首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The redox ratio of iron is used as an indicator of solution properties of silicate liquids in the system (SiO–Al2O3–K2O–FeO–Fe2O3–P2O5). Glasses containing 80–85 mol% SiO2 with 1 mol% Fe2O3 and compositions covering a range of K2O/Al2O3 were synthesized at 1400°C in air (fixed fO2). Variations in the ratio FeO/FeO1.5 resulting from the addition of P2O5 are used to determine the solution behavior of phosphorus and its interactions with other cations in the silicate melt. In 80 mol% SiO2 peralkaline melts the redox ratio, expressed as FeO/FeO1.5, is unchanged relative to the reference curve with the addition of 3 mol% P2O5. Yet, the iron redox ratio in the 85 mol% SiO2 potassium aluminosilicate melts is decreased relative to phosphorus-free liquids even for small amounts of P2O5 (0.5 mol%). The redox ratio in peraluminous melts is decreased relative to phosphorus- free liquids at P2O5 concentrations of 3 mol%. In peraluminous liquids, complexing of both Fe+3–O–P+5 and Al+3–O–P+5 occur. The activity coefficient of Fe+3 is decreased because more ferric iron can be accommodated than in phosphorus-free liquids. In peralkaline melts, there is no evidence that P+5 is removing K+ from either Al+3 or Fe+3 species. In chargebalanced melts with 3 mol% Fe2O3 and very high P2O5 concentrations, phosphorus removes K+ from K–O–Fe+3 complexes resulting in a redox increase. P2O5 should be accommodated easily in peraluminous rhyolitic liquids and phosphate saturation may be suppressed relative to metaluminous rhyolites. In peralkaline melts, phosphate solubility may increase as a result of phosphorus complexing with alkalis. The complexing stoichiometry may be variable, however, and the relative influence of peralkalinity versus temperature on phosphate solubility in rhyolitic melts deserves greater attention.  相似文献   

2.
Mossbauer spectroscopy has been used to determine the redox equilibria of iron and structure of quenched melts on the composition join Na2Si2O5-Fe2O3 to 40 kbar pressure at 1400° C. The Fe3+/ΣFe decreases with increasing pressure. The ferric iron appears to undergo a gradual coordination transformation from a network-former at 1 bar to a network-modifier at higher (≧10 kbar) pressure. Ferrous iron is a network-modifier in all quenched melts. Reduction of Fe3+ to Fe2+ and coordination transformation of remaining Fe3+ result in depolymerization of the silicate melts (the ratio of nonbridging oxygens per tetrahedral cations, NBO/T, increases). It is suggested that this pressure-induced depolymerization of iron-bearing silicate liquids results in increasing NBO/T of the liquidus minerals. Furthermore, this depolymerization results in a more rapid pressure-induced decrease in viscosity and activation energy of viscous flow of iron-bearing silicate melts than would be expected for iron-free silicate melts with similar NBO/T.  相似文献   

3.
The compositional dependence of the redox ratio (FeO/FeO1.5) has been experimentally determined in K2O-Al2O3-SiO2-Fe2O3-FeO (KASFF) and K2O-CaO-Al2O3-SiO2-Fe2O3-FeO (KCASFF) silicate melts. Compositions were equilibrated at 1,450° C in air, with 78 mol % SiO2. KASFF melts have from 1 to 5 mol % Fe2O3 and include both peraluminous (K2O2O3) and peralkaline (K2O>Al2O3) compositions. KCASFF melts have 1 mol % Fe2O3 encompassing peraluminous, metaluminous (CaO+K2O>Al2O3) and peralkaline compositions. Peralkaline KASFF melts with 1 mol % Fe2O3 have low and constant values for the redox ratio, whereas in peraluminous melts the redox ratio increases with increasing (K2O/Al2O3). Increasing total iron concentration increases the redox ratio in peraluminous melts and slightly decreases the redox ratio in peralkaline melts. Substituting CaO for K2O at fixed total iron (1 mol %) increases the redox ratio in both peraluminous and metaluminous KCASFF melts; however, the redox ratio in peralkaline KCASFF melts is not affected by this exchange. These data indicate that Fe3+ is in four-fold coordination, with K+ or Ca2+ providing local charge balance. The tetrahedral ferric species is most stable in peralkaline melts and least stable in peraluminous melts, due to the competition between Al3+ and Fe3+ for charge balancing cations in the latter melt. Tetrahedral Fe3+ is also less stable when Ca2+ provides local charge balance. The data are consistent with a network modifying role for Fe2+ in the melt.The data are interpreted to reflect the effects of melt composition on the partitioning of K+ and Ca2+ and Fe3+ and Al3+ between various species in the melt. These relationships are discussed in terms of homogeneous equilibria between various iron-bearing and iron-free melt species. The results also reflect the effect of liquid composition on the exchange potentials Fe3+ Al–1 and Ca0.5K–1. The exchange potentials are relatively constant in peralkaline melts, but decrease in metaluminous and peraluminous melts as both (CaO+K2O)/(CaO+K2O+Al2O3) and K2O/CaO decrease. These qualitative observations imply that minerals exhibiting these exchanges will also be similarly affected as liquid composition changes. Present address: Department of Geological Sciences, Virginia Tech, Blacksburg, VA 24061, USA  相似文献   

4.
The saturation surface of pseudobrookite (Fe2TiO5) was determined for melts in the system SiO2-Al2O3-K2O-FeO-Fe2O3-TiO2 at 1400° C and 1 atm. The variation in concentrations of Fe2O3, TiO2 and Fe2TiO5 in liquids can be used to infer relative changes in activity coefficients of these components with changing K2O/(K2O+Al2O3) of the melts. Saturation concentrations of these components are low and relatively constant in the peraluminous melts and increase with increasing K2O/(K2O+Al2O3) in peralkaline liquids. The activity coefficients of Fe2O3 and TiO2 and Fe2TiO5, therefore, are higher in peraluminous liquids than in peralkaline liquids in this system. In addition, the iron redox ratio was measured as a function of K2O/(K2O+Al2O3) for liquids just below the saturation surface; was fixed so all variations in redox ratio are entirely due to changes in melt composition. The redox ratio from unsaturated liquids was applied to saturated liquids where redox analysis of the glass is impossible. The homogeneous equilibrium experiments indicate that the activity coefficient of Fe2O3 relative to that of FeO is significantly greater in peraluminous melts than peralkaline melts. Both the heterogeneous and homogeneous equilibria suggest that in peralkaline liquids K+in excess of that required to charge balance tetrahedral Al+3 is used to stabilize both Fe+3 and Ti+4. Calculations show that ferric iron and titanium compete equally effectively for charge-balancing potassium but neither can outcompete aluminum. The observed changes in solution properties of Fe2O3 and TiO2 in the synthetic melts are used to explain variations in Fe-Ti oxide stabilities in natural peraluminous and peralkaline rhyolites and granites. Since the activity coefficients of both ferric iron and titanium are significantly higher in peraluminous liquids than in peralkaline liquids, Fe-Ti oxides should occur earlier in the crystallization sequence in peraluminous rhyolites than in peralkaline rhyolites. In addition, iron will be reduced in peraluminous granites and rhyolites relative to peralkaline ones under comparable P, T, and . Finally, observed crystallization patterns for minerals containing highly charged cations other than ferric iron and titanium are evaluated in the context of this and other experimental studies.  相似文献   

5.
The effect of composition and temperature on the relaxed adiabatic bulk modulus of melts in the P2O5-Al2O 3-Na2SiO3 system have been investigated in the temperature range of 1140 to 1450 °C using ultrasonic interferometric methods at frequencies of 3, 5 and 7 MHz. The density of these melts was determined using Pt-double-bob Archimedean densitometry techiques. P2O5 is known to dramatically affect the structure and the chemical and physical properties of granitic and pegmatitic melts as a function of the peralkalinity of the melt. The physical results of the structural changes occurring in Na2O-Al2O3-SiO2 melt upon the addition of P2O5 are observed by variations in the properties such as density and compressibility. For the present peralkaline melts, the bulk modulus and density decrease with addition of 15 mol% P2O5, and increase with the addition of 15 mol% Al2O3. The addition of P2O5 to the present melts results in a larger increase in melt compressibility than that observed with increasing polymerization between Na2SiO3 and Na2Si2O5 melts. This would suggest that not only is the polymerization of the melt increasing with the addition of P2O5 (Mysen et al. 1981; Nelson and Tallant 1984; Gan and Hess 1992), but that the tetrahedrally co-ordinated phosphorus complexes are influencing the bond lengths and energies within the melt structure; resulting in the structure becoming more compressible than expected, although incompressible (Vaughan and Weidner 1987) tetrahedral P2O5 polyhedra (Mysen et al. 1981; Gan and Hess 1992; Toplis et al. 1994) are being added to the melt structure.  相似文献   

6.
The effect of TiO2 and P2O5 on the ferric/ferrous ratio in silicate melts was investigated in model silicate melts at air conditions in the temperature range 1,400–1,550 °C at 1-atm total pressure. The base composition of the anorthite–diopside eutectic composition was modified with 10 wt % Fe2O3 and variable amounts of TiO2 (up to 30 wt %) or P2O5 (up to 20 wt %). Some compositions also contained higher SiO2 concentrations to compare the role of SiO2, TiO2, and P2O5 on the Fe3+/Fe2+ ratio. The ferric/ferrous ratio in experimental glasses was analyzed using a wet chemical technique with colorimetric detection of ferrous iron. It is shown that at constant temperature, an increase in SiO2, TiO2, and P2O5 content results in a decrease in the ferric/ferrous ratio. The effects of TiO2 and SiO2 on the Fe3+/Fe2+ ratio was found to be almost identical. In contrast, adding P2O5 was found to decrease ferric/ferrous ratio much more effectively than adding silica. The results were compared with the predictions from the published empirical equations forecasting Fe3+/Fe2+ ratio. It was demonstrated that the effects of TiO2 are minor but that the effects of P2O5 should be included in models to better describe ferric/ferrous ratio in phosphorus-bearing silicate melts. Based on our observations, the determination of the prevailing fO2 in magmas from the Fe3+/Fe2+ ratio in natural glasses using empirical equations published so far is discussed critically.  相似文献   

7.
In order to understand the distribution of sulfur in igneous rooks, we determined the solubility of sulfur in volcanic rock melts (tholeiite basalt, hawaiite and rhyodacite from Hawaii) at various gas compositions and at 1250° and 1300°C and 1 atm total pressure. The solubility of sulfur in the melt passes through a minimum with change in oxygen partial pressure, if other factors are held constant. For the basaltic liquid at 1200°C, most sulfur in the melt is as dissolved sulfide (S?2) at oxygen partial pressures below 10?8 atm and as dissolved sulfate at oxygen partial pressures above 10?8 atm. Based on the present solubility data, 5 per cent is inferred for volcanic gas at 1 atm total pressure in equilibrium with subaerially extruded Hawaiian tholeiite basalt (Pele's hair with 180 ppm S) at 1200°C and 10?8 atm PO2.  相似文献   

8.
The critical role of iron on crystal-silicate liquid relationships and melt differentiation is mainly controlled by the redox conditions prevailing in magmas, but the presently available database merely constrains the thermodynamic properties of iron-bearing components in strongly reduced and anhydrous molten silicate where iron is in the ferrous form. This paper provides new standard states for pure ferrous (FeOliq) and ferric (Fe2O3liq) molten iron oxides and extends the experimental database towards oxidizing and water-bearing domains. Iron-iridium, iron-platinum alloys, magnetite or hematite were equilibrated with synthetic silicic liquids at high temperature and high pressure under controlled oxygen fugacity (fO2) to determine activity-composition relationships for FeOliq and Fe2O3liq. Between 1000 and 1300°C, the fO2 ranges from that in air to 3-log units below that of the nickel-nickel oxide buffer (NNO). Experiments were performed on both anhydrous and hydrous melts containing up to 6-wt.% water. Incorporation of water under reducing conditions increases the activity coefficient of FeOliq but has an opposite effect on Fe2O3liq. As calcium is added to system, the effect of water becomes weaker and is inverted for Fe2O3liq. Under oxidizing conditions, water has a negligible effect on both activities of FeOliq and Fe2O3liq. In contrast, changes in redox conditions dominate the activity coefficients of both FeOliq and Fe2O3liq, which increase significantly with increasing fO2. The present results combined with the previous work provide a specific database on the energetics of iron in silicate melts that cover most of the condition prevailing in natural magmas.  相似文献   

9.
The effect of pressure and composition on the viscosity of both anhydrous and hydrous andesitic melts was studied in the viscosity range of 108 to 1011.5 Pa · s using parallel plate viscometry. The pressure dependence of the viscosity of three synthetic, iron-free liquids (andesite analogs) containing 0.0, 1.06, and 1.96 wt.% H2O, respectively, was measured from 100 to 300 MPa using a high-P-T viscometer. These results, combined with those from Richet et al. (1996), indicate that viscosities of anhydrous andesitic melts are independent of pressure, whereas viscosities of hydrous melts slightly increase with increasing pressure. This trend is consistent with an increased degree of depolymerization in the hydrous melts. Compositional effects on the viscosity were studied by comparing iron-free and iron-bearing compositions with similar degrees of depolymerization. During experiments at atmospheric and at elevated pressures (100 to 300 MPa), the viscosity of iron-bearing anhydrous melts preequilibrated in air continuously increased, and the samples became paramagnetic. Analysis of these samples by transmission electron microscopy showed a homogeneous distribution of crystals (probably magnetite) with sizes in the range of 10 to 50 nm. No significant difference in the volume fractions of crystals was found in samples after annealing for 170 to 830 min at temperatures ranging from 970 to 1122 K. An iron-bearing andesite containing 1.88 wt.% H2O, which was synthesized at intrinsic fO2 conditions in an internally heated pressure vessel, showed a similar viscosity behavior as the anhydrous melts. The continuous increase in viscosity at a constant temperature is attributed to changes of the melt structure due to exsolution of iron-rich phases. By extrapolating the time evolution of viscosity down to the time at which the run temperature was reached, for both the anhydrous (at 1055 K) and the hydrous (at 860 K) iron-bearing andesite, the viscosity is 0.7 log units lower than predicted by the model of Richet et al. (1996). This may be explained by differences in structural properties of Fe2+ and Fe3+ and their substitutes Mg2+, Ca2+, and Al3+, which were used in the analogue composition.The effect of iron redox state on the viscosity of anhydrous, synthetic andesite melts was studied at ambient pressure using a dilatometer. Reduced iron-bearing samples were produced by annealing melts in graphite crucibles in an Ar/CO atmosphere for different run times. In contrast to the oxidized sample, no variation of viscosity with time and no exsolution of iron oxide phases was observed for the most reduced glasses. This indicates that trivalent iron promotes the exsolution of iron oxide in supercooled melts. With decreasing Fe3+/ΣFe ratio from 0.58 to 0.34, the viscosity decreases by ∼1.6 log units in the investigated temperature range between 964 and 1098 K. A more reduced glass with Fe3+/ΣFe = 0.21 showed no additional decrease in viscosity. Our conclusion from these results is that the viscosity of natural melts may be largely overestimated when using data obtained from samples synthesized in air.  相似文献   

10.
The analysis of available data on the Fe3+/Fe2+ ratio of impact-produced glasses showed that tektites and some other types of impact glasses are reduced compared with the precursor target material. Possible reasons for the change in the degree of iron oxidation in the impact process are still debatable. Based on the analysis of redox reactions in relatively simple systems with iron in different oxidation states (Fe-O and SiO2-FeO-Fe2O3) and the available data on the influence of temperature, oxygen partial pressure (pO2), and total pressure (P tot) on the Fe3+/Fe2+ ratio of silicate melts, a model was proposed suggesting that the lower Fe3+/Fe2+ values of tektites formed in the impact process compared with the initial target material could be related to the characteristics of oxygen regime during the decompression stage following shock compression. One of the main prerequisites for the occurrence of reduction reactions involving iron and other elements is the attainment of high temperatures (>1800–2000°C) at a certain stage of decompression, providing the complete melting and partial evaporation of the material. When the vapor pressure in the system becomes equal to the total pressure during adiabatic decompression, a further decrease in P tot will be inevitably accompanied by a decrease in pO2 and, correspondingly, partial reduction of Fe3+ to Fe2+ in the melt. The reactions of decompression reduction occur under closed-system conditions and do not require oxygen removal from the system. The higher the temperature and Fe3+/Fe2+ ratio of the melt, the more extensive iron reduction can be observed during the final stages of decompression. If the temperatures attained during decompression after an impact event are sufficient (>2500–3000°C) for the complete evaporation of the material, the melt produced during subsequent condensation must be significantly more reduced than the initial material. The final stage of the impact process is characterized by a catastrophic expansion of the explosion cloud, condensation, and rapid cooling. During this stage, the system is already not closed. The quenched glasses of this stage record the redox state of earlier melts. In addition, they can contain microinclusions of the products of nonequilibrium vapor condensation with iron compounds of different oxidation states, including metallic iron and iron oxides (wüstite, magnetite, and hematite).  相似文献   

11.
Phase equilibria data in the systems SiO2-P2O5, P2O5-MxOy, and P2O5-MxOy-SiO2 are employed in conjunction with Chromatographic and spectral data to investigate the role of P2O5 in silicate melts. Such data indicate that the behavior of P2O5 is complex. P2O5 depolymerizes pure SiO2 melts by entering the network as a four-fold coordinated cation, but polymerizes melts in which an additional metal cation other than silicon is present. The effect of this polymerization is apparent in the widening of the granite-ferrobasalt two-liquid solvus. In this complex system P2O5 acts to increase phase separation by further enrichment of the high charge density cations Ti, Fe, Mg, Mn, Ca, in the ferrobasaltic liquid. P2O5 also produces an increase in the ferrobasalt-granite REE liquid distribution coefficients. These distribution coefficients are close to 4 in P2O5-free melts, but close to 15 in P2O5-bearing melts.The dual behavior of P2O5 is explained in a model which requires complexing of phosphate anions (analogous to silicate anions) and metal cations in the melt. This interaction destroys Si-O-M-O-Si bonds polymerizing the melt. The higher concentration of Si-O-M-O-Si bond complexes in immiscible ferrobasaltic liquids relative to their conjugate immiscible granite liquids explains the partitioning of P2O5 into the ferrobasaltic liquid.  相似文献   

12.
Experimental investigations have been performed at T = 1200°C, P = 200 MPa and fH2 corresponding to H2O-MnO-Mn3O4 and H2O-QFM redox buffers to study the effect of H2O activity on the oxidation and structural state of Fe in an iron-rich basaltic melt. The analysis of Mössbauer and Fe K-edge X-ray absorption nearedge structure (XANES) spectra of the quenched hydrous ferrobasaltic glasses shows that the Fe3+/ΣFe ratio of the glass is directly related to aH2O in a H2-buffered system and, consequently, to the prevailing oxygen fugacity (through the reaction of water dissociation H2O ↔ H2 + 1/2 O2). However, water as a chemical component of the silicate melt has an indistinguishable effect on the redox state of iron at studied conditions. The experimentally obtained relationship between fO2 and Fe3+/Fe2+ in the hydrous ferrobasaltic melt can be adequately predicted in the investigated range by the existing empiric and thermodynamic models. The ratio of ferric and ferrous Fe is proportional to the oxygen fugacity to the power of ∼0.25 which agrees with the theoretical value from the stoichiometry of the Fe redox reaction (FeO + ¼ O2 = FeO1.5). The mean centre shifts for Fe2+ and Fe3+ absorption doublets in Mössbauer spectra show little change with increasing Fe3+/ΣFe, suggesting no significant change in the type of iron coordination. Similarly, XANES preedge spectra indicate a mixed (C3h, Td, and Oh, i.e., 5-, 4-, and sixfold) coordination of Fe in hydrous basaltic glasses.  相似文献   

13.
The solubility behavior of phosphorus in glasses and melts in the system Na2O-Al2O3-SiO2-P2O5 has been examined as a function of temperature and Al2O3 content with microRaman spectroscopy. The Al2O3 was added (2, 4, 5, 6, and 8 mol% Al2O3) to melts with 80 mol% SiO2 and ∼2 mol% P2O5. The compositions range from peralkaline, via meta-aluminous to peraluminous. Raman spectra were obtained of both the phosphorus-free and phosphorous-bearing glasses and melts between 25 and 1218 °C. The Raman spectrum of Al-free, P-bearing glass exhibits a characteristic strong band near 940 cm−1 assigned to P=O stretching in orthophosphate complexes together with a weaker band near 1000 cm−1 assigned P2O7 complexes. With increasing Al content, the proportion of P2O7 initially increases relative to PO4 and is joined by AlPO4 complexes which exhibit a characteristic P-O stretch mode slightly above 1100 cm−1. The latter complex appears to dominate in meta-aluminosilicate glass and is the only phosphate complex in peraluminous glasses. When P-bearing peralkaline silicate and aluminosilicate glasses are transformed to supercooled melts, there is a rapid decrease in PO4/P2O7 so that in the molten state, PO4 units are barely discernible. The P2O7/AlPO4 abundance ratio in peralkaline compositions increases with increasing temperature. This decrease in PO4/P2O7 with increasing temperature results in depolymerization of the silicate melts. Dissolved P2O5 in peraluminous glass and melts forms AlPO4 complexes only. This solution mechanism has no discernible influence on the aluminosilicate melt structure. There is no effect of temperature on this solution mechanism. Received: 7 October 1997 / Accepted: 11 May 1998  相似文献   

14.
In order to improve our understanding of HSE geochemistry, we evaluate the effect of Fe on the solubility of Pd in silicate melts. To date, experimentally determined Pd solubilities in silicate melt are only available for Fe-free anorthite-diopside eutectic compositions. Here we report experiments to study the solubility of Pd in a natural picritic melt as a function of pO2 at 1300 °C in a one atm furnace. Palladium concentrations in the run products were determined by laser-ablation-ICP-MS. Palladium increases from 1.07 ± 0.26 ppm at FMQ-2, to 306 ± 19 ppm at FMQ+6.6. At a relative pO2 of FMQ the slope in log Pd concentration vs. log pO2 space increases considerably, and Pd concentrations are elevated over those established for AnDi melt compositions. In the same pO2 range, ferric iron significantly increases relative to ferrous iron. Furthermore, at constant pO2 (FMQ+0.5) Pd concentrations significantly increase with increasing XFeO-total in the melt. Therefore, we consider ferric Fe to promote the formation of Pd2+ enhancing the solubility of Pd in the picrite melt significantly.The presence of FeO in the silicate melt has proven to be an important melt compositional parameter, and should be included and systematically investigated in future experimental studies, since most natural compositions have substantial FeO contents.  相似文献   

15.
The viscosity-temperature relationships of five melts on the join Na2Si2O2-Na4Al2O5 (5, 10, 20, 30 and 40 mole percent Na4Al2O5) have been measured in air, at 1 atm and 1000–1350°C with a concentric cylinder viscometer. All the melts on this join of constant bulk polymerization behave as Newtonian fluids, in the range of shear rates investigated, and the melts exhibit Arrhenian viscosity-temperature relationships.Isothermal viscosities on this join initially decrease and then increase with increasing mole percent Na4Al2O5. The minimum viscosity occurs near 20 mole percent Na4Al2O5 at 1000°C and moves to higher Na4Al2O5 content with increasing temperature.The observation of a viscosity minimum along the join Na2Si2-O5-Na4Al2O5 is not predicted based on earlier viscosity data for the system Na2O-Al2O3-SiO2 (RlEBLlNG, 1966) or based on calculation methods derived from this and other data (Bottinga and Weill, 1972). This unexpected behavior in melt viscosity-temperature relations emphasizes the need for a more complete data set in simple silicate systems.Previous spectroscopic investigation of melts on the join Na22Si2O5-Na4Al2O5 offer a structural explanation for the observed viscosity data in terms of a disproportionation reaction involving polyanionic units. Macroscopically, the viscosity data may be qualitatively reconciled with the configurational entropy model for viscous flow (Richet, 1984).  相似文献   

16.
The influence of melt composition and structure on the oxygen isotope fractionation was studied for the multicomponent (SiO2 ± TiO2 + Al2O3 ± Fe2O3 + MgO ± CaO) system at 1500°C and 1 atm. The experiments show that significant oxygen isotope effects can be observed in silicate melts even at such high temperature. It is shown that the ability of silicate melt to concentrate 18O isotope is mainly determined by its structure. In particular, an increase of the NBO/T ratio in the experimental glasses from 0.11 to 1.34 is accompanied by a systematic change of oxygen isotope difference between melt and internal standard by values from–0.85 to +1.29‰. The obtained data are described by the model based on mass-balance equations and the inferred existence of O0, O, and O2– (bridging, non-bridging, and free oxygen) ions in the melts. An application of the model requires the intra-structure isotope fractionation between bridging and non-bridging oxygens. Calculations show that the intra-structure isotope fractionation in our experiments is equal to 4.2 ± 1.0‰. To describe the obtained oxygen isotope effects at the melts relatively to temperature and fraction of non-bridging oxygen a general equation was proposed.  相似文献   

17.
Viscosity experiments were conducted with two flux-rich pegmatitic melts PEG0 and PEG2. The Li2O, F, B2O3 and P2O5 contents of these melts were 1.04, 4.06, 2.30 and 1.68 and 1.68, 5.46, 2.75 and 2.46 wt%, respectively. The water contents varied from dry to 9.04 wt% H2O. The viscosity was determined in internally heated gas pressure vessels using the falling sphere method in the temperature range 873–1,373 K at 200 and 320 MPa pressure. At 1,073 K, the viscosity of water-rich (~9 wt% H2O) melts is in the range of 3–60 Pa s, depending on the melt composition. Extrapolations to lower temperature assuming an Arrhenian behavior indicate that highly fluxed pegmatite melts may reach viscosities of ~30 Pa s at 773 K. However, this value is a minimum estimation considering the strongly non-Arrhenian behavior of hydrous silicate melts. The experimentally determined melt viscosities are lower than the prediction of current models taking compositional parameters into account. Thus, these models need to be improved to predict accurately the viscosity of flux-rich water bearing melts. The data also indicate that Li influences significantly the melt viscosity. Decreasing the molar Al/(Na + K + Li) ratio results in a strong viscosity decrease, and highly fluxed melts with low Al/(Na + K + Li) ratios (~0.8) have a rheological behavior which is very close to that of supercritical fluids.  相似文献   

18.
Partitioning of manganese between forsterite and silicate liquid   总被引:1,自引:0,他引:1  
Partition coefficients for Mn between forsterite and liquid in the system MgO-CaO-Na2O-Al2O3-SiO2 (+ about 0.2% Mn) were measured by electron microprobe for a variety of melt compositions over the temperature range 1250–1450°C at one atm pressure. The forsterite-liquid partition coefficient of Mn (mole ratio, MnO in Fo/MnO in liquid, designated Dmnfo?Liq) depends on liquid composition as well as temperature: at 1350°C, DMnFo?Liqranges from 0.60 (basic melt, SiO2 = 47wt%) to 1.24 (acidic melt, SiO2 = 65wt%). At lower temperatures, the partition coefficient is more strongly dependent on melt composition.The effects of melt composition and temperature on DMnfo?Liq can be separately evaluated by use of the Si:O atomic ratio of the melts. A plot of DmnFo?Liq measured at various temperatures vs melt Si:O for numerous liquid compositions reveals discrete, constant-temperature curves that are not well defined by plotting DMnFo?Liq against other melt composition parameters such as melt basicity or MgO content. For constant Si:O in the melt, In DMnFo?Liq vs reciprocal absolute temperature is linear; however, the slope of the plot becomes more positive for higher values of Si:O, indicating a higher energy state for Mn2+ ions in acidic melts than in basic melts.Comparison of Mn partitioning data for the iron-free system used in this study with data of other workers on iron-bearing compositions suggests that the effect of iron on Mn partitioning between olivine and melt is small over the range of basalt liquidus temperatures.  相似文献   

19.
The effect of fluorine and fluorine + chlorine on melt viscosities in the system Na2O-Fe2O3-Al2O3-SiO2 has been investigated. Shear viscosities of melts ranging in composition from peraluminous [(Na2O + FeO) < (Al2O3 + Fe2O3)] to peralkaline [(Na2O + FeO) > (Al2O3 + Fe2O3)] were determined over a temperature range 560-890 °C at room pressure in a nitrogen atmosphere. Viscosities were determined using the micropenetration technique in the range of 108.8 to 1012.0 Pa s. The compositions are based on addition of FeF3 and FeCl3 to aluminosilicate melts with a fixed amount of SiO2 (67 mol%). Although there was a significant loss of F and Cl during glass syntheses, none occurred during the viscometry experiments. The presence of fluorine causes a decrease in the viscosity of all melts investigated. This is in agreement with the structural model that two fluorines replace one oxygen; resulting in a depolymerisation of the melt and thus a decrease in viscosity. The presence of both chlorine and fluorine results in a slight increase in the viscosity of peraluminous melts and a decrease in viscosity of peralkaline melts. The variation in viscosity produced by the addition of both fluorine and chlorine is the opposite to that observed in the same composition melts, with the addition of chlorine alone (Zimova M. and Webb S.L. (2006) The effect of chlorine on the viscosity of Na2O-Fe2O3-Al2O3-SiO2 melts. Am. Mineral.91, 344-352). This suggests that the structural interaction of chlorine and fluorine is not linear and the rheology of magmas containing both volatiles is more complex than previously assumed.  相似文献   

20.
A kinetic model for the rate of iron-hydrogen redox exchange in silicate glasses and melts has been derived from time-series experiments performed on natural rhyolitic obsidians. Cylinders of the starting glasses were exposed to reducing mixtures composed of H2-Ar-CO2-CO in 1-atm furnaces and H2-Ar in a cold seal pressure vessel. Overall, runs covered the temperature range 300 to 1000°C. The progression of a front of ferric iron reduction within the quenched melt was observed optically through a change of color. For all run conditions, the advancement of the front (ξ) was proportional to the square root of time, revealing the reaction as a diffusion-limited process. Iso-fO2 runs performed in CO2-CO, H2-Ar, and H2-CO2 gases have shown that fH2 rather than fO2 is the dominant parameter controlling the reaction rate. The fH2 dependence of the rate constant was characterized in the range 0.02 to 70 bar. The growth of the reduced layer, which is accompanied by an increase in reaction-derived OH-group content, was fitted considering that the reaction rate is controlled by the migration of a free mobile species (H2) immobilized in the form of OH subsequent to reaction with ferric iron. The reaction rate is thus a function of both solubility and diffusivity of H2 weighted by the concentration of its sink (ferric iron). We extracted a single law for both solubility and diffusivity of H2 in amorphous silicates that applies over a range of temperatures below and above the glass transition temperature. Melt/glass structure (degree of polymerization) does not seem to significantly affect both solubility and diffusivity of H2. We therefore provide a model that allows the prediction of oxidation-reduction rates in the presence of hydrogen for a wide range of compositions of amorphous glasses and melts. Comparisons with previous work elucidating rate of redox exchange in dry systems allow us to anticipate the fH2-T domains where different redox mechanisms may apply. We conclude that equilibration of redox potential in nature should be dominated by H2 transfer at a rate controlled by both H2 solubility and diffusion. Numerical applications of the model illustrate redox exchanges in natural magmas and in glasses exposed to weathering under near surface conditions. We show that crustal events such as magmas mixing should not modify the iron redox state of magmas. In the case of nuclear-waste-bearing glasses, the fH2 conditions in the host terrain are clearly a parameter that must be taken into account to predict glass durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号