首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thirty borehole temperature–depth profiles in the central and southern Urals, Russia were scrutinized for evidence of ground surface temperature histories. We explored two inversion schemes: a simple ramp inversion in which solutions are parameterized in terms of an onset time and magnitude of change and a more sophisticated functional space inverse algorithm in which the functional form of the solution is left unspecified. To enhance and potentially identify latitudinal differences in the ground surface temperature signal, we subdivided the data into three groups based on geographic proximity and simultaneously inverted the borehole temperature–depth logs. The simultaneous inversions highlighted 13 temperature–depth logs that could not both fit a common ground surface temperature history and a priori models within reasonable bounds. Our results confirm that this is an effective way to reduce site-specific noise from an ensemble of boreholes. Each inversion scheme gives comparable results indicating locally variable warming on the order of 1°C starting between 1800 and 1900 AD. Similarly surface air temperature records from 12 nearby meteorological stations exhibit locally variable warming also on the order of 1°C of warming during the 20th century. To explore the degree to which borehole temperatures and surface air temperature (SAT) time series are responding to the same signal, we average the SAT data into the same three groups and used these averages as a forcing function at the Earth's surface to generate synthetic transient temperature profiles. Root mean square (RMS) misfits between these synthetic temperature profiles and averaged temperature–depth profiles are low, suggesting that first-order curvature in borehole temperatures and variations in SAT records are correlated.  相似文献   

2.
New temperature logs in wells located in the grassland ecozone in the Southern Canadian Prairies in Saskatchewan, where surface disturbance is considered minor, show a large curvature in the upper 100 m. The character of this curvature is consistent with ground surface temperature (GST) warming in the 20th century. Repetition of precise temperature logs in southern Saskatchewan (years 1986 and 1997) shows the conductive nature of warming of the subsurface sediments. The magnitude of surface temperature change during that time (11 years) is high (0.3–0.4°C). To assess the conductive nature of temperature variations at the grassland surface interface, several precise air and soil temperature time series in the southern Canadian Prairies (1965–1995) were analyzed. The combined anomalies correlated at 0.85. Application of the functional space inversion (FSI) technique with the borehole temperature logs and site-specific lithology indicates a warming to date of approximately 2.5°C since a minimum in the late 18th century to mid 19th century. This warming represents an approximate increase from 4°C around 1850 to 6.5°C today. The significance of this record is that it suggests almost half of the warming occurred prior to 1900, before dramatic build up of atmospheric green house gases. This result correlates well with the proxy record of climatic change further to the north, beyond the Arctic Circle [Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamourex, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., Zielinski, G., 1997. Arctic environmental change of the last four centuries, Science 278, 1251–1256.].  相似文献   

3.
Several temperature-depth profiles measured in Kasai and in Shaba provinces of Zaire using mining exploration boreholes exhibit a significant negative temperature gradient near the surface. This anomalous curvature which extends to 100–200 m depth could reflect the effect of variations in surface conditions. Applying the theory of heat conduction in a semi-infinite homogeneous medium, these profiles indicate a surface warming by 3–4°C. This warming is related to the effect of the environmental changes associated with the mining exploitation and the urbanization during the last 40–90 years.  相似文献   

4.
An investigation has been undertaken as to whether the 11-year activity cycle of the Sun can affect the temperature of the stratosphere at heights between 11 km (tropopause) and 36 km. An extended, and more sophisticated analysis of diurnal temperature data, available from radio-sonde measurements made at Berlin during the period 1958–1982, revealed, in contrast to an earlier result, that during both the summer and autumn seasons, when the radiative balance is dominant in determining the temperature profiles, and also during the winter and spring, when warming and cooling effects are present respectively, no clear dependence on the solar cycle was found to exist. Furthermore warming effects observed in winter show no dependence on solar activity.  相似文献   

5.
Joint analysis of surface air temperature series recorded at weather stations together with the inversion of the temperature-depth profiles logged in the near-by boreholes enables an estimate of the conditions existing prior to the beginning of the meteorological observation, the so-called pre-observational mean (POM) temperature.Such analysis is based on the presumption of pure diffusive conditions in the underground. However, in real cases a certain subsurface fluid movement cannot be excluded and the measured temperature logs may contain an advective component. The paper addresses the correction for the hydraulic conditions, which may have perturbed the climate signal penetrating from the surface into the underground. The method accounts for vertical conductive and vertical advective heat transport in a 1-D horizontally layered stratum and provides a simultaneous evaluation of the POM-temperature together with the estimate of the Darcy fluid velocity. The correction strategy is illustrated on a synthetic example and its use is demonstrated on temperature logs measured in four closely spaced boreholes drilled near Tachlovice (located about 15 km SW of Prague, Czech Republic). The results revealed that in a case of moderately advectively affected subsurface conditions (fluid velocities about 10−9 m/s), the difference between POM-values assessed for a pure conductive approach and for combined vertical conductive/advective approach may amount up to 0.3–0.5 K, the value comparable with the amount usually ascribed to the 20th century climate warming.  相似文献   

6.
Warming permafrost in European mountains   总被引:3,自引:0,他引:3  
Here we present the first systematic measurements of European mountain permafrost temperatures from a latitudinal transect of six boreholes extending from the Alps, through Scandinavia to Svalbard. Boreholes were drilled in bedrock to depths of at least 100 m between May 1998 and September 2000. Geothermal profiles provide evidence for regional-scale secular warming, since all are nonlinear, with near-surface warm-side temperature deviations from the deeper thermal gradient. Topographic effects lead to variability between Alpine sites. First approximation estimates, based on curvature within the borehole thermal profiles, indicate a maximum ground surface warming of +1 °C in Svalbard, considered to relate to thermal changes in the last 100 years. In addition, a 15-year time series of thermal data from the 58-m-deep Murtèl–Corvatsch permafrost borehole in Switzerland, drilled in creeping frozen ice-rich rock debris, shows an overall warming trend, but with high-amplitude interannual fluctuations that reflect early winter snow cover more strongly than air temperatures. Thus interpretation of the deeper borehole thermal histories must clearly take account of the potential effects of changing snow cover in addition to atmospheric temperatures.  相似文献   

7.
By means of an inversion of H and K Ca ii line profiles the temperature and electron density in the chromosphere above the umbrae of two sunspots have been estimated. The temperature gradient 5 K km–1 exceeds the corresponding values in both quiet regions and plages. At a height of about 1500 km the umbra becomes hotter than the quiet region. At a temperature of about 10000 K the temperature gradient increases sharply. The electron density at 1500 km is approximately the same as that in the quiet chromosphere at the same height.  相似文献   

8.
The occurrence of permafrost in bedrock in northern Fennoscandia and its dependence on past and presently ongoing climatic variations was investigated with one- (1D) and two-dimensional (2D) numerical models by solving the transient heat conduction equation with latent heat effects included. The study area is characterized by discontinuous permafrost occurrences such as palsa mires and local mountain permafrost. The ground temperature changes during the Holocene were constructed using climatic proxy data. This variation was used as a forcing function at the ground surface in the calculations. Several versions of the present ground temperature were applied, resulting in different subsurface freezing–thawing conditions in the past depending on the assumed porosity and geothermal conditions.Our results suggest that in high altitude areas with a cold climate (present mean annual ground temperature between 0°C and −3°C), there may have been considerable variations in permafrost thickness (ranging from 0 to 150 m), as well as periods of no permafrost at all. The higher is the porosity of bedrock filled with ice, the stronger is the retarding effect of permafrost against climatic variations.Two-dimensional models including topographic effects with altitude-dependent ground temperatures and slope orientation and inclination dependent solar radiation were applied to a case of mountain permafrost in Ylläs, western Finnish Lapland, where bedrock permafrost is known to occur in boreholes to a depth of about 60 m. Modelling suggests complicated changes in permafrost thickness with time as well as contrasting situations on southern and northern slopes of the mountain.Extrapolating the climatic warming of the last 200 years to the end of the next century when the anticipated increase in the annual average air temperature is expected to be about 2 K indicates that the permafrost occurrences in bedrock in northern Fennoscandia would be thawing rapidly in low-porosity formations. However, already a porosity of 5% filled with ice would retard the thawing considerably.  相似文献   

9.
Elevation dependency of climate change signals has been found over major mountain ranges such as the European Alps and the Rockies, as well as over the Tibetan Plateau. In this study we examined the temporal trends in monthly mean minimum temperatures from 116 weather stations in the eastern Tibetan Plateau and its vicinity during 1961–2006. We also analyzed projected climate changes in the entire Tibetan Plateau and its surroundings from two sets of modeling experiments under future global warming conditions. These analyses included the output of the NCAR Community Climate System Model (CCSM3) with approximately 150 km horizontal resolution for the scenario of annual 1% increase in atmospheric CO2 for future 100 years and physically-based downscaling results from the NCAR CAM3/CLM3 model at 10' × 10' resolution during three 20-year mean periods (1980–1999, 2030–2049 and 2080–2099) for the IPCC mid-range emission (A1B) scenario. We divided the 116 weather stations and the regional model grids into elevation zones of 500 m interval to examine the relationship of climatic warming and elevation. With these corroborating datasets, we were able to confirm the elevation dependency in monthly mean minimum temperature in and around the Tibetan Plateau. The warming is more prominent at higher elevations than at lower elevations, especially during winter and spring seasons, and such a tendency may continue in future climate change scenarios. The elevation dependency is most likely caused by the combined effects of cloud-radiation and snow-albedo feedbacks among various influencing factors.  相似文献   

10.
We consider the application of the stellar occultation method to the studies of planetary atmospheres and its history and briefly describe the instruments designed for such measurements (SPICAM/Mars-96, GOMOS/ENVISAT). In comparison with solar occultations, this method allows the profiles to be measured almost at any time of the day and at any location of the planet, irrespective of the orbit of the spacecraft from which observations are carried out. Based on the measuring characteristics of the SPICAM-Light UV spectrometer for the spectral range 118–320 nm with a resolution of 0.9 nm (for the ESA Mars Express Mission; launched in June 2003), we simulate the capabilities of the method to study the Martian atmosphere. In stellar occultation measurements, the stellar spectrum changes because of the absorption by CO2 and O3, other gases, and aerosols. The profiles of the CO2 and O3 density (and, hence, the temperature) and the aerosol content can be restored by solving the inverse problem. Observations of bright stars (no fewer than 30) three to five times in a turn allow us to measure the atmospheric density at altitudes 10–150 km with an accuracy of about 2% and the temperature at altitudes 20–130 km with an accuracy of 3 K. Ozone is measured with an accuracy of several percent at altitudes 25–40 km or lower, depending on the conditions. Optically thin clouds and hazes, particularly on the nightside where no measurements are possible in reflected light, can be studied. The SPICAV experiment, which is similar to SPICAM-Light, is part of the Venus Express (to be launched in 2005) scientific payload. On Venus, stellar occultations can be used to measure the atmospheric temperature and density above clouds at altitudes up to 130–150 km and to study the SO2 profile. The results of our simulations can be easily extended to instruments with different measuring characteristics.  相似文献   

11.
Measurements of the C iv 1548 Å and Si iv 1393 Å lines made with the University of Colorado Ultraviolet Spectrometer on board OSO-8 show that the mean profiles are redshifted at disk center. Assuming these lines to be optically thin, we measure an apparent average downflow of material in the 50 000 to 100 000 K temperature range which is weighted by the emission measure in these lines. The magnitude of the redshift varies from 6–17 km s–1 with a mean of 12 km s–1 and is persistent at least on the order of months, which is the time covered by the observations presented in this paper. Pneuman and Kopp (1978) have demonstrated that the flux of material associated with this downflow is of the same order of magnitude as the flux of material being carried upward in spicules. Thus, it is possible that material observed to be downflowing in C iv and Si iv has its origins in the upward moving spicule material.  相似文献   

12.
We analyzed data from 23 boreholes at 19 sites in central and eastern Canada, for the purpose of estimating ground surface temperature (GST) histories. These boreholes were logged down to at least 550 m depth with thermistor probes. Thermal conductivity measurements had been previously made at small depth intervals for the entire depth ranges of most of the boreholes. The temperature profiles of these boreholes do not indicate water disturbance. We estimated terrain effects for each borehole using a time dependent solid-angle method. The thermal perturbations caused by lakes or deforestation near the borehole sites are insignificant in most cases. However, four of the holes were found to be severely influenced by terrain effects. GSTs estimated from the borehole data less influenced by the terraineffects form two groups. The first group, which are generally from data of better quality, show a cold period near the end of the last century before the recent warming trend; the second show it 80–100 years earlier. We consider the former typical of the climate of the Boreal climatic region of Canada. The difference between the two groups may reflect the spacial variability of the climate. Four GST estimates do not belong to either type, and the reasons are discussed.  相似文献   

13.
Inverse and direct methods have been used to analyze a large number of borehole temperature logs in order to infer past climatic changes. Results indicate a warming of 1–2°C in eastern and central Canada during the past 150 years. A period of cooling between 500 and 200 years before present, corresponding to the time of the “Little Ice Age”, has also been identified in the same areas. A regional ground temperature history is estimated for eastern and central Canada from the simultaneous inversion of several temperature logs. The inferred temperature changes appear correlated with the concentration of atmospheric carbon dioxide as reported from a Greenland ice core, and agree with existing meteorological and dendrochronological records for the area.  相似文献   

14.
Geothermal observations from a suite of boreholes in western Utah, USA, combined with meteorologic data at nearby weather stations are used to test the hypothesis that temperatures in the earths subsurface contain an accurate record of recent climate change. The change in air temperature over the last hundred years successfully predicts detailed subsurface temperature profiles to better than ±0.05°C, indicating that ground temperatures tract air temperatures over long periods and that climate change signals are conducted into, and recorded in, the solid earth by the process of heat conduction. We combine borehole temperature data with meteorologic data from the nearest weather station to determine the time averaged difference between surface ground temperature and surface air temperature for borehole-weather station pairs and to infer the long term mean air temperature prior to the observational record. For our western Utah sites the preobservational mean temperature is close to the average surface air temperature for this century suggesting that up to 0.5°C of warming deduced from the last 100 years of weather station data may be attributed to recovery from a cool period at the turn of the century.  相似文献   

15.
Data obtained during the first rocket flight of the NRL High Resolution Telescope and Spectrograph (HRTS) have been used to study nonthermal velocities for spectral lines primarily covering the temperature range 104 to 2 × 106 K. The high spectral and spatial resolution, combined with an enhanced dynamic intensity range of the reduced data, has enabled us to study the distribution of the nonthermal velocities for quiet and active regions. Average values of the nonthermal velocities peak at about 27 km s–1 at 105 K for the quiet regions, with a wide distribution of nonthermal velocities for each line. The active region nonthermal velocities have a narrower distribution which is weighted towards higher values. The SiIV and C IV line profiles are not well described by a single Gaussian, indicating that high-velocity components (above 30 km s–1) are present in the quiet-Sun spectra. The radiative losses for all plasma above l05 K have been calculated for the quiet Sun, an active region and a coronal hole. These have been compared with the acoustic wave flux inferred from the nonthermal line widths. There appears to be a sufficient flux of waves to heat these regions of the atmosphere.  相似文献   

16.
We have computed the physical parameters for the Venus atmosphere between 0–64 km altitude by using Vega measurements. The proposed model can be used in order to study the structure of Venus atmosphere and its chemical comoposition between 60–64 km, where an inversion in temperature profiles has been measured by Vega.  相似文献   

17.
Most of the East European Craton lacks surface relief; however, the amplitude of topography at the top of the basement exceeds 20 km, the amplitude of topography undulations at the crustal base reaches almost 30 km with an amazing amplitude of ca. 50 km in variation in the thickness of the crystalline crust, and the amplitude of topography variations at the lithosphere–asthenosphere boundary exceeds 200 km. This paper examines the relative contributions of the crust, the subcrustal lithosphere, and the dynamic support of the sublithospheric mantle to maintain surface topography, using regional seismic data on the structure of the crystalline crust and the sedimentary cover, and thermal and large-scale P- and S-wave seismic tomography data on the structure of the lithospheric mantle. For the Precambrian lithosphere, an analysis of Vp/Vs ratio at 100, 150, 200, and 250 km depths does not show any age-dependence, suggesting that while Vp/Vs ratio can be effectively used to outline the cratonic margins, it is not sensitive to compositional variations within the cratonic lithosphere.Statistical analysis of age-dependence of velocity, density, and thermal structure of the continental crust and subcrustal lithosphere in the study area (0–62E, 45–72N) allows to link lithospheric structure with the tectonic evolution of the region since the Archean. Crustal thickness decreases systematically with age from 42–44 km in regions older than 1.6 Ga to 37–40 km in the Paleozoic–Mesoproterozoic structures, and to ca. 31 km in the Meso-Cenozoic regions. However, the isostatic contribution of the crust to the surface topography of the East European Craton is almost independent of age (ca. 4.5 km) due to an interplay of age-dependent crustal and sedimentary thicknesses and lithospheric temperatures.On the contrary, the contribution of the subcrustal lithosphere to the surface topography strongly depends on the age, being slightly positive (+ 0.3 + 0.7 km) for the regions older than 1.6 Ga and negative (− 0.5–1 km) for younger structures. This leads to age-dependent variations in the residual topography, i.e. the topography which cannot be explained by the assumed thermal and density structure of the lithosphere, and which can (at least partly) originate from the dynamic component caused by the mantle flow. Positive dynamic topography at the cratonic margins, which exceeds 2 km in the Norwegian Caledonides and in the Urals, clearly links their on-going uplift with deep mantle processes. Negative residual topography beneath the Archean-Paleoproterozoic cratons (− 1–2 km) indicates either a smaller density deficit (ca. 0.9%) in their subcrustal lithosphere than predicted by global petrologic data on mantle-derived xenoliths or the presence of a strong convective downwelling in the mantle. Such mantle downflows can effectively divert heat from the lithospheric base, leading to a long-term survival of the Archean-Paleoproterozoic lithosphere.  相似文献   

18.
During operations on the Spacelab-2 Shuttle mission, the NRL High Resolution Telescope and Spectrograph (HRTS) recorded spectra of a variety of solar features in the 1200–1700 Å wavelength region which contains spectral lines and continua well suited for investigating the temperature minimum, the chromosphere and transition zone. These data show that, at the highest spatial resolution, the transition zone spectra are broken up from a continuous intensity distribution along the slit into discrete emission elements. The average dimensions of these discrete transition zone structures is 2400 km along the slit, but an analysis of their emission measures and densities shows that the dimensions of the actual emitting volume is conciderably less. If these structures are modelled as an ensemble of subresolution filaments, we find that these filaments have typical radii of from 3 to 30 km and that the cross-sectional fill factor is in the range from 10–5 to 10–2. The transport of mass and energy through these transition zone structures is reduced by this same factor of 10–5 to 10–2 which has significant consequences for our understanding of the dynamics of the solar atmosphere. Because the HRTS transition zone line profiles are not broadened by resolved large-spatial-scale solar velocity fields, the line widths of the Civ lines have been analyzed. The average line width is 0.195 Å (FWHM) and requires an average nonthermal velocity of 16 km s–1 (most-probable) or 19 km s–1 (root-mean-square) which is lower than previously observed values.  相似文献   

19.
The height distribution of the kinetic temperature of solar H spicules is determined using the widths of optically thin hydrogen and metallic lines obtained at the total solar eclipse of 1966: the temperature was found to be 8600 K at the height of 2200 km measured from the radial optical depth of unity at 5000 Å, and to decrease to a minimum of 5000 K ± 180 K at 3200 km, and to increase again to 8200 K at 6000 km.The height distribution of the non-thermal turbulent velocity is also determined and is shown to be consistent with the neutral helium line widths emitted at the kinetic temperature of 5000–8000 K.  相似文献   

20.
We study the thermal fields over Olympus Mons separating seasons (northern spring and summer against southern spring and summer) and local time observations (day side versus night side). Temperature vertical profiles retrieved from Planetary Fourier Spectrometer on board Mars Express (PFS-MEX) data have been used. In many orbits (running north to south along a meridian) passing over the top of the volcano there is evidence of a hot air on top of the volcano, of two enhancement of the air temperature both north and south of it and in between a collar of air that is colder than nearby at low altitudes, and warmer than nearby at high altitudes. Mapping together many orbits passing over or near the volcano we find that the hot air has the tendency to form an hot ring around it. This hot structure occurs mostly between LT = 10.00 and 15.00 and during the northern summer. Distance of the hot structure from the top of the volcano is about 600 km (10° of latitude). The hot atmospheric region is 300-420 km (5-7°) wide. Hot ring temperature contrasts of about 40 K occur at 2 km above the surface and decrease to 20 K at 5 km and to 10 K at 10 km. The atmospheric circulation over an area of 40° × 40° (latitudes and longitudes) is affected by the topography and the presence of Olympus Mons (−133°W, 18°N). We discuss also the thermal stability of the atmosphere over the selected area using the potential temperatures. The temperature field over the top of the volcano shows unstable atmosphere within 10 km from the surface. Finally, we interpret the hot temperatures around volcano as an adiabatic compression of down-welling branch coming from over the top of volcano.Different air temperature profiles are observed in the same seasons during the night, or in different seasons. In northern spring-summer during the night the isothermal contours do not show the presence of the volcano until we reach close to the surface very much, where a thermal inversion is observed. The surface temperature shows higher values (by 10 K) in correspondence of the scarp (an abrupt altimetry variation of roughly 5 km) on south (6°N) and north (30°N) sides of volcano. During the southern spring-summer, on the contrary the isothermal curves run parallel to the surface even on top the volcano, just like the GCM have predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号