首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This study demonstrates that thermal satellite images combined with ‘in situ’ ground data can be used to examine models of heat island genesis and thus identify the main causes of urban heat islands (UHIs). The models, although proposed over 30 years ago, have not been thoroughly evaluated due to a combination of inadequate ground data and the low resolution of thermal satellite data. Also there has been limited understanding of the relevance of satellite-derived surface temperatures to local and regional scale air temperatures. A cloud-free ASTER thermal image of urban and rural areas of Hong Kong was obtained on a winter night with a well-developed heat island, accompanied by a 148 km vehicle traverse of air temperatures. Over the whole traverse a high R2 of 0.80 was observed between surface and air temperatures, with the two datasets showing a similar amplitude and general trend, but with the surface exhibiting much higher local variability than air temperature. Gradients in both surface and air temperature could be related to differences in land cover, with little evidence of large scale advection, thus supporting the population/physical structure model of UHI causation, rather than the advection model. However, the much higher surface and air temperatures observed over the largest urban area, Kowloon, than over any smaller urban centre with similar physical structure in the New Territories, would seem more indicative of the advection model. The image and ground data suggest that Kowloon's urban canopy layer climate is mainly influenced by local city structure, but it is also modified by a strongly developed, regional scale urban boundary layer which has developed over the largest urban centre of Kowloon, and reinforces heating from both above and below.  相似文献   

2.
The vegetated urban canopy model (VUCM) is implemented in a meteorological model, the Regional Atmospheric Modeling System (RAMS), for urban atmospheric modeling. The VUCM includes various urban physical processes such as in-canyon radiative transfer, turbulent energy exchanges, substrate heat conduction, and in-canyon momentum drag. The coupled model RAMS/VUCM is evaluated and then used to examine its impacts on the dynamic and thermodynamic structure of the urban boundary layer (UBL) in the Seoul metropolitan area. The spatial pattern of the nocturnal urban heat island (UHI) in Seoul is quite well simulated by the RAMS/VUCM. A statistical evaluation of 2-m air temperature reveals a significant improvement in model performance, especially in the nighttime. The RAMS/VUCM simulates the diurnal variations of surface energy balance fluxes realistically. This contributes to a reasonable UBL formation. A weakly unstable UBL is formed in the nighttime with UBL heights of about 100–200 m. When urban surfaces are represented in the RAMS using a land surface model of the Land Ecosystem-Atmosphere Feedback (LEAF), the RAMS/LEAF produces strong cold biases and thus fails to simulate UHI formation. This is due to the poor representation or absence of important urban physical processes in the RAMS/LEAF. This study implies that urban physical processes should be included in numerical models in order to reasonably simulate meteorology and air quality in urban areas and that the VUCM is one of the promising urban canopy models.  相似文献   

3.
城市热岛效应是人类活动对大气系统影响的最主要体现之一。本文利用(Space and Time Multiscale Analysis System, STMAS)时空多尺度分析系统,融合了地面自动站、雷达、卫星等多源高时空分辨率观测资料,建立了城市热岛三维数据集。并在此基础上统计了2021年北京夏季的城市热岛强度变化特征,选取其中一次超强城市热岛个例(2021年6月11—12日)详细分析了其三维精细化结构特征。结果表明:(1)本个例中,夜间郊区近地面迅速降温,形成逆温层;而城市近地面降温缓慢,使得近地面城郊温差不断增大。(2)本次超强城市热岛三维温度场暖心结构在地面和990 hPa以下低空等压面清晰可见,风场距平呈现气旋性环流特征并在低空从郊区向城区辐合,引起可到达中高空的上升运动,说明城市热岛效应有增强垂直环流的作用。  相似文献   

4.
Scale modelling is used to determine the relative contribution of heat transfer processes to the nocturnal cooling of urban parks and the characteristic temporal and spatial variation of surface temperature. Validation is achieved using a hardware model-to-numerical model-to-field observation chain of comparisons. For the calm case, modelling shows that urban-park differences of sky view factor (s) and thermal admittance () are the relevant properties governing the park cool island (PCI) effect. Reduction in sky view factor by buildings and trees decreases the drain of longwave radiation from the surface to the sky. Thus park areas near the perimeter where there may be a line of buildings or trees, or even sites within a park containing tree clumps or individual trees, generally cool less than open areas. The edge effect applies within distances of about 2.2 to 3.5 times the height of the border obstruction, i.e., to have any part of the park cooling at the maximum rate a square park must be at least twice these dimensions in width. Although the central areas of parks larger than this will experience greater cooling they will accumulate a larger volume of cold air that may make it possible for them to initiate a thermal circulation and extend the influence of the park into the surrounding city. Given real world values of s and it seems likely that radiation and conduction play almost equal roles in nocturnal PCI development. Evaporation is not a significant cooling mechanism in the nocturnal calm case but by day it is probably critical in establishing a PCI by sunset. It is likely that conditions that favour PCI by day (tree shade, soil wetness) retard PCI growth at night. The present work, which only deals with PCI growth, cannot predict which type of park will be coolest at night. Complete specification of nocturnal PCI magnitude requires knowledge of the PCI at sunset, and this depends on daytime energetics.  相似文献   

5.
A new Canadian numerical urban modelling system has been developed at the Meteorological Service of Canada to represent surface and boundary-layer processes in the urban environment. In this system, urban covers are taken into account by including the Town Energy Balance urban-canopy parameterization scheme in the Global Environmental Multiscale meteorological model. The new modelling system is run at 250-m grid size for two intensive observational periods of the Joint Urban 2003 experiment that was held in Oklahoma City, U.S.A. An extensive evaluation against near-surface and upper-air observations has been performed. The Town Energy Balance scheme correctly simulates the urban micro-climate, more particularly the positive nighttime urban heat island, and also reproduces the “cool” island during the morning but does not succeed in maintaining it during all of the daytime period. The vertical structure of the boundary layer above the city is reasonably well simulated, but the simulation of the nocturnal boundary layer is difficult, due to the complex interaction with the nighttime southerly low-level jet that crosses the domain. Sensitivity tests reveal that the daytime convective boundary layer is mainly driven by dry soil conditions in and around Oklahoma City and that the nighttime low-level jet reinforces the urban heat island in the first 300m through large-scale advection, leading to the development of a less stable layer above the city.  相似文献   

6.
城乡过渡地带低空温度平流和边界层特征的观测分析   总被引:4,自引:0,他引:4  
利用兰州河谷盆地城乡过渡区边界层观测资料,分析了该地区的温度平流和边界层特征。分析表明:(1)夜间热岛环流明显,白天则较弱;(2)夜间200m高度以下有较强的冷平流,在250~400m高度有较弱的暖平流,冷暖温度平流对测点上空边界层温度和层结变化有显著影响;(3)由声雷达确定的夜间边界层高度对应于Ri<1.0的高度,在这一高度范围内存在逆位温和强的风切变。本地区下垫面和复杂的地形导致夜间边界层高度随时间周期性地升高和降低,变化周期约3h。  相似文献   

7.
Monthly mean afternoon (maximum) and early morning (minimum) mixing heights have been calculated for the winter, pre-monsoon, monsoon and post-monsoon seasons for eleven stations in India, with the assumption of a dry adiabatic lapse rate in the mixing layer. The morning mixing heights have been calculated by adding +5 °C to the surface minimum temperature except for the monsoon season for which a value of +3 °C has been utilized to account for the urban heat island effect. The spatial variation of mean maximum mixing heights over India has also been studied by isopleth analysis. The morning and afternoon ventilation coefficients have been calculated for the eleven stations under consideration. The spatial distribution of afternoon ventilation coefficients has also been studied. The optimum siting industries to minimize our pollution has been discussed.  相似文献   

8.
The statistical and dynamical characteristics of the urban heat island (UHI) intensity in Seoul are investigated for non-precipitation days and precipitation days using 4-year surface meteorological data with 1-h time intervals. Furthermore, the quantitative influence of synoptic pressure pattern on the UHI intensity is examined using a synoptic condition clustering method. The statistical analysis shows that the daily maximum UHI intensity in Seoul for non-precipitation days is strongest in autumn (4.8°C) and weakest in summer (3.5°C). The daily maximum UHI intensity is observed around midnight in all seasons except in winter when the maximum occurrence frequency is found around 08 LST. This implies that anthropogenic heating contributes to the UHI in the cold season. The occurrence frequency of the UHI intensity has a negatively skewed distribution for non-precipitation days but a positively skewed distribution for precipitation days. The amplitude of the heating/cooling rate and the difference in the heating/cooling rate between the urban and rural areas are smaller in all seasons for precipitation days than for non-precipitation days, resulting in weaker UHI intensities for precipitation days. The urban cool island occurs very often in the daytime, with an occurrence frequency being 77% of the total non-precipitation days in spring. The analysis of the impact of large-scale dynamical forcing shows that the daily maximum UHI intensity varies with synoptic pressure pattern, ranging from ?22% in spring to 28% in summer relative to the seasonal mean daily maximum UHI intensity. Comparison of the UHI intensity calculated using station-averaged temperatures to that based on the conventional two-station approach indicates that local effects on the UHI intensity are minimized by using multiple-station data. Accordingly, an estimation of the UHI intensity using station-averaged temperatures for both urban and rural areas is suggested.  相似文献   

9.
Urban air temperature studies usually focus on the urban canopy heat island phenomenon, whereby the city center experiences higher near surface air temperatures compared to its surrounding non-urban areas. The Land Surface Temperature (LST) is used instead of urban air temperature to identify the Surface Urban Heat Island (SUHI). In this study, the nighttime LST and SUHI characteristics and trends in the seventeen largest Mediterranean cities were investigated, by analyzing satellite observations for the period 2001–2012. SUHI averages and trends were based on an innovative approach of comparing urban pixels to randomly selected non-urban pixels, which carries the potential to better standardize satellite-derived SUHI estimations. A positive trend for both LST and SUHI for the majority of the examined cities was documented. Furthermore, a 0.1 °C decade?1 increase in urban LST corresponded to an increase in SUHI by about 0.04 °C decade?1. A longitudinal differentiation was found in the urban LST trends, with higher positive values appearing in the eastern Mediterranean. Examination of urban infrastructure and development factors during the same period revealed correlations with SUHI trends, which can be used to explain differences among cities. However, the majority of the cities examined show considerably increased trends in terms of the enhancement of SUHI. These findings are considered important so as to promote sustainable urbanization, as well as to support the development of heat island adaptation and mitigation plans in the Mediterranean.  相似文献   

10.
上海城市集群化发展显著增强局地高温热浪事件   总被引:7,自引:1,他引:7  
谢志清  杜银  曾燕  高苹  项瑛 《气象学报》2015,73(6):1104-1113
上海作为中国城市集群化发展的典型代表,经过30余年圈层式、集群化扩张,城市建设用地面积比例高达47.9%,接近50%的生态阈值。城市群快速扩张诱发了一个以徐家汇为中心覆盖周边40 km的区域性热岛,影响高温热浪的时空分布。基于DMSP/OLS遥感夜间灯光数据构建的城市发展指数,客观地反映出1992—2013年上海西郊嘉定、青浦和东郊的浦东集群化发展特征最凸出。利用Chow检验最优分段建模法,研究发现高温热浪期间城市群热岛突变转折与区县城市发展指数超过60%的年份相对应。城市发展指数超过60%后,近郊城市继续扩张将缩小城、郊气象站的温差,诱发更大范围热岛,增强高温热浪。1977—2000年近郊区县城市发展指数低于60%,高温热浪各要素项城郊差值显著上升,而2000年西郊城市发展指数超过60%后,和市中心差值减小,快速城市化明显增强西郊高温热浪强度和持续时间。1978年以来上海西郊与远郊高温日数差值增加了1.6倍,平均气温差值增加了34.4%,平均最高气温差值增加了41.7%。高温热浪期间遥感数据显示,向西郊伸展的城市群地表温度高值区规模扩大了32.8%,是西郊高温热浪增强的驱动因子。  相似文献   

11.
This study investigates the urban heat island characteristics of four major areas of Hong Kong. The areas of study include a densely populated and well-developed commercial area (i.e., Tsim Sha Tsui) and three suburban areas (i.e., Cheung Chau, Lau Fau Shan and Sha Tin) with differing degrees of development. The weather station data of respective areas were acquired from the Hong Kong Observatory. The urban heat island intensity, determined as the air-temperature difference between the selected urban/suburban area and the reference rural area (i.e., Ta Kuw Ling) with thin population and lush vegetation, was used for the analysis. Results showed stronger heat island effect during winter and nighttime than during summer and daytime. An investigation of the cooling and heating degree days indicate that all areas have observed higher number of cooling degree days. However, the cooling degree days were the maximum while heating degree days were the minimum in the urban area (i.e., Tsim Sha Tsui). Clearly, the minimum heating degree days and the maximum cooling degree days in the urban area were a direct consequence of urban heat island. The 10-year (i.e., from 1995 to 2005) average shows that Cheung Chau experienced the least number of cooling degree days while Lau Fau Shan experienced the highest number of heating degree days. Seemingly, the area of Cheung Chau offers better thermal comfort conditions with the minimum number of cooling and heating degree days.  相似文献   

12.
The public health implications of a warming urban environment mean that appropriate action by planners, designers and health workers will be necessary to minimise risk under future climate scenarios. Data at an appropriate spatial scale are required by user groups in order to identify key areas of vulnerability. Thermal mapping of a UK urban conurbation was carried out during the summers of 2007 and 2008 with the aim of providing high spatial resolution temperature data. The air temperature results showed an average daytime (night time) urban?Crural thermal contrast of 3°C (5°C) on summer days (nights) with ideal urban heat island (UHI) conditions. The intensity of the daytime surface temperature heat island was found to exceed 10°C. The measured data were used to derive an empirical model of spatial temperature patterns based upon characteristics of land use, distance from urban centre and building geometry. This model can be used to provide sub-kilometre resolution temperature data which are required by decision makers and can provide a mechanism for downscaling climate model output.  相似文献   

13.
Observations show that the urban heat island in the atmospheric layer below roof level is most strongly developed during calm, cloudless conditions at night. This paper outlines two versions of a numerical model to describe the cooling of rural and street canyon surfaces under these conditions using surface thermal and radiative properties and the radiative geometry of the canyons. One version uses a full system of differential equations and the other the simpler force-restore approach. The two approaches are shown to be in general agreement and the output of the simpler model is shown to give a faithful representation of cooling of rural and urban surfaces, and therefore heat islands, when compared with field observations.  相似文献   

14.
Air temperature was monitored at 13 sites across the urban perimeter of a Brazilian midsize city in winter 2011. In this study, we show that the urban heat island (UHI) develops only at night and under certain weather conditions, and its intensity depends not only on the site's land cover but also on the meteorological setting. The urban heat island intensity was largest (6.6 °C) under lingering high-pressure conditions, milder (3.0 °C) under cold anticyclones and almost vanished (1.0 °C) during the passage of cold fronts. The cooling rates were calculated to monitor the growth and decay of the UHI over each specific synoptic setting. Over four contiguous days under the effect of a lingering high-pressure event, we observed that the onset of cooling was always at about 2 h before sunset. The reference site attained mean cooling rate of ?2.6 °C h?1 at sunset, whilst the maximum urban rate was ?1.2 °C h?1. Under a 3-day cold anticyclone episode, cooling also started about 2 h before sunset, and the difference between maximum rural (?2.0 °C h?1) and urban (?1.0 °C h?1) cooling rates diminished. Under cold-front conditions, the cooling rate was homogeneous for all sites and swang about zero throughout the day. The air temperature has a memory effect under lingering high-pressure conditions which intensified the UHI, in addition to the larger heat storage in the urban area. Cold anticyclone conditions promoted the development of the UHI; however, the cold air pool and relatively light winds smoothed out its intensity. Under the influence of cold fronts, the urban fabric had little effect on the city's air temperature field, and the UHI was imperceptible.  相似文献   

15.
An ensemble Kalman filter based on the Weather Research and Forecasting Model (WRF-EnKF) is used to explore the effectiveness of the assimilation of surface observation data in an extreme local rainstorm over the Pearl River Delta region on 7 May 2017. Before the occurrence of rainstorm, the signals of weather forecasts in this case are too weak to be predicted by numerical weather model, but the surface temperature over the urban area are high. The results of this study show that the wind field, temperature, and water vapor are obviously adjusted by assimilating surface data of 10-m wind, 2-m temperature, and 2-m water vapor mixing ratio at 2300 BST 6 May, especially below the height of 2 km. The southerly wind over the Pearl River Delta region is enhanced, and the convergence of wind over the northern Guangzhou city is also enhanced. Additionally, temperature, water vapor mixing ratio and pseudoequivalent potential temperature are obviously increased over the urban region, providing favorable conditions for the occurrence of heavy precipitation. After assimilation, the predictions of 12-h rainfall amount, temperature, and relative humidity are significantly improved, and the rainfall intensity and distribution in this case can be successfully reproduced. Moreover, sensitivity tests suggest that the assimilation of 2-m temperature is the key to predict this extreme rainfall and just assimilating data of surface wind or water vapor is not workable, implying that urban heat island effect may be an important factor in this extreme rainstorm.  相似文献   

16.
Nocturnal Airflow from Urban Parks-Implications for City Ventilation   总被引:1,自引:0,他引:1  
Summary The spatial and temporal pattern of nocturnal airflow in and around two urban parks in Scandinavia were analysed. The results, based on 724 field measurements during 21 case studies, showed that both parks generated a local airflow during clear and calm weather conditions. The spatial pattern was characterised by calm in the middle of the park and a steady airflow towards the surrounding built-up areas at the park borders. The airflow from the park started one to two hours after sunset and continued during a period of four to eight hours. The wind speed was low (< 0.5 ms−1) and the local air flow reached a short distance from the park border. In the flat park in K?benhavn, Denmark, the air flow from the park was attributed solely to the development of a thermally induced park breeze. The park breeze development was also predominant in the park in G?teborg, Sweden, but the influence of topography could not be totally excluded. The origin of the airflow from the park and its importance for urban air quality were discussed. Received April 15, 1999Revised December 2, 1999  相似文献   

17.
This paper studies the urban heat island in Quebec City and its suburbs on one summer night. The region under study covers an area of 20 km by 20 km which streches from lake Saint-Charles on the north to Levis on the south and from the western suburb of Cap-Rouge to Beauport on the east. The total population of the region is about 400 000.On August 22, 1979 from 22:00 to 23:30 EDT, 109 measurements of wet- and dry-bulb temperatures were taken at preselected points. On that day, a large high pressure system gave clear skies to central Quebec while Quebec City Airport recorded a maximum temperature of 23 °C. The average wind measured at Duberger meteorological tower between 6 and 121 m above ground was 1.8 m s-1 at 22:00 EDT and 0.9 m s-1 at 23:30 EDT. Additional data were obtained from three thermographs installed at strategic points and five regular climatological stations, which were used to estimate cooling rates.During the period of measurement, the cooling rate averaged over the eight reference points was about 0.7 °C h-1. However, the maximum cooling rate, which occured earlier, ranged from 2.2 °C h-1 at Duberger to 4.4 °C h-1 at Courville-de-Poissy. No relation seems to exist, in our case, between the maximum cooling rate and the heat island spatial structure. Comparison of these results with the ones given by Oke et al. (1972) shows that the eight stations behaved more like rural stations than urban ones.The temperature gradient measured between the center of old Quebec City and the suburbs averaged 6 °C while it was 9 °C for the coldest spot. Clo units were used to characterize the microclimates prevailing on the region for that night; 1 clo would be sufficient for comfort downtown while 1.5 clo is needed in the coldest spot for a slowly walking person. Large open areas like parks or the Laval University campus had a definite effect on temperature.The humidity was calculated for each point using standard psychrometric tables; no significant difference could be found over the area expect at points near or above the St. Laurent river where the average dew point was 1.5 °C higher.Each point was classified into 6 categories according to its predominant land-use as reported by the observers. A multiple regression between temperature on the one hand and altitude and land-use on the other hand was tried; it showed that temperature was significantly correlated with both. Such an equation could be used by town-planners to locate temperature gradients in future urban development over the area; land uses could be planned to enhance or reduce these gradients.This study confirms the idea that urban climate is a mosaic of interacting micro-climates. More measurements, including possibly airborne infra-red thermal imagery, will be taken during winter in order to assess the winter urban climate of Quebec City.  相似文献   

18.
北京城区近地面比湿和风场时空分布特征   总被引:5,自引:1,他引:5       下载免费PDF全文
利用2008—2012年北京城区平均5 km的高密度自动气象站逐时观测数据,分析了北京城区近地面比湿、风向和风速的时空精细分布特征,初步探究了城市下垫面对局地气象要素的影响机制。研究表明:夏季白天北京城区为干岛,冬季城区表现为弱湿岛特征。受城市效应的影响,北京城区与郊区比湿日变化有明显差异。近地面10 m风受到地形、城市和季节性盛行风的共同影响。当气流经过城区时有明显的绕流现象。夏季05:00—10:00 (北京时,下同),受山风、弱的夏季偏南风和城市热岛共同作用,气流向城市中心辐合。冬季15:00—19:00,受季节盛行风偏北气流和谷风偏南气流的共同作用,在城区形成一条西北—东南走向的辐合线。对风速研究发现:城市粗糙下垫面使北京城区风速减小,二环路和三环路之间存在一条“n”状的风速小值带。由此可见,除已开展较多研究的城市热岛效应外,北京城市效应对近地面湿度和风场亦有显著影响。  相似文献   

19.
A study of long term temperature data for fourteen Canadian cities showed that the length of the annual frost free season has increased by average of 7 days since 1940. Change in individual stations ranged from 26 to -17 days resulting in significant shifts in the mean probable dates for the first and the last frost of the season at most stations. No similar trend was shown in three non-urban control stations. Three urban factors: heat island effect, enhanced cloud cover and the rate of population growth - together accounted for 80% of the explained variance in the phenomenon. A multiple regression model was developed to describe the relationship between the change in the season and the urban factors. It is shown that for any appreciable gains to be made in the length of the season at reasonably predictable changes in temperature, such changes in temperature should be accompanied by a modest increase in cloud cover.  相似文献   

20.
Heat island is a very well documented climatic phenomenon that has an important energy and environmental impact in the urban environment. The main energy problems are related to the important increase of the energy consumption for cooling purposes as well as to the important increase of the peak electricity load. Heat island in Athens, Greece, is measured during the last decade and its energy impact is calculated in details. The aim of the present paper is to estimate the direct and indirect environmental impact of the heat island effect in Athens. This is achieved through the estimation of the additional ecological footprint caused by the urban heat island phenomenon over the city. The ecological footprint estimation is performed at a first step by calculating the increase of the cooling demand caused by the heat island over the whole city and then by translating the energy to environmental cost. Two years annual experimental data from many urban stations have been used. The results show that the ecological footprint because of the heat island ranges 1.5–2 times the city’s political area that have to be reserved every year to compensate the additional CO2 emissions caused by the presence of the heat island effect while the maximum potential ecological footprint, provided that all buildings are air conditioned, is almost 110,000 hectares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号