首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper analyzes the spatial dependence of annual diurnal temperature range (DTR) trends from 1950–2004 on the annual climatology of three variables: precipitation, cloud cover, and leaf area index (LAI), by classifying the global land into various climatic regions based on the climatological annual precipitation. The regional average trends for annual minimum temperature (T min) and DTR exhibit significant spatial correlations with the climatological values of these three variables, while such correlation for annual maximum temperature (T max) is very weak. In general, the magnitude of the downward trend of DTR and the warming trend of T min decreases with increasing precipitation amount, cloud cover, and LAI, i.e., with stronger DTR decreasing trends over drier regions. Such spatial dependence of T min and DTR trends on the climatological precipitation possibly reflects large-scale effects of increased global greenhouse gases and aerosols (and associated changes in cloudiness, soil moisture, and water vapor) during the later half of the twentieth century.  相似文献   

2.
The usefulness of two remotely sensed variables, land surface temperature (LST) and cloud cover (CC), as predictors for the gridding of daily maximum and minimum 2 m temperature (T min/T max) was assessed. Four similar gridding methods were compared, each of which applied regression kriging to capture the spatial variation explained by the predictors used; however, both methods differed in the interpolation steps performed and predictor combinations used. The robustness of the gridding methods was tested for daily observations in January and July in the period 2009–2011 and in two different regions: the Central European region (CER) and the Iberian Peninsula (IP). Moreover, the uncertainty estimate provided by each method was evaluated using cross-validation. The regression analyses for both regions demonstrated the high predictive skills of LST for T min and T max on daily and monthly timescales (and lower predictive skills of CC). The application of LST as a predictor considerably improved the gridding performance over the IP region in July; however, there was only a slight improvement over the CER region. CC reduced the loss of spatial variability in the interpolated daily T min/T max values over the IP region. The interpolation skill was mainly controlled by the station density, but also depended on the complexity of the terrain. LST was shown to be of particular value for very low station densities (1 station per 50,000 km2). Analyses with artificially decreasing station densities showed that even in the case of very low station densities, LST allows the determination of useful regression functions.  相似文献   

3.
ARPEGE general circulation model simulations were dynamically downscaled by The Weather Research and Forecasting Model (WRF) for the study of climate change and its impact on grapevine growth in Burgundy region in France by the mid twenty-first century. Two time periods were selected: 1970–1979 and 2031–2040. The WRF model driven by ERA-INTERIM reanalysis data was validated against in situ surface temperature observations. The daily maximum and minimum surface temperature (Tmax and Tmin) were simulated by the WRF model at 8?×?8?km horizontal resolution. The averaged daily Tmax for each month during 1970–1979 have good agreement with observations, the averaged daily Tmin have a warm bias about 1–2?K. The daily Tmax and Tmin for each month (domain averaged) during 2031–2040 show a general increase. The largest increment (~3?K) was found in summer. The smallest increments (<1?K) were found in spring and fall. The spatial distribution of temperature increment shows a strong meridional gradient, high in south in summer, reversing in winter. The resulting potential warming rate in summer is equivalent to 4.7?K/century under the IPCC A2 emission scenario. The dynamically downscaled Tmax and Tmin were used to simulate the grape (Pinot noir grape variety) flowering and véraison dates. For 2031–2040, the projected dates are 8 and 12?days earlier than those during 1970–1979, respectively. The simulated hot days increase more than 50% in the two principal grapevine regions. They show strong impact on Pinot noir development.  相似文献   

4.
In this study, the trends of the annual, seasonal and monthly maximum (T max) and minimum (T min) air temperatures time series were investigated for 20 stations in the western half of Iran during 1966?C2005. Three statistical tests including Mann?CKendall, Sen??s slope estimator and linear regression were used for the analysis. The annual T max and T min series showed a positive trend in 85% of the stations and a negative trend in 15% of the stations in the study region. The highest increase of T max and T min values were obtained over Kermanshah and Ahwaz at the rates of (+)0.597°C/decade and (+)0.911°C/decade, respectively. On the seasonal scale, the strongest increasing trends were identified in T max and T min data in summer. The highest numbers of stations with positive significant trends occurred in the monthly T max and T min series in August. In contrast, the lowest numbers of stations with significant positive trends were observed between November and March. Overall, the results showed similar increasing trends for the study variables, although T min generally increased at a higher rate than T max in the study period.  相似文献   

5.
Extreme normalised residuals, defined as departures from the average values, of 65 daily maximum, T max, and minimum, T min, temperature series recorded in Catalonia (NE Spain) during 1950–2004 are analysed. Similarly to the sampling strategies applied to long dry spells, the partial duration series (PDS) offer some advantages in comparison with the annual extreme series. Instead of using a common percentile threshold for all temperature series, PDS are chosen according to the mean excess plot procedure. Series of extreme residuals are modelled, in terms of the L-moments formulation, by the generalised Pareto distribution. Extreme residuals of T max and T min are estimated for return periods ranging from 2 to 50 years and their spatial distribution is represented for selected return periods of 2, 5, 10, 25 and 50 years. Two daily extreme temperatures events, a hot episode (in August) and a cold episode (in February), are simulated taking into account the average T max (T min) for a day in August (February), their standard deviations and the extremes for a 50-year return period. Both simulations are compared with outstanding real episodes recorded on August 13th 2003 and February 11th 1956. Additionally, a spatial regionalisation of Catalonia in several clusters, in terms of the extreme residuals for return periods from 2 to 50 years, is done. A principal component analysis is applied to the extreme residual curves characterising every temperature series and, using as variables the principal components, the regionalisation is obtained by applying the average linkage clustering algorithm. Finally, each cluster is characterised by its average extreme residual curve for return periods ranging from 2 to 50 years at 1-year interval.  相似文献   

6.
In climatology, one of the most important pieces of information about the climate of a place or a region is information about the Climatological Normals (CLINO)—the average values of meteorological elements for a 30-year period. This kind of information usually comes in tables and is available for different observation sites from national meteorological services or from World Meteorological Organisation publications. The key issue, then, becomes how to interpolate these values over the entire area of interest to get reliable and accurate estimates (maps) of climatic elements. Here, the regression kriging framework has been applied for mapping of 20 climatological parameters for the 1961–1990 period for the 56,594 km2 of Croatian territory, with a resolution of 1 km. In total, 152 main and climatological and 567 precipitation-measuring stations have been used in the analysis. Extensive pre-processing of metadata on station co-ordinates has been done, as well as completion of missing monthly averages. The final results are 20 climatological maps available in high resolution together with error maps and accuracy assessment measures.  相似文献   

7.
Trend estimation of climatic characteristics for a watershed is required to determine developing compatible strategies related to design, development, and management of water resources. In this study, the trends of the annual maximum (T max), minimum (T min), and mean (T mean) air temperature; temperature anomaly (T anomaly); and diurnal temperature range (DTR) time series at 13 meteorological stations located in the Karun-Dez watershed were analyzed using the Mann–Kendall and linear regression trend tests. The pre-whitening method was used to eliminate the influence of serial correlation on the Mann–Kendall test. The result showed increasing trends in the T min, T mean, and T anomaly series at the majority of stations and decreasing trend in the T max and DTR series. A geographical analysis of the trends revealed a broad warming trend in most of the watershed, and the cooling trends were observed only in the southern parts. Furthermore, the geographical pattern of the trends in the T mean and T anomaly series was similar, and the T max data did not show any dominant trend for the whole watershed. This study provides temperature change scenarios that may be used for the design of future water resource projects in the watershed.  相似文献   

8.
Observations show that the surface diurnal temperature range (DTR) has decreased since 1950s over most global land areas due to a smaller warming in maximum temperatures (T max) than in minimum temperatures (T min). This paper analyzes the trends and variability in T max, T min, and DTR over land in observations and 48 simulations from 12 global coupled atmosphere-ocean general circulation models for the later half of the 20th century. It uses the modeled changes in surface downward solar and longwave radiation to interpret the modeled temperature changes. When anthropogenic and natural forcings are included, the models generally reproduce observed major features of the warming of T max and T min and the reduction of DTR. As expected the greenhouse gases enhanced surface downward longwave radiation (DLW) explains most of the warming of T max and T min while decreased surface downward shortwave radiation (DSW) due to increasing aerosols and water vapor contributes most to the decreases in DTR in the models. When only natural forcings are used, none of the observed trends are simulated. The simulated DTR decreases are much smaller than the observed (mainly due to the small simulated T min trend) but still outside the range of natural internal variability estimated from the models. The much larger observed decrease in DTR suggests the possibility of additional regional effects of anthropogenic forcing that the models can not realistically simulate, likely connected to changes in cloud cover, precipitation, and soil moisture. The small magnitude of the simulated DTR trends may be attributed to the lack of an increasing trend in cloud cover and deficiencies in charactering aerosols and important surface and boundary-layer processes in the models.  相似文献   

9.
Daily minimum and maximum air temperatures recorded in Naples (1872–1982) and in surrounding areas have been analysed in order to set up a statistical model for investigating climatic changes of extreme air temperature. We have analysed on various time-scales the mean values of minimum air temperature lower than the 10th percentile (Tmin10) and the mean values of the maximum air temperature greater than the 90th percentile (Tmax90). The results have shown for the city: (i) a significant secular trend both for yearly Tmin10 and Tmax90, mostly due to the process of urbanization, that is also responsible for (ii) the ascertained change in the character of the annual cycle, (iii) a reasonable ability to forecast winter Tmin10 and summer Tmax90 in statistical terms using a markovian model, and (iv) a significant 11-yr cycle with an amplitude of 0.5 °C directly related to solar activity which has never been succesfully determined before.  相似文献   

10.
This study examines the potential impact of vegetation feedback on the changes in the diurnal temperature range (DTR) due to the doubling of atmospheric CO2 concentrations during summer over the Northern Hemisphere using a global climate model equipped with a dynamic vegetation model. Results show that CO2 doubling induces significant increases in the daily mean temperature and decreases in DTR regardless of the presence of the vegetation feedback effect. In the presence of vegetation feedback, increase in vegetation productivity related to warm and humid climate lead to (1) an increase in vegetation greenness in the mid-latitude and (2) a greening and the expansion of grasslands and boreal forests into the tundra region in the high latitudes. The greening via vegetation feedback induces contrasting effects on the temperature fields between the mid- and high-latitude regions. In the mid-latitudes, the greening further limits the increase in T max more than T min, resulting in further decreases in DTR because the greening amplifies evapotranspiration and thus cools daytime temperature. The greening in high-latitudes, however, it reinforces the warming by increasing T max more than T min to result in a further increase in DTR from the values obtained without vegetation feedback. This effect on T max and DTR in the high latitude is mainly attributed to the reduction in surface albedo and the subsequent increase in the absorbed insolation. Present study indicates that vegetation feedback can alter the response of the temperature field to increases in CO2 mainly by affecting the T max and that its effect varies with the regional climate characteristics as a function of latitudes.  相似文献   

11.
Climate change information required for impact studies is of a much finer scale than that provided by Global circulation models (GCMs). This paper presents an application of partial least squares (PLS) regression for downscaling GCMs output. Statistical downscaling models were developed using PLS regression for simultaneous downscaling of mean monthly maximum and minimum temperatures (T max and T min) as well as pan evaporation to lake-basin scale in an arid region in India. The data used for evaluation were extracted from the NCEP/NCAR reanalysis dataset for the period 1948?C2000 and the simulations from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios A1B, A2, B1, and COMMIT for the period 2001?C2100. A simple multiplicative shift was used for correcting predictand values. The results demonstrated that the downscaling method was able to capture the relationship between the premises and the response. The analysis of downscaling models reveals that (1) the correlation coefficient for downscaled versus observed mean maximum temperature, mean minimum temperature, and pan evaporation was 0.94, 0.96, and 0.89, respectively; (2) an increasing trend is observed for T max and T min for A1B, A2, and B1 scenarios, whereas no trend is discerned with the COMMIT scenario; and (3) there was no trend observed in pan evaporation. In COMMIT scenario, atmospheric CO2 concentrations are held at year 2000 levels. Furthermore, a comparison with neural network technique shows the efficiency of PLS regression method.  相似文献   

12.
Summary Summer-season (May–September) daily maximum temperature (T max) and daily minimum temperature (T min) observations and three types of heat spells obtained from these temperature observations at seven weather stations located in southern Quebec (Canada) for the 60-year period from 1941 to 2000 are studied to assess temporal changes in their characteristics (i.e. frequency of occurrence, seasonal hot days and extremal durations of heat spells). Type-A and Type-B heat spells are obtained respectively from T max and T min observations and Type-C heat spells from simultaneous joint observations of T max and T min using suitable thresholds and spells of duration ≥1-day and ≥3-day. The results of this investigation show that the majority of the selected percentiles (i.e. 5P, 10P, 25P, 50P, 75P, 80P, 90P, 92P, 95P, and 98P) of T max observations show a negative time-trend with statistically significant decreases (at 10% level) in some of the higher percentiles and in the maximal values at four out of seven stations. Almost all of the selected percentiles (same as for the T max) and the maximal and minimal values of T min observations show a positive trend, with statistically significant increases for all seven stations. Examination of frequencies of occurrence of heat spells, seasonal hot days and annual extremes of heat spell durations indicate that many of these characteristics of heat spells have undergone statistically significant changes over time at some of the stations for Type-A and Type-B heat spells as compared to Type-C heat spells. The Type-C heat spells are generally small in number and are found to be relatively temporally stable. More severe Type-C heat spells, i.e. the ones having T max and T min values simultaneously above very high thresholds and with duration ≥3-day have been rarely observed in southern Quebec.  相似文献   

13.
This study reveals the impacts of climatic variable trends on drought severity in Xinjiang, China. Four drought indices, including the self-calibrating Palmer drought severity index (sc-PDSI), Erinç’s index (I m), Sahin’s index (I sh), and UNEP aridity index (AI), were used to compare drought severity. The ensemble empirical mode decomposition and the modified Mann-Kendall trend test were applied to analyze the nonlinear components and trends of the climatic variable and drought indices. Four and six climatic scenarios were generated in sc-PDSI, I m, I sh, and AI with different combinations of the observed and detrended climatic variables, respectively. In Xinjiang, generally increasing trends in minimal, average, and maximal air temperature (T min, T ave, T max) and precipitation (P) were found, whereas a decreasing trend in wind speed at 2 m height (U 2) was observed. There were significantly increasing trends in all of the four studied drought indices. Drought relief was more obvious in northern Xinjiang than in southern Xinjiang. The strong influences of increased P on drought relief and the weak influences of increased T min, T ave, and T max on drought aggravation were shown by comparing four drought indices under different climate scenarios. Decreased U 2 had a weak influence on drought, as shown by the AI in different climate scenarios. The weak influences of T and U 2 were considered to be masked by the strong influences of P on droughts. Droughts were expected to be more severe if P did not increase, but were likely milder without an increase in air temperature and with a decrease in U 2.  相似文献   

14.
This study analyzes mid-21st century projections of daily surface air minimum (Tmin) and maximum (Tmax) temperatures, by season and elevation, over the southern range of the Colorado Rocky Mountains. The projections are from four regional climate models (RCMs) that are part of the North American Regional Climate Change Assessment Program (NARCCAP). All four RCMs project 2°C or higher increases in Tmin and Tmax for all seasons. However, there are much greater (>3°C) increases in Tmax during summer at higher elevations and in Tmin during winter at lower elevations. Tmax increases during summer are associated with drying conditions. The models simulate large reductions in latent heat fluxes and increases in sensible heat fluxes that are, in part, caused by decreases in precipitation and soil moisture. Tmin increases during winter are found to be associated with decreases in surface snow cover, and increases in soil moisture and atmospheric water vapor. The increased moistening of the soil and atmosphere facilitates a greater diurnal retention of the daytime solar energy in the land surface and amplifies the longwave heating of the land surface at night. We hypothesize that the presence of significant surface moisture fluxes can modify the effects of snow-albedo feedback and results in greater wintertime warming at night than during the day.  相似文献   

15.
Trees form a significant part of the urban vegetation. Their meteorological and climatological effects at all scales in urban environments make them a flexible tool for creating a landscape oriented to the needs of an urban dweller. This study aims at quantifying the spatio-temporal patterns of canopy temperature (T C) and canopy-to-air temperature difference (?T C) in relation to meteorological conditions and tree-specific (physiological) and urban site-specific characteristics. We observed T C and ?T C of 67 urban trees (18 species) using a high-resolution thermal-infrared (TIR) camera and meteorological measurements in the city of Berlin, Germany. TIR images were recorded at 1-min intervals over a period of 2?months from 1st July to 31st August 2010. The results showed that ?T C depends on tree species, leaf size and fraction of impervious surfaces. Average canopy temperature was nearly equal to air temperature. Species-specific maximum ?T C varied between 1.9?±?0.3?K (Populus nigra), 2.9?±?0.3?K (Quercus robur), 3.2?±?0.5?K (Fagus sylvatica), 3.9?±?1.0?K (Platanus acerifolia), 4.6?±?0.2?K (Acer pseudoplatanus), 5.0?±?0.5?K (A. platanoides) and 5.6?±?1.1?K (A. campestre). We analysed ?T C for a hot and dry period (A) and a warm and wet period (B). The range of species-specific ?T C at noon was nearly equal, i.e. 4.4?K for period A and 4.2?K for period B. Trees surrounded by high fraction of impervious surfaces showed consistently higher ?T C. Knowledge of species-specific canopy temperature and the impacts of urban structures are essential in order to optimise the benefits from trees in cities. However, comprehensive evaluation and optimisation should take the full range of climatological effects into account.  相似文献   

16.

This study focuses on changes in the maximum and minimum temperature over the Subansiri River basin for different climate change scenarios. For the study, dataset from Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5) (i.e., coupled model intercomparison project phase five (CMIP5) dataset with representative concentration pathway (RCP) scenarios) were utilized. Long-term (2011–2100) maximum temperature (T max) and minimum temperature (Tmin) time series were generated using the statistical downscaling technique for low emission scenario (RCP2.6), moderate emission scenario (RCP6.0), and extreme emission scenario (RCP8.5). Trends and change of magnitude in T max, T min, and diurnal temperature range (DTR) were analyzed for different interdecadal time scales (2011–2100, 2011–2040, 2041–2070, 2070–2100) using Mann-Kendall non-parametric test and Sen’s slope estimator, respectively. The temperature data series for the observed duration (1981–2000) has been found to show increasing trends in T max and T min at both annual and monthly scale. Trend analysis of downscaled temperature for the period 2011–2100 shows increase in annual maximum temperature and annual minimum temperature for all the selected RCP scenarios; however, on the monthly scale, T max and T min have been seen to have decreasing trends in some months.

  相似文献   

17.
Urbanization has led to a significant urban heat island (UHI) effect in Beijing in recent years. At the same time, air pollution caused by a large number of fine particles significantly influences the atmospheric environment, urban climate, and human health. The distribution of fine particulate matter (PM2.5) concentration and its relationship with the UHI effect in the Beijing area are analyzed based on station-observed hourly data from 2012 to 2016. We conclude that, (1) in the last five years, the surface concentrations of PM2.5 averaged for urban and rural sites in and around Beijing are 63.2 and 40.7 µg m?3, respectively, with significant differences between urban and rural sites (ΔPM2.5) at the seasonal, monthly and daily scales observed; (2) there is a large correlation between ΔPM2.5 and the UHI intensity defined as the differences in the mean (ΔTave), minimum (ΔTmin), and maximum (ΔTmax) temperatures between urban and rural sites. The correlation between ΔPM2.5 and ΔTminTmax) is the highest (lowest); (3) a Granger causality analysis further shows that ΔPM2.5 and ΔTmin are most correlated for a lag of 1–2 days, while the correlation between ΔPM2.5 and ΔTave is lower; there is no causal relationship between ΔPM2.5 and ΔTmax; (4) a case analysis shows that downwards shortwave radiation at the surface decreases with an increase in PM2.5 concentration, leading to a weaker UHI intensity during the daytime. During the night, the outgoing longwave radiation from the surface decreases due to the presence of daytime pollutants, the net effect of which is a slower cooling rate during the night in cities than in the suburbs, leading to a larger ΔTmin.  相似文献   

18.
Soil temperature (T S) strongly influences a wide range of biotic and abiotic processes. As an alternative to direct measurement, indirect determination of T S from meteorological parameters has been the focus of attention of environmental researchers. The main purpose of this study was to estimate daily T S at six depths (5, 10, 20, 30, 50 and 100?cm) by using a multilayer perceptron (MLP) artificial neural network (ANN) model and a multivariate linear regression (MLR) method in an arid region of Iran. Mean daily meteorological parameters including air temperature (T a), solar radiation (R S), relative humidity (RH) and precipitation (P) were used as input data to the ANN and MLR models. The model results of the MLR model were compared to those of ANN. The accuracy of the predictions was evaluated by the correlation coefficient (r), the root mean-square error (RMSE) and the mean absolute error (MAE) between the measured and predicted T S values. The results showed that the ANN method forecasts were superior to the corresponding values obtained by the MLR model. The regression analysis indicated that T a, RH, R S and P were reasonably correlated with T S at various depths, but the most effective parameters influencing T S at different depths were T a and RH.  相似文献   

19.
Summary Possible changes of mean climate and the frequency of extreme temperature events in Emilia-Romagna, over the period 2070–2100 compared to 1960–1990, are assessed. A statistical downscaling technique, applied to HadAM3P experiments (control, A2 and B2 scenarios) performed at the Hadley Centre, is used to achieve this objective. The method applied consists of a multivariate regression based on Canonical Correlation Analysis (CCA), using as possible predictors mean sea level pressure (MSLP), geopotential height at 500 hPa (Z500) and temperature at 850 hPa (T850), and as predictands the seasonal mean values of minimum and maximum surface temperature (Tmin and Tmax), 90th percentile of maximum temperature (Tmax90), 10th percentile of minimum temperature (Tmin10), number of frost days (Tnfd) and heat wave duration (HWD) at the station level. First, the statistical model is optimised and calibrated using NCEP/NCAR reanalysis to evaluate the large-scale predictors. The observational data at 32 stations uniformly distributed over Emilia-Romagna are used to compute the local predictands. The results of the optimisation procedure reveal that T850 is the best predictor in most cases, and in combination with MSLP, is an optimum predictor for winter Tmax90 and autumn Tmin10. Finally, MSLP is the best predictor for spring Tmin while Z500 is the best predictor for spring Tmax90 and heat wave duration index, except during autumn. The ability of HadAM3P to simulate the present day spatial and temporal variability of the chosen predictors is tested using the control experiments. Finally, the downscaling model is applied to all model output experiments to obtain simulated present day and A2 and B2 scenario results at the local scale. Results show that significant increases can be expected to occur under scenario conditions in both maximum and minimum temperature, associated with a decrease in the number of frost days and with an increase in the heat wave duration index. The magnitude of the change is more significant for the A2 scenario than for the B2 scenario.  相似文献   

20.
The absence of continuous long term meteorological dataset has led to limited knowledge of glaciers’ response to climate change over Himalayas. This study presents an open source long term temperature dataset Climatic Research Unit (CRU) available since 1901 to study trend analysis of temperature (Tmax, Tmin and Tmean) for Gangotri basin in Himalayas. The study first establishes close agreement between CRU time series data and observed temperature dataset available from National Institute of Hydrology (NIH), Roorkee for a period of 11 years from 2005 to 2015 using standard anomaly, Wilcoxon Signed-Rank (WSR) and correlation tests. The close agreement of CRU with NIH data validate the use of CRU time series to study variation in meteorological parameter for hilly terrain of Himalayas. The second part includes application of different statistical tests such as Mann-Kendall (MK), Sen’s slope and CUSUM technique on CRU data to detect existence of any possible trends and identification of change points in Tmax, Tmin and Tmean on long term scale. On annual scale, significant increasing trends for Tmean and Tmin were observed with no significant trend for Tmax. On seasonal and monthly scale, Tmax showed significant decreasing trend for monsoon season and increasing trend for winters while Tmin show significant increasing trend for all months (except May) and seasons. CUSUM technique identified 8 change points from 3 annual time series with 2 for Tmean (1974 and 1999), 3 each for Tmax (1941, 1975 and 1999) and Tmin (1941, 1965 and 1999) respectively. Overall, significant increase in Tmin with no significant trend for Tmax has been identified over the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号