One scheme is based on surface rainfall intensity whereas the other is based on cloud content information.The model is largely forced by the large-scale vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment(TOGA COARE).The results reveal that over 40% of convective rainfall is associated with water vapor divergence,which primarily comes from the rainfall type with local atmospheric drying and water hydrometeor loss/convergence,caused by precipitation and evaporation of rain.More than 40% of stratiform rainfall is related to water vapor convergence,which largely comes from the rainfall type with local atmospheric moistening and hydrometeor loss/convergence attributable to water clouds through precipitation and the evaporation of rain and ice clouds through the conversion from ice hydrometeor to water hydrometeor.This implies that the separation methods based on surface rainfall and cloud content may not clearly separate convective and stratiform rainfall.  相似文献   

11.
The effect of vegetation feedback on decadal-scale Sahel rainfall variability is analyzed using an ensemble of climate model simulations in which the atmospheric general circulation model ICTPAGCM (“SPEEDY”) is coupled to the dynamic vegetation model VEGAS to represent feedbacks from surface albedo change and evapotranspiration, forced externally by observed sea surface temperature (SST) changes. In the control experiment, where the full vegetation feedback is included, the ensemble is consistent with the observed decadal rainfall variability, with a forced component 60 % of the observed variability. In a sensitivity experiment where climatological vegetation cover and albedo are prescribed from the control experiment, the ensemble of simulations is not consistent with the observations because of strongly reduced amplitude of decadal rainfall variability, and the forced component drops to 35 % of the observed variability. The decadal rainfall variability is driven by SST forcing, but significantly enhanced by land-surface feedbacks. Both, local evaporation and moisture flux convergence changes are important for the total rainfall response. Also the internal decadal variability across the ensemble members (not SST-forced) is much stronger in the control experiment compared with the one where vegetation cover and albedo are prescribed. It is further shown that this positive vegetation feedback is physically related to the albedo feedback, supporting the Charney hypothesis.  相似文献   

12.
Zhuoqi He  Renguang Wu 《Climate Dynamics》2014,42(9-10):2323-2337
This study investigates summer rainfall variability in the South China Sea (SCS) region and the roles of remote sea surface temperature (SST) forcing in the tropical Indian and Pacific Ocean regions. The SCS summer rainfall displays a positive and negative relationship with simultaneous SST in the equatorial central Pacific (ECP) and the North Indian Ocean (NIO), respectively. Positive ECP SST anomalies induce an anomalous low-level cyclone over the SCS-western North Pacific as a Rossby-wave type response, leading to above-normal precipitation over northern SCS. Negative NIO SST anomalies contribute to anomalous cyclonic winds over the western North Pacific by an anomalous east–west vertical circulation north of the equator, favoring more rainfall over northern SCS. These NIO SST anomalies are closely related to preceding La Niña and El Niño events through the “atmospheric bridge”. Thus, the NIO SST anomalies serve as a medium for an indirect impact of preceding ECP SST anomalies on the SCS summer rainfall variability. The ECP SST influence is identified to be dominant after 1990 and the NIO SST impact is relatively more important during 1980s. These Indo-Pacific SST effects are further investigated by conducting numerical experiments with an atmospheric general circulation model. The consistency between the numerical experiments and the observations enhances the credibility of the Indo-Pacific SST influence on the SCS summer rainfall variability.  相似文献   

13.
Both water vapor and heat processes play key roles in producing surface rainfall.While the water vapor effects of sea surface temperature and cloud radiative and microphysical processes on surface rainfall have been investigated in previous studies,the thermal effects on rainfall are analyzed in this study using a series of two-dimensional equilibrium cloud-resolving model experiments forced by zonally-uniform,constant,large-scale zonal wind and zero large-scale vertical velocity.The analysis of thermally-related surface rainfall budget reveals that the model domain mean surface rain rate is primarily associated with the mean infrared cooling rate.Convective rainfall and transport of hydrometeor concentration from convective regions to raining stratiform regions corresponds to the heat divergence over convective regions,whereas stratiform rainfall corresponds to the transport of hydrometeor concentration from convective regions and heat divergence over raining stratiform regions.The heat divergence over convective regions is mainly balanced by the heat convergence over rainfall-free regions,which is,in turn,offset by the radiative cooling over rainfall-free regions.The sensitivity experiments of rainfall to the effects of sea surface temperature and cloud radiative and microphysical processes show that the sea surface temperature and cloud processes affect convective rainfall through the changes in infrared cooling rate over rainfall-free regions and transport rate of heat from convective regions to rainfall-free regions.  相似文献   

14.
Sea surface temperature (SST) anomalies can induce anomalous convection through surface evaporation and low-level moisture convergence. This SST forcing of the atmosphere is indicated in a positive local rainfall–SST correlation. Anomalous convection can feedback on SST through cloud-radiation and wind-evaporation effects and wind-induced oceanic mixing and upwelling. These atmospheric feedbacks are reflected in a negative local rainfall–SST tendency correlation. As such, the simultaneous rainfall–SST and rainfall–SST tendency correlations can indicate the nature of local air–sea interactions. Based on the magnitude of simultaneous rainfall–SST and rainfall–SST tendency correlations, the present study identifies three distinct regimes of local air–sea interactions. The relative importance of SST forcing and atmospheric forcing differs in these regimes. In the equatorial central-eastern Pacific and, to a smaller degree, in the western equatorial Indian Ocean, SST forcing dominates throughout the year and the surface heat flux acts mainly as a damping term. In the tropical Indo-western Pacific Ocean regions, SST forcing and atmospheric forcing dominate alternatively in different seasons. Atmospheric forcing dominates in the local warm/rainy season. SST forcing dominates with a positive wind-evaporation feedback during the transition to the cold/dry season. SST forcing also dominates during the transition to the warm/rainy season but with a negative cloud-radiation feedback. The performance of atmospheric general circulation model simulations forced by observed SST is closely linked to the regime of air–sea interaction. The forced simulations have good performance when SST forcing dominates. The performance is low or poor when atmospheric forcing dominates.  相似文献   

15.
Spring rainfall secular variability is studied using observations, reanalysis, and model simulations. The joint coherent spatio-temporal secular variability of gridded monthly gauge rainfall over Ethiopia, ERA-Interim atmospheric variables and sea surface temperature (SST) from Hadley Centre Sea Ice and SST (HadISST) data set is extracted using multi-taper method singular value decomposition (MTM-SVD). The contemporaneous associations are further examined using partial Granger causality to determine presence of causal linkage between any of the climate variables. This analysis reveals that only the northwestern Indian Ocean secular SST anomaly has direct causal links with spring rainfall over Ethiopia and mean sea level pressure (MSLP) over Africa inspite of the strong secular covariance of spring rainfall, SST in parts of subtropical Pacific, Atlantic, Indian Ocean and MSLP. High secular rainfall variance and statistically significant linear trend show consistently that there is a massive decline in spring rain over southern Ethiopia. This happened concurrently with significant buildup of MSLP over East Africa, northeastern Africa including parts of the Arabian Peninsula, some parts of central Africa and SST warming over all ocean basins with the exception of the ENSO regions. The east-west pressure gradient in response to the Indian Ocean warming led to secular southeasterly winds over the Arabian Sea, easterly over central Africa and equatorial Atlantic. These flows weakened climatological northeasterly flow over the Arabian Sea and southwesterly flow over equatorial Atlantic and Congo basins which supply moisture into the eastern Africa regions in spring. The secular divergent flow at low level is concurrent with upper level convergence due to the easterly secular anomalous flow. The mechanisms through which the northwestern Indian Ocean secular SST anomaly modulates rainfall are further explored in the context of East Africa using a simplified atmospheric general circulation model (AGCM) coupled to mixed-layer oceanic model. The rainfall anomaly (with respect to control simulation), forced by the northwestern Indian Ocean secular SST anomaly and averaged over the 30-year period, exhibits prevalence of dry conditions over East and equatorial Africa in agreement with observation. The atmospheric response to secular SST warming anomaly led to divergent flow at low levels and subsidence at the upper troposphere over regions north of 5° S on the continent and vice versa over the Indian Ocean. This surface difluence over East Africa, in addition to its role in suppressing convective activity, deprives the region of moisture supply from the Indian Ocean as well as the Atlantic and Congo basins.  相似文献   

16.
Several observational and modeling studies indicate that the Indian summer monsoon rainfall (ISMR) is inversely related to the Eurasian snow extent and depth. The other two important surface boundary conditions which influence the ISMR are the Pacific sea surface temperature (SST) to a large extent and the Indian Ocean SST to some extent. In the present study, observed Soviet snow depth data and Indian rainfall data for the period 1951–1994 have been statistically analyzed and results show that 57% of heavy snow events and 24% of light snow events over west Eurasia are followed by deficient and excess ISMR respectively. Out of all the extreme monsoon years, care has been taken to identify those when Eurasian snow was the most dominant surface forcing to influence ISMR. During the years of high(low) Eurasian snow amounts in spring/winter followed by deficient(excess) ISMR, atmospheric fields such as temperature, wind, geopotential height, velocity potential and stream function based on NCEP/NCAR reanalyses have been examined in detail to study the influence of Eurasian snow on the midlatitude circulation regime and hence on the monsoon circulation. Results show that because of the west Eurasian snow anomalies, the midlatitude circulations in winter through spring show significant changes in the upper and lower level wind, geopotential height, velocity potential and stream function fields. Such changes in the large-scale circulation pattern may be interpreted as precursors to weak/strong monsoon circulation and deficient/excess ISMR. The upper level velocity potential difference fields between the high and low snow years indicate that with the advent of spring, the winter anomalous convergence over the Indian region gradually becomes weaker and gives way to anomalous divergence that persists through the summer monsoon season. Also the upper level anomalous divergence centre shifts from over the Northern Hemisphere and equator to the Southern Hemisphere over the Indian Ocean and Australia.  相似文献   

17.
Summary Cloud microphysical processes associated with the diurnal variations of tropical convection are investigated based on hourly data from a 2D coupled ocean-cloud resolving atmosphere simulation. The model is forced by the large-scale vertical velocity and zonal wind derived from TOGA COARE for a 50-day period. The diurnal composites are carried out in weak diurnal SST variations (case W) and strong diurnal SST signals (case S). The ice water path is larger than the liquid water path in case W than it is in case S. The difference is enhanced in the morning in case W and in the early afternoon in case S when the surface rain rates reach their peaks. Further comparison of cloud microphysics budgets, associated with rainfall peaks, between cases S and W shows that solar heating in case S warms air to reduce the contribution of vapor deposition to cloud growth, which decreases ice water path compared to those in case W. While the collection of cloud water by rain is a major contributor to the surface precipitation in both cases, the melting of precipitation ice (sum of snow and graupel) contributes less to the rainfall in case S than in case W.  相似文献   

18.
极端降水引起的洪、涝等灾害每年给我国带来极大的人员伤亡和经济损失。全球增暖使极端降水事件发生的频率增加,强度增强。但是针对不同区域极端降水事件,其贡献究竟如何还有待于进一步认识。本文以我国长江中下游地区的极端降水事件为研究对象,通过典型年份夏季区域极端降水过程的水汽收支特征,探讨海表温度(SST)的增暖趋势和自然变率强迫对该区域典型极端降水强度的影响效应。结果表明:(1)极端降水过程及其夏季都伴随着区域整层大气的水汽辐合,且水汽辐合发生在经向方向。西北太平洋异常反气旋式环流,在区域南边界形成了稳定的西南风异常的水汽输送。(2)典型极端降水过程发生的夏季,SST在赤道印度洋和热带大西洋为强正异常,主要为增暖趋势的贡献,赤道中东太平洋SST异常表现为La Ni?a型。(3)SST增暖趋势和自然变率的数值敏感性试验表明,1998、2017和2020年的SST增暖趋势强迫的区域水汽辐合分别是其自然变率强迫的83%、210%和107%,SST增暖趋势比自然变率的影响更为重要。(4)SST增暖趋势和自然变率都是通过强迫西北太平洋异常反气旋式环流,引起长江中下游区域南边界异常的西南水汽输送,是导致极端降水发生的主要过程。  相似文献   

19.
The effects of ice microphysics on tropical atmospheric and oceanic variability are investigated with a two-dimensional coupled ocean-cloud resolving atmosphere model forced by the large-scale vertical velocity and zonal wind derived from Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment (TOGA COARE). The experiment without ice microphysics is compared to a control experiment with ice microphysics. Compared to the control experiment, the experiment without ice microphysics generates a more humid and colder atmosphere by suppressing stratiform clouds and rainfall and associated latent heating; the experiment without ice microphysics produces a saltier mixed layer by a larger saline forcing associated with a weaker stratiform rainfall. Ocean mixed-layer temperature is insensitive to the atmospheric variability associated with ice microphysics.  相似文献   

20.
The main goal of this study is to determine the oceanic regions corresponding to variability in African rainfall and seasonal differences in the atmospheric teleconnections. Canonical correlation analysis (CCA) has been applied in order to extract the dominant patterns of linear covariability. An ensemble of six simulations with the global atmospheric general circulation model ECHAM4, forced with observed sea surface temperatures (SSTs) and sea ice boundary variability, is used in order to focus on the SST-related part of African rainfall variability. Our main finding is that the boreal summer rainfall (June–September mean) over Africa is more affected by SST changes than in boreal winter (December–March mean). In winter, there is a highly significant link between tropical African rainfall and Indian Ocean and eastern tropical Pacific SST anomalies, which is closely related to El Niño-Southern Oscillation (ENSO). However, long-term changes are found to be associated with SST changes in the Indian and tropical Atlantic Oceans, thus, showing that the tropical Atlantic plays a critical role in determining the position of the intertropical convergence zone (ITCZ). Since ENSO is less in summer, the tropical Pacific and the Indian Oceans are less important for African rainfall. The African summer monsoon is strongly influenced by SST variations in the Gulf of Guinea, with a response of opposite sign over the Sahelian zone and the Guinean coast region. SST changes in the subtropical and extratropical oceans mostly take place on decadal time scales and are responsible for low-frequency rainfall fluctuations over West Africa. The modelled teleconnections are highly consistent with the observations. The agreement for most of the teleconnection patterns is remarkable and suggests that the modelled rainfall anomalies serve as suitable predictors for the observed changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号