首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on the further development of a new technique for standardization of tree-ring records called the eigen analysis of tree-ring records. The data are from the same sample set of 56 long-lived Qilian junipers (Sabina przewalskii Kom.) from the Dulan region in western China as was used in our previous paper (Yang et al. 2011b). To assess the heteroscedasticity of individual record deviations from the sample set regional curve (RC), we tested five different definitions of those deviations. Direct computations of eigenvectors of all relevant intrarecord covariation matrices turned out to be greatly affected by observational and computational noise; an analytic approximation of these vectors was therefore desirable. The Bessel function of the first kind and the zero order proved suitable for such an approximation, especially because the deviations were defined via subtraction of the RC from raw ring width records. Exclusion of the contributions of the first segment of the Bessel approximation, corresponding to the extremely large first eigenvalue, rendered individual record deviations from RC homoscedastic. Therefore, the routine Fourier basis became applicable to extract climate-dependent components of the residual deviations. A Fourier expansion of the Dulan chronology revealed the quasi-200-year-long solar activity cycle to be the main factor affecting Dulan tree growth.  相似文献   

2.
Dendroclimatological sampling of Scots pine (Pinus sylvestris L.) has been made in the province of J?mtland, in the west-central Scandinavian mountains, since the 1970s. The tree-ring width (TRW) chronology spans several thousand years and has been used to reconstruct June?CAugust temperatures back to 1632 bc. A maximum latewood density (MXD) dataset, covering the period ad 1107?C1827 (with gap 1292?C1315) was presented in the 1980s by Fritz Schweingruber. Here we combine these historical MXD data with recently collected MXD data covering ad 1292?C2006 into a single reconstruction of April?CSeptember temperatures for the period ad 1107?C2006. Regional curve standardization (RCS) provides more low-frequency variability than ??non-RCS?? and stronger correlation with local seasonal temperatures (51% variance explained). The MXD chronology shows a stronger relationship with temperatures than the TRW data, but the two chronologies show similar multi-decadal variations back to ad 1500. According to the MXD chronology, the period since ad 1930 and around ad 1150?C1200 were the warmest during the last 900?years. Due to large uncertainties in the early part of the combined MXD chronology, it is not possible to conclude which period was the warmest. More sampling of trees growing near the tree-line is needed to further improve the MXD chronology.  相似文献   

3.
Summary Tree-ring standardization methods were compared. Traditional methods along with the recently introduced approaches of regional curve standardization (RCS) and power-transformation (PT) were included. The difficulty in removing non-climatic variation (noise) while simultaneously preserving the low-frequency variability in the tree-ring series was emphasized. The potential risk of obtaining inflated index values was analysed by comparing methods to extract tree-ring indices from the standardization curve. The material for the tree-ring series, previously used in several palaeoclimate predictions, came from living and dead wood of high-latitude Scots pine in northernmost Europe. This material provided a useful example of a long composite tree-ring chronology with the typical strengths and weaknesses of such data, particularly in the context of standardization. PT stabilized the heteroscedastic variation in the original tree-ring series more efficiently than any other standardization practice expected to preserve the low-frequency variability. RCS showed great potential in preserving variability in tree-ring series at centennial time scales; however, this method requires a homogeneous sample for reliable signal estimation. It is not recommended to derive indices by subtraction without first stabilizing the variance in the case of series of forest-limit tree-ring data. Index calculation by division did not seem to produce inflated chronology values for the past one and a half centuries of the chronology (where mean sample cambial age is high). On the other hand, potential bias of high RCS chronology values was observed during the period of anomalously low mean sample cambial age. An alternative technique for chronology construction was proposed based on series age decomposition, where indices in the young vigorously behaving part of each series are extracted from the curve by division and in the mature part by subtraction. Because of their specific nature, the dendrochronological data here should not be generalized to all tree-ring records. The examples presented should be used as guidelines for detecting potential sources of bias and as illustrations of the usefulness of tree-ring records as palaeoclimate indicators.  相似文献   

4.
基于2014年采自柴达木盆地南缘格尔木地区的胡杨树轮样本,采用三种不同去趋势方法(样条函数法、负指数拟合和区域曲线去趋势方法)建立树轮标准化序列,结合格尔木气象站气候资料,分析不同去趋势方法下胡杨径向生长对气候的响应。研究表明,利用区域去趋势方法建立的树轮年表包含有较多的气候环境信息,胡杨树轮年表与逐月气候因子相关表明,树轮年表对降水响应不显著,与生长季的平均气温和平均最高气温有较好的相关性,最高相关系数达0.411(p0.01),格尔木胡杨树轮的区域去趋势年表与组合相关的6—10月平均最高气温相关性最好,生长季的平均最高气温对胡杨径向生长有一定的限制作用并具有树木生理学意义。用区域曲线去趋势方法得出的格尔木胡杨树轮年表对气候的响应最好。  相似文献   

5.
We developed four Georgei fir (Abies georgei var. smithii) tree-ring width chronologies at the timberline in the Sygera Mts. in southeast Tibet, China. All individual standard chronologies and a regional well-replicated ring-width composite chronology (RC) show significantly positive correlations with mean summer (June-August) temperature. Herein mean summer temperature was reconstructed for southeast Tibet back to A.D. 1765 based on RC. This reconstruction successfully captures recent warming observed in the instrumental record since 1961 with the last decade being the warmest period in the past 242 years. It agrees in general with other temperature reconstructions of the Tibetan Plateau and extratropical northern hemisphere. This study allows seeing recent warming on a longer time scale in southeast Tibet.  相似文献   

6.
The Andes Cordillera acts as regional ??Water Towers?? for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation rise in the 0° isotherm, and changes in regional streamflow regimes. The Temperate-Mediterranean transition (TMT) zone of the Andes (35.5°?C39.5°S) is particularly at risk to climate change because it is a biodiversity hotspot with heavy human population pressure on water resources. In this paper we utilize a new tree-ring network of Austrocedrus chilensis to reconstruct past variations in regional moisture in the TMT of the Andes by means of the Palmer Drought Severity Index (PDSI). The reconstruction covers the past 657?years and captures interannual to decadal scales of variability in late spring?Cearly summer PDSI. These changes are related to the north?Csouth oscillations in moisture conditions between the Mediterranean and Temperate climates of the Andes as a consequence of the latitudinal position of the storm tracks forced by large-scale circulation modes. Kernel estimation of occurrence rates reveals an unprecedented increment of severe and extreme drought events during the last century in the context of the previous six centuries. Moisture conditions in our study region are linked to tropical and high-latitude ocean-atmospheric forcing, with PDSI positively related to Ni?o-3.4 SST during spring and strongly negatively correlated with the Antarctic Oscillation (AAO) during summer. Geopotential anomaly maps at 500-hPa show that extreme dry years are tightly associated with negative height anomalies in the Ross?CAmundsen Seas, in concordance with the strong negative relationship between PDSI and AAO. The twentieth century increase in extreme drought events in the TMT may not be related to ENSO but to the positive AAO trend during late-spring and summer resulting from a gradual poleward shift of the mid-latitude storm tracks. This first PDSI reconstruction for South America demonstrates the highly significant hindcast skill of A. chilensis as an aridity proxy.  相似文献   

7.
A 1052-year tree-ring proxy for Alpine summer temperatures   总被引:6,自引:0,他引:6  
A June–August Alpine temperature proxy series is developed back to AD 951 using 1,527 ring-width measurements from living trees and relict wood. The reconstruction is composed of larch data from four Alpine valleys in Switzerland and pine data from the western Austrian Alps. These regions are situated in high elevation Alpine environments where a spatially homogenous summer temperature signal exists. In an attempt to capture the full frequency range of summer temperatures over the past millennium, from inter-annual to multi-centennial scales, the regional curve standardization technique is applied to the ring width measurements. Correlations of 0.65 and 0.86 after decadal smoothing, with high elevation meteorological stations since 1864 indicate an optimal response of the RCS chronology to June–August mean temperatures. The proxy record reveals warm conditions from before AD 1000 into the thirteenth century, followed by a prolonged cool period, reaching minimum values in the 1820s, and a warming trend into the twentieth century. This latter trend and the higher frequency variations compare well with the actual high elevation temperature record. The new central Alpine proxy suggests that summer temperatures during the last decade are unprecedented over the past millennium. It also reveals significant similarities at inter-decadal to multi-centennial frequencies with large-scale temperature reconstructions, however, deviating during certain periods from H.H. Lamb‘s European/North Atlantic temperature history.  相似文献   

8.
A millennium-long tree-ring width chronology of living and dead larch (Larix decidua Mill.) specimens from the Maritime French Alps was introduced 35?years ago. This record has been included in various large-scale temperature reconstructions, though recent analyses revealed only weak associations with regional summer temperatures. Calibration and verification trials against instrumental measurements were, however, limited by the original record’s early ending in 1974. Here we introduce an update of this widely considered chronology until 2007 and back into medieval times. A total of 297 new larch samples from high-elevation settings in the southern French Alps were included, and the combined 398 measurement series allowed effects of tree-ring detrending and chronology development to be explored. Comparisons with meteorological temperature, precipitation and drought indices revealed weak and temporally inconsistent climate sensitivity. To further place these local findings in a biogeographic context, we used >3,000 larch trees from 61 locations across the Alpine arc. This unique network approach confirmed fading temperature sensitivity with decreasing latitude, and thus questioned the overall reliability of ring width-based temperature reconstructions in the Mediterranean region. Our results further emphasize the pending need to develop chronologies from maximum latewood densities and stable isotope ratios across the lower latitudes, and to carefully evaluate ecological site conditions and methodological data restrictions prior to compiling local data into global networks.  相似文献   

9.
The projected temperature rise, rainfall decrease and concentration of rainfall in extreme events could induce growth decline and die-off on tree populations located at the geographical distribution limit of the species. Understanding of adaptive capacity and regional vulnerability to climate change in Mediterranean forests is not well developed and requires more focused research efforts. We studied the relationships between spatiotemporal patterns of temperature and precipitation along the southwestern edge of the Betic range (southern Spain) and measured basal area increment (BAI) and carbon isotope (??) in tree ring series of Abies pinsapo and Pinus halepensis, two Mediterranean conifer trees with contrasting drought adaptive capacity. Climatic information was obtained from a network covering a wide range of elevations and distances from the Atlantic and Mediterranean coasts. Temperature trends were tested by the Mann?CKendall test, and precipitation was thoroughly analyzed by quantile regression. Climatic data showed a warming trend, enhanced since the 1970s, while quantile regressions revealed that drought events worsened during the course of the twentieth century. Long-term decrease of A. pinsapo BAI was related to regional warming and changing precipitation patterns, suggesting increasing drought stress on this species. Both temperature and precipitation in the summer influenced wood ?? in P. halepensis, whereas negative correlation between wood ?? and current autumn temperature was yielded for A. pinsapo. Increased intrinsic water use efficiency was inferred from wood ?? in both species; however, A. pinsapo showed sudden growth reductions under drier conditions, while pine trees were able to maintain almost constant BAI values and lower water costs under increasing long-term water stress.  相似文献   

10.
Ram R. Yadav 《Climate Dynamics》2011,36(7-8):1453-1462
Tree-ring-width data of Himalayan cedar [Cedrus deodara (Roxb.) G. Don] from 11 homogeneous moisture stressed sites in the monsoon shadow zone of the western Himalaya were used to develop a mean chronology extending back to ad 1353. The chronology developed using Regional Curve Standardization method is the first from the Himalayan region of India showing centennial-scale variations. The calibration of ring-width chronology with instrumental precipitation data available from stations close to the tree ring sampling sites showed strong, direct relationship with March?CApril?CMay?CJune (MAMJ) precipitation. This strong relationship was used to supplement the instrumental precipitation data back to ad 1410. The precipitation reconstruction showed extended period of drought in fifteenth and sixteenth centuries. Increasingly pluvial conditions were recorded since eighteenth century, with the highest precipitation in the early part of the nineteenth century. The decreasing trend in reconstructed precipitation in the last decade of the twentieth century, consistent with the instrumental records, is associated with the decreasing trend in frequency of western disturbances. MAMJ precipitation over the monsoon shadow zone in the western Himalaya is directly associated with the North Atlantic Oscillation (NAO) and NINO3-SST index of El Nino-Southern Oscillation (ENSO), the leading modes of climate variability influencing climate over large parts of the Northern Hemisphere. However, the relationship between ENSO and MAMJ precipitation collapsed completely during 1930?C1960. The breakdown in this relationship is associated with the warm phase of Atlantic Multidecadal Oscillation (AMO). A spectral analysis of reconstructed MAMJ precipitation indicates frequencies in the range of the variability associated with modes of NAO, ENSO and AMO.  相似文献   

11.
Two concepts are introduced for detecting abrupt climate changes. In the first case, the sampling frequency of climate data is high as compared to the frequency of climate events examined. The method is based on a separation of trend and noise in the data and is applicable to any dataset that satisfies some mild smoothness and statistical dependence conditions for the trend and the noise, respectively. We say that an abrupt change occurs when the first derivative of the trend function has a discontinuity and the task is to identify such points. The technique is applied to Northern Hemisphere temperature data from 1850 to 2009, Northern Hemisphere temperature data from proxy data, a.d. 200?C1995 and Holocene ??18O values going back to 11,700 years BP. Several abrupt changes are detected that are, among other things, beneficial for determining the Medieval Warm Period, Little Ice Age and Holocene Climate Optimum. In the second case, the sampling frequency is low relative to the frequency of climate events studied. A typical example includes Dansgaard?COeschger events. The methodology used here is based on a refinement of autoregressive conditional heteroscedastic models. The key element of this approach is the volatility that characterises the time-varying variance, and abrupt changes are defined by high volatilities. The technique applied to ??18O values going back to 122,950 years BP is suitable for identifying DO events. These two approaches for the two cases are closely related despite the fact that at first glance, they seem quite different.  相似文献   

12.
《Atmospheric Research》2009,94(4):673-679
Since climate trends are getting considerable attention in recent years, we aimed in this study to compare trends and rhythms of complexity (fractal dimension, FD) of rainfall data series between two continents: Latin America and Europe. Two parallel nonlinear methods for calculating FD of a temporal data series, Higuchi's and consecutive differences, were combined with Fast Fourier Transform (FFT) to obtain FD oscillations of monthly accumulated rainfall. The data were collected for the last thirty years in Pastaza province, Ecuador and Veneto province, Italy. In order to calculate their FD time dependence, FD(t), moving windows of different lengths (short, 10–20 and long 21–350 samples), were applied. Both methods, each combined with FFT, detected identical (or very similar) rhythms of detrended FD(t) in the two data series, but frequencies with dominant amplitudes differed (4.4 years in Ecuador, 10.3 years in Italy). Long-term FD(t) trends were also studied using optimized long window lengths (~ 200 samples). A linear positive trend was obtained for the Ecuadorian rainfall data over the whole recorded period. Italian fractal trend profile was, however, characterized by two periods: a constant high value for years 1974–1993, followed by a linear decrease for 1993–2005. Trend results, obtained with two different methods, were also similar. Accordance of the results, reported in the present paper by applying these two methods, validates their use as a tool in future fractal meteorological measurements. As well, these results indicate that positive FD trend obtained for Pastaza (Ecuador) and negative trend computed for Veneto (Italy) account for a local or regional phenomenon, most probably caused by extensive deforestation and land use change (Ecuador) and continental or global atmospheric pattern variability (Italy).  相似文献   

13.
Several studies using ocean?Catmosphere general circulation models (GCMs) suggest that the atmospheric component plays a dominant role in the modelled El Ni?o-Southern Oscillation (ENSO). To help elucidate these findings, the two main atmosphere feedbacks relevant to ENSO, the Bjerknes positive feedback (??) and the heat flux negative feedback (??), are here analysed in nine AMIP runs of the CMIP3 multimodel dataset. We find that these models generally have improved feedbacks compared to the coupled runs which were analysed in part I of this study. The Bjerknes feedback,???, is increased in most AMIP runs compared to the coupled run counterparts, and exhibits both positive and negative biases with respect to ERA40. As in the coupled runs, the shortwave and latent heat flux feedbacks are the two dominant components of ?? in the AMIP runs. We investigate the mechanisms behind these two important feedbacks, in particular focusing on the strong 1997?C1998 El Ni?o. Biases in the shortwave flux feedback, ?? SW, are the main source of model uncertainty in ??. Most models do not successfully represent the negative ??SW in the East Pacific, primarily due to an overly strong low-cloud positive feedback in the far eastern Pacific. Biases in the cloud response to dynamical changes dominate the modelled ?? SW biases, though errors in the large-scale circulation response to sea surface temperature (SST) forcing also play a role. Analysis of the cloud radiative forcing in the East Pacific reveals model biases in low cloud amount and optical thickness which may affect ?? SW. We further show that the negative latent heat flux feedback, ?? LH, exhibits less diversity than ?? SW and is primarily driven by variations in the near-surface specific humidity difference. However, biases in both the near-surface wind speed and humidity response to SST forcing can explain the inter-model ??LH differences.  相似文献   

14.
The El Ni?o-Southern Oscillation (ENSO) is a major driver of climate variability in many parts of the world. Impressive progress has been made in the last 25?years in consolidating the scientific and mathematical basis to our understanding of ENSO. This includes the development and analysis of a hierarchy of models??including simple analogue models??to simulate and understand ENSO physics. The delayed-action oscillator (DAO) equation has been a particularly important analogue model in the historical development of our understanding of ENSO physics, and numerical solutions of this equation have been explored in detail in previous studies. Given this importance, it is surprising that no exact analytic solutions to the equation have been provided previously in the ENSO literature. This situation is rectified here by deriving and presenting analytic solutions to the linear DAO equation $ \frac{{dT}}{{dt}} = aT - bT\left( {t - \tau } \right) $ for parameter values relevant to ENSO. Here, T is an index for ENSO variability at time t; a, b, and ?? (the delay time >0) are real parameters. A comparison between observations and (linear) theory suggests that ENSO behaves as a damped oscillator with a period of 3.8?years and a damping time-scale of 0.9?years. The parameter $ \gamma = b\tau {e^{ - a\tau }} $ is found to be crucial in understanding the behavior of the solution and the lowest frequency mode. For example, if ???>?1/e the solution is oscillatory. Exact analytic solutions to the DAO equation which are phase-locked to the annual cycle??as is the case for ENSO??are also obtained. The overall (annual average) stability of a phase-locked system and its intrinsic periodicities differ from the corresponding properties of the system with parameters set to their annual averages (i.e., the corresponding solution which is not phase-locked). Phase-locking therefore alters the growth rate and period of the lowest frequency mode.  相似文献   

15.
Observations and simulations link anthropogenic greenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60?years, the Indian Ocean warmed two to three times faster than the central tropical Pacific, extending the tropical warm pool to the west by ~40° longitude (>4,000?km). This propensity toward rapid warming in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55°E?C140°W) since at least 1948, explaining more variance than anomalies associated with the El Ni?o-Southern Oscillation (ENSO). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980?C2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ??long-rains?? season of March?CJune. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ??El Ni?o-like?? conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the Warm Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in ENSO is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning.  相似文献   

16.
Accurate replication of the processes associated with the energetics of the tropical ocean is necessary if coupled GCMs are to simulate the physics of ENSO correctly, including the transfer of energy from the winds to the ocean thermocline and energy dissipation during the ENSO cycle. Here, we analyze ocean energetics in coupled GCMs in terms of two integral parameters describing net energy loss in the system using the approach recently proposed by Brown and Fedorov (J Clim 23:1563?C1580, 2010a) and Fedorov (J Clim 20:1108?C1117, 2007). These parameters are (1) the efficiency ?? of the conversion of wind power into the buoyancy power that controls the rate of change of the available potential energy (APE) in the ocean and (2) the e-folding rate ?? that characterizes the damping of APE by turbulent diffusion and other processes. Estimating these two parameters for coupled models reveals potential deficiencies (and large differences) in how state-of-the-art coupled GCMs reproduce the ocean energetics as compared to ocean-only models and data assimilating models. The majority of the coupled models we analyzed show a lower efficiency (values of ?? in the range of 10?C50% versus 50?C60% for ocean-only simulations or reanalysis) and a relatively strong energy damping (values of ???1 in the range 0.4?C1?years versus 0.9?C1.2?years). These differences in the model energetics appear to reflect differences in the simulated thermal structure of the tropical ocean, the structure of ocean equatorial currents, and deficiencies in the way coupled models simulate ENSO.  相似文献   

17.
The technique of expanding meteorological fields on eigenvectors of the field covariation matrix is popular. In this paper, we propose for the first time to use a mathematically similar technique to solve the main problem of dendrochronology: classifying variations in tree-ring records as either age- and microenvironment-dependent or climate-induced. Applying this technique to a sample of very long-lived Qilian junipers (Sabina przewalskii Kom.) from the Dulan region in western China, we demonstrate that the ring-width variations projected on the first eigenvector are age-dependent, but those projected on several of the first subsequent vectors are mainly climate-induced. In particular, the second and third projections capture multi-centennial climatic variations, and the variations projected on the fourth through seventh eigenvectors show periodic variations that are probably induced by the 178-year solar cycle. The projections on the smallest eigenvectors seem to be negligible.  相似文献   

18.
We describe a new tree-ring width data set of 14 white spruce chronologies for the Seward Peninsula (SP), Alaska, based on living and subfossil wood dating from 1358 to 2001 AD. A composite chronology derived from these data correlates positively and significantly with summer temperatures at Nome from 1910 to 1970, after which there is some loss of positive temperature response. There is inferred cooling during periods within the Little Ice Age (LIA) from the early to middle 1600s and late 1700s to middle 1800s; and warming from the middle 1600s to early 1700s. We also present a larger composite data set covering 978–2001 AD, utilizing the SP ring-width data in combination with archaeological wood measurements and other recent collections from northwestern Alaska. The Regional Curve Standardization (RCS) method was employed to maximize potential low-frequency information in this data set. The RCS chronology shows intervals of persistent above-average growth around the time of the Medieval Warm Period (MWP) early in the millennium, which are comparable to growth levels in recent centuries. There is a more sustained cold interval during the LIA inferred from the RCS record as compared to the SP ring-width series. The chronologies correlate significantly with Bering and Chukchi Sea sea surface temperatures and with the Pacific Decadal Oscillation index. These atmosphere–ocean linkages probably account for the differences between these records and large-scale reconstructions of Arctic and Northern Hemisphere temperatures based largely on continental interior proxy data.  相似文献   

19.
Recent studies have raised concerns that tropical cyclones (TCs), particularly severe TCs, have become more frequent in many places in response to global warming. Other studies discuss errors in TC data that can cause large inaccuracies in some of the observed trends. Additional studies conclude that TCs are likely to become more intense in the future in response to global warming, while regional modelling studies for the south-west Pacific near north-eastern Australia project an intensification of TCs and either a decrease or no change in TC numbers. Here we describe and use a new data base of severe land-falling TCs for eastern Australia derived from numerous historical sources, that has taken over a decade to develop. It provides one of the world??s longest reliable records of tropical cyclone activity, and allows us to document changes over much longer periods than has been done previously for the Southern Hemisphere. Land-fall numbers are shown to vary a great deal on interannual, decadal and longer time-scales. The interannual variability is consistent with previous studies using much shorter data sets: land-fall numbers are well-simulated as a Poisson process and are modulated by the El Ni?o-Southern Oscillation (ENSO). Land-falls occurred almost twice as often in La Ni?a years as they did in El Ni?o years, and multiple land-falls only occurred during La Ni?a years. The statistical link between land-falls and pre-season values of the Southern Oscillation Index provides a modest predictive capability. Decadal variability in ENSO drives some of the decadal variability in land-fall numbers. The sign and magnitude of trends calculated over 30?years periods vary substantially, highlighting that caution needs to be taken in making inferences about trends based on e.g. satellite era data only. The linear trend in the number of severe TCs making land-fall over eastern Australia declined from about 0.45 TCs/year in the early 1870s to about 0.17 TCs/year in recent times??a 62% decline. This decline can be partially explained by a weakening of the Walker Circulation, and a natural shift towards a more El Ni?o-dominated era. The extent to which global warming might be also be partially responsible for the decline in land-falls??if it is at all??is unknown.  相似文献   

20.
It is proposed that, land?Catmosphere interaction around the time of monsoon onset could modulate the first episode of climatological intraseasonal oscillation (CISO) and may generate significant ??internal?? interannual variation in the Indian summer monsoon rainfall. The regional climate model RegCM3 is used over Indian monsoon domain for 27?years of control simulation. In order to prove the hypothesis, another two sets of experiment are performed using two different boundary conditions (El Ni?o year and non-ENSO year). In each of these experiments, a single year of boundary conditions are used repeatedly year after year to generate ??internal?? interannual monsoon variability. Simulation of monsoon climate in the control model run is found to be in reasonably good agreement with observation. However, large rainfall bias is seen over Arabian Sea and Bay of Bengal. The interannual monsoon rainfall variability are of the same order in two experiments, which suggest that the external influences may not be important on the generation of ??internal?? monsoon rainfall variability. It is shown that, a dry (wet) pre-onset land-surface condition increases (decreases) rainfall in June which in turn leads to an anomalous increase (decrease) in seasonal (JJAS) rainfall. The phase and amplitude of CISO are modulated during May?CJune and beyond that the modulation of CISO is quite negligible. Though the pre-onset rainfall is unpredictable, significant modulation of the post-onset monsoon rainfall by it can be exploited to improve predictive skill within the monsoon season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号