首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the spring of 2007, paroxysmal activity occurred at the Southeast Crater of Mt. Etna, always associated with sharp rises in the amplitude of the volcanic tremor. Activity ranged from strong Strombolian explosions to lava fountains coupled with copious emission of lava flows and tephra. During inter-eruptive periods, recurrent seismic unrest episodes were observed in the form of temporary enhancements of the volcanic tremor amplitude, but they did not culminate in eruptive activity. Here, we present the results of an analysis of these inter-eruptive periods by integrating seismic volcanic tremor, in-soil radon, plume SO2 flux, and thermal data. SO2 flux and thermal radiation are envisaged as the “smoking gun,” and certifying that changes in seismic or radon data can be considered as volcanogenic. Short-term changes were investigated by pattern classification based on Kohonen maps and fuzzy clustering on volcanic tremor, radon, and ambient parameters (pressure and temperature). Our results unveil “failed” eruptions between February and April 2007 that are explained as ascending magma batches, which triggered repeated episodes of gas pulses and rock fracturing, but that failed to reach the surface.  相似文献   

2.
This paper documents a phreatomagmatic flank eruption that occurred 18 700 ± 100 a BP , on the lower north-eastern slope of Etna during the Ellittico volcano activity, which produced fall and surge deposits. This type of eruption is connected to a sedimentary basement ridge at Etna. The interaction between the rising magma and the shallow groundwater hosted in the volcanic pile overlying the impermeable sediments resulted in phreatomagmatic instead of strombolian activity. Three eruptive phases are distinguished based on field and analytical data: (i) an explosive phreatomagmatic opening, (ii) a main phase producing coarse lithic-rich fallout and a strombolian deposit, and (iii) the final pulsating surge-forming phase. The discovery of this phreatomagmatic flank eruption, which occurred at lower altitude, raises important issues for previous hazard assessments at Etna.  相似文献   

3.
GIS and Volcanic Risk Management   总被引:7,自引:0,他引:7  
Pareschi  M. T.  Cavarra  L.  Favalli  M.  Giannini  F.  Meriggi  A. 《Natural Hazards》2000,21(2-3):361-379
Volcanic catastrophes constitute a majorproblem in many developing and developed countries. Inrecent years population growth and the expansion ofsettlements and basic supply lines (e.g., water, gas,etc.) have greatly increased the impact of volcanicdisasters. Correct land-use planning is fundamental inminimising both loss of life and damage to property.In this contribution Geographical Information Systems(GIS), linked with remote sensing technology andtelecommunications/warning systems, have emerged asone of the most promising tools to support thedecision-making process. Some GIS are presented fortwo volcanic areas in Italy, Mt. Etna and Vesuvius.GIS role in risk management is then discussed, keepingin mind the different volcanic scenarios of effusiveand explosive phenomena. Mt. Etna system covers alarge area (more than 1,000 km2) potentiallyaffected by effusive phenomena (lava flows) whichcause damage to both houses and properties in general.No risk to life is expected. The time-scales of lavaflows allow, at least in principle, modification ofthe lava path by the building of artificial barriers.Vesuvius shows typically an explosive behaviour. Inthe case of a medium size explosive eruption, 600,000people would potentially have to be evacuated from anarea of about 200 km2 around the Volcano, sincethey are exposed to ruinous, very fast phenomena likepyroclastic surges and flows, lahars, ash fallout,etc. Ash fallout and floods/lahars are also expectedin distal areas, between Vesuvius and Avellino,downwind of the volcano. GIS include digital elevationmodels, satellite images, volcanic hazard maps andvector data on natural and artificial features (energysupply lines, strategic buildings, roads, railways,etc.). The nature and the level of detail in the twodata bases are different, on the basis of thedifferent expected volcanic phenomena. The GIS havebeen planned: (a) for volcanic risk mitigation (hazard,value, vulnerability and risk map assessing), (b) toprovide suitable tools during an impending crisis, (c)to provide a basis for emergency plans.  相似文献   

4.
长白山火山灾害及其对大型工程建设的影响   总被引:2,自引:0,他引:2  
刘松雪  刘祥 《世界地质》2005,24(3):289-292
长白山火山是世界著名的活火山,历史时期有过多次喷发,有再次爆发的危险.长白山火山最大的一次爆发发生在公元1199-1200年,这次大爆发的火山灰最远到达距其1 000km远的日本北部.依据这次大爆发由火山喷发空中降落堆积物、火山碎屑流和火山泥流造成的巨大火山灾害,预测了长白山火山未来爆发火山灾害的类型、强度和范围,并编制了长白山火山未来爆发火山喷发空中降落堆积物灾害预测图、火山碎屑流灾害预测图和火山泥流灾害预测图.该研究可预防和减轻火山灾害,指导核电站等大型工程选址.  相似文献   

5.
We present a comprehensive probabilistic hazard assessment for tephra fallout of Cotopaxi volcano (Ecuador), a quiescent but active stratovolcano known for its highly explosive behaviour. First, we developed a set of possible eruptive scenarios based on thorough field investigations, literature studies and using the Global Volcanism Program (GVP) database. Five eruption scenarios were identified, including two based on large pre-historical sub-Plinian/Plinian eruptions with eruptive parameters constrained from field investigations (One Eruption Scenario; OES) and three Eruption Range Scenarios (ERS) based on the Volcanic Explosivity Index (VEI) classification, for which eruptive parameters (i.e. erupted volume, plume height and median grainsize) were stochastically sampled within boundaries defined by VEI 3, 4 and 5. Second, the modelling was performed using the advection-diffusion model TEPHRA2 in combination with wind profiles from the NOAA NCEP/NCAR Reanalysis 1 database. We performed 1,000 runs for each eruption scenario, stochastically sampling a wind profile (OES and ERS) and a set of eruptive parameters (ERS only) at each run. Using the conditional probabilities of occurrence of eruption of VEI 3, 4 and 5 calculated from the GVP catalogue, we assessed the probability of tephra accumulation in a given time window. Based on the GVP database, a simple Poisson model shows that an eruption of VEI???3 has a 36?% probability of occurrence in the next 10?years. Finally, the hazard assessment was compiled based on three different outputs, including (i) probability maps for a given tephra accumulation, (ii) isomass maps for a given probability value and (iii) hazard curves for a given location. We conclude that the area west of Cotopaxi is exposed to light to severe tephra fallout for the smallest eruption magnitude considered (i.e. VEI 3). This area comprises a main communication axis (Panamerican Highway) topographically constrained at the bottom of the Interandean Valley, as well as the capital Quito and the town of Latacunga. In a companion paper, Biass et?al. (this volume) propose a method for a rapid risk assessment for tephra fallout using global and easily accessible data and the hazard assessment described here.  相似文献   

6.
Tertiary collision-related volcanic rocks of the Eastern Rhodopes (37–25.5 Ma) display calc-alkaline and shoshonitic affinities, with (A) intermediate to basic and (B) acid compositions. (A) Latites, andesites, also shoshonites and basaltic andesites and scarce basalts, absarokites and ultrapotassic latites were emitted through different eruptive styles: lava flows often autobrecciated, domes, ash and scarce pumice falls and flows. Lahars are frequent. K2O contents of intermediate volcanics decrease from North to South towards the collision suture. (B) Rhyolites, trachyrhyolites and trachydacites show explosivity progressively decreasing with time. Several eruptive types can be distinguished: pyroclastic flows (weakly and strongly welded ignimbrite deposits), ash and lapilli falls, domes and lava flows. The large (30×10 km) Borovitza caldera is the result of a paroxysmic explosive phase.
  All rocks are characterized by high contents of Rb, Th and Y. Conversely, negative Ba and Ta–Nb anomalies are typical of collision-related magmatism.
  Intense hydrothermal episodes, contemporaneous with the volcanic activity, have converted large amounts of explosive products into bentonite and zeolites deposits. Typical metallogeny is associated with this collision-related volcanism: large Pb, Zn with Cu and Ag deposits and small U or Au deposits are exposed.  相似文献   

7.
 The Kos Plateau Tuff (KPT) erupted during a moderate-volume explosive rhyolitic event approximately 161 ka from a source south of Kos in the eastern Aegean sea. Six major stratigraphic units have been identified, from A at the base, to F, uppermost. Unit A is a widespread vitric ash fall layer that is thickest (1.5 m), and most extensive, southeast of the source. Unit B is a 1- to 2-m-thick, low-angle cross-stratified armoured pumice lapilli and ash layer found on Kos. Unit C resembles unit B but includes a greater abundance of lithic lapilli, less fine ash, is only diffusely stratified and is on Kos and west of the source. Unit D includes a sequence of three non-welded, 1- to 20-m-thick ignimbrites that extend radially >38 km from the source in areas of low topography. Unit E is a sequence of two non-welded, 3- to 8-m-thick ignimbrites which occur radially from the vent regardless of topography, >64 km from source. Unit F has a 6-m-thick, basal, low-angle cross-stratified armoured pumice lapilli and ash part probably deposited radially from source. The upper part of unit F is a widespread >1-m-thick vitric ash fall layer, found to at least 50 km from the source. These six units represent a change in eruptive conditions from initial and final phreatomagmatic activity depositing fallout and internally stratified pyroclastic density current deposits to "dry" explosive during the more intense phases of the eruption which generated ignimbrites. Received: 8 June 1998 / Accepted: 14 January 1999  相似文献   

8.
The phenomenon of volcanic fallout ash from Mt. Etna in Sicily (Italy) is well known and frequent in recent years, as in the period 2001–2004. As a consequence, significant problems for the population, road, rail and air traffic and production activities have occurred. The industrial areas of Catania and Augusta-Priolo, located in south eastern Sicily, might be involved during particular weather conditions. This paper aims at determining the potential scenarios of damage to industrial facilities caused by volcanic ash fallout. The work has been focused on the study of both fixed and floating roof storage tanks, containing flammable liquids, and examines extreme failures damage causing the greatest loss of containment for these facilities. To include scenarios arising from natural phenomena (Na-Tech events) in the standard risk assessment procedure, the estimation of the vulnerability of these facilities is necessary. The study has been applied to the area surrounding Mt. Etna, and the procedure can also be extended to other case studies.  相似文献   

9.
A total of 24 tephra-bearing volcanic layers have been recognized between 550 and 987 m depth in the Siple Dome A (SDM-A) ice core, in addition to a number already recognized tephra in the upper 550 m (Dunbar et al., 2003, Kurbatov et al., 2006). The uniform composition and distinctive morphological of the particles composing these tephra layers suggest deposition as a result of explosive volcanic eruptions and that the layers therefore represent time-stratigraphic markers in the ice core. Despite the very fine grain size of these tephra (mostly less than 20 microns), robust geochemical compositions were determined by electron microprobe analysis. The source volcanoes for these tephra layers are largely found within the Antarctic plate. Statistical geochemical correlations tie nine of the tephra layers to known eruptions from Mt. Berlin, a West Antarctic volcano that has been very active for the past 100,000 years. Previous correlations were made to an eruption of Mt. Takahe, another West Antarctic volcano, and one to Mt. Hudson, located in South America (Kurbatov et al., 2006). The lowest tephra layer in the ice core, located at 986.21 m depth, is correlated to a source eruption with an age of 118.1 ± 1.3 ka, suggesting a chronological pinning point for the lower ice. An episode of anomalously high volcanic activity in the ice in the SDM-A core between 18 and 35 ka (Gow and Meese, 2007) appears to be related to eruptive activity of Mt. Berlin volcano. At least some of the tephra layers found in the SDM-A core appear to be the result of very explosive eruptions that spread ash across large parts of West Antarctica, off the West Antarctic coast, as well as also being recognized in East Antarctica (Basile et al., 2001, Narcisi et al., 2005, Narcisi et al., 2006). Some of these layers would be expected to should be found in other deep Antarctic ice cores, particularly ones drilled in West Antarctica, providing correlative markers between different cores. The analysis of the tephra layers in the Siple Dome core, along with other Antarctic cores, provides a timing framework for the relatively proximal Antarctic and South American volcanic eruptive events, allowing these to be distinguished from the tropical eruptions that may play a greater role in climate forcing.  相似文献   

10.
In order to develop efficient strategies for risk mitigation and emergency management, planners require the assessment of both the expected hazard (frequency and magnitude) and the vulnerability of exposed elements. This paper presents a GIS-based methodology to produce qualitative to semi-qualitative thematic risk assessments for tephra fallout around explosive volcanoes, designed to operate with datasets of variable precision and resolution depending on data availability. Due to the constant increase in population density around volcanoes and to the wide dispersal of tephra from volcanic plumes, a large range of threats, such as roof collapses, damage to crops, blockage of vital lifelines and health problems, concern even remote communities. To address these issues, we have assessed the vulnerability and the risk levels for five themes relevant to tephra fallout: (1) social, (2) economic, (3) environmental, (4) physical and (5) territorial. Risk and vulnerability indices for each theme are averaged to the fourth level of administrative unit (parroquia, parish). In a companion paper, Biass and Bonadonna (this volume) present a probabilistic hazard assessment for tephra fallout at Cotopaxi volcano (Ecuador) using the advection-diffusion model TEPHRA2, which is based on field investigations and a global eruption database (Global Volcanism Program, GVP). The scope of this paper is to present a new approach to risk assessment specifically designed for tephra fallout, based on a comprehensive hazard assessment of Cotopaxi volcano. Our results show that an eruption of moderate magnitude (i.e. VEI 4) would result in the possible collapse of ??9,000 houses in the two parishes located close to the volcano. Our study also reveals a high risk on agriculture, closely linked to the economic sector, and a possible accessibility problem in case of an eruption of any size, as tephra is likely to affect the only major road running from Quito to Latacunga (Panamerican Highway). As a result, this method fits into the ongoing effort to better characterize and evaluate volcanic risk, and more specifically the risk associated with tephra fallout. Although this methodology relies on some assumptions, it can serve as a rapid and efficient starting point for further investigations of the risk level around explosive volcanoes.  相似文献   

11.
《International Geology Review》2012,54(17):2164-2183
ABSTRACT

Tephra fallout beds in marine sediments provide chronologically precise and highly resolved records of volcanism at time scales relevant to Quaternary climate cycles. While the record of discrete (visible) thin tephra beds is readily accessible, the significance of the dispersed (invisible) tephra record remains unclear. Here we evaluate the role of dispersed tephra for orbital-scale volcanic time variations in the Quaternary (<1.2 Ma) carbonate mud of IODP Hole U1437B (Northwest Pacific). The carbonate mud contains cyclic series of discrete fallout tephra beds from the oceanic Izu Bonin (~85% of tephra beds) and the continental Japan (~15%) volcanic arcs, respectively. Our results show the inorganic aluminosilicate (lithogenic) fraction is a mixture of dispersed Izu Bonin and Japan ash, and Asian dust. The time distribution of the Izu Bonin ash with its distinct composition appears to confirm and enhance the cyclic time variation of the discrete ash beds at Hole U1437B. Dispersed Japan ash resembles Asian dust in trace elements and is only distinguishable in Sr-Nd isotope space. Collectively, our results confirm the existence of periodic, orbital-scale fluctuations of arc volcanic frequency. Orbital-scale time variations of marine ash may be best established by series of discrete marine ash beds, yet the concomitant dispersed ash flux must also be recorded in order to understand the total flux of arc volcanic ash into the ocean basins and thus the role of the volcanism-climate link.  相似文献   

12.
Active volcanic areas are sometimes affected by phreatic eruptions, which are explosions due to the outbreak of a confined pocket of steam and gas without the direct involvement of molten magma. Eruptive activity at La Fossa Volcano, Island of Vulcano (Italy), typically starts with a phreatic explosion, continues as phreatomagmatic and turns into a late magmatic stage, depending on the reduction in the efficiency of magma-water interaction. The present risk is mainly related to a village located at the very foot of the active volcanic cone, which in summer seasons is inhabited by more than 10,000 people. Because the last eruptive episode occurred in 1888–1890, when no local instrumental control was performed, the scientific community does not have any information about the seismic phenomena which could precede the initial phreatic blast. Inferences from similar monitored volcanoes, which awakened in the last few years after more or less long quiescence, are therefore made to tentatively depict possible pre-eruptive seismic scenarios and also to evaluate the most appropriate surveillance and alert criteria to adopt. Appreciable signs of volcanic unrest have been detected in recent years, mainly related to modifications in the physical and chemical features of fumarolic fluids discharged at the active crater. Following the classification of local seismic shocks, the recording oflong-period events (peak frequency 2 Hz) should be taken into account as a realistic seismic warning of volcanic hazard enhancement. A likely short-term seismic precursor may be finally given by the appearance of the so-calledbanded tremor, a seismic signal likely produced by intermittent hydrothermal boiling accompanying the hydraulic fracturing of rocks at the top of a pressurized aquifer. Real-time recognition of tremor can be therefore very useful to avoid, at least, injuries to volcanologists and visitors working or staying on the most dangerous sectors of the volcano.  相似文献   

13.
Volcanic hazards assessments at andesite stratovolcanoes rely on the assessment of frequency and magnitude of past events. The identification and correlation of proximal and distal andesitic tephra, which record the explosive eruptive history, are integral to such assessments. These tephra are potentially valuable stratigraphic marker beds useful to the temporal correlation and age dating of Quaternary volcanic, volcaniclastic and epiclastic sedimentary deposits with which they are interbedded. At Mt Ruapehu (New Zealand) and Mt Rainier (USA), much of the detail of the recent volcanic record remains unresolved because of the difficulty in identifying proximal tephra. This study investigates the value of geochemical methods in discriminating andesitic tephra. Our dataset comprises petrological and geochemical analyses of tephra that span the late Quaternary eruptive record of each volcano. Our data illustrate that andesitic tephra are remarkably heterogeneous in composition. Tephra compositions fluctuate widely over short time intervals, and there are no simple or systematic temporal trends in geochemistry within either eruptive record. This complexity in tephra geochemistry limits the application of geochemical approaches to tephrostratigraphic studies, beyond a general characterisation useful to provenance assignation. Petrological and geochemical data suggest that the products of andesite systems are inherently variable and therefore intractable to discrimination by simple geochemical methods alone. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
The San Martín shield volcano, located in the Los Tuxtlas Volcanic Field, has experienced effusive shield-building activity, as well as explosive eruptions, as evidenced by direct observations during the last eruption in 1793. The threat to the surrounding villages consists principally of lahars, especially because of the tropical climate in the region. Ash fallout and lava flows represent additional hazards. In addition, the surrounding Quaternary monogenetic field includes more than 300 scoria cones and about 40 explosion craters (mainly maars) that also represent a hazard source. In the present study we constructed hazard maps using field data, orthophotos, spatial analysis, and specialized software (LAHARZ and HAZMAP) to deliminate lahar inundation zones, areas that could potentially be affected by ash fallout (including the evaluation of houses prone to roof collapse due to ash load), and the most susceptible areas for hosting future monogenetic vent formation.  相似文献   

15.
Archean felsic volcanic rocks form a 2000 m thick succession stratigraphically below the Helen Iron Formation in the vicinity of the Helen Mine, Wawa, Ontario. Based on relict textures and structures, lateral and vertical facies changes, and fragment type, size and distribution, the felsic volcanic rocks have been subdivided into (a) lava flows and domes (b) hyalotuffs, (c) bedded pyroclastic flows, (d) massive pyroclastic flows, and (e) block and ash flows.Lava flows and domes are flow-banded, massive, and/or brecciated and occur throughout the stratigraphic succession. Dome/flow complexes are believed to mark the end of explosive eruptive cycles. Deposits interpreted as hyalotuffs are finely bedded and composed dominantly of ash-size material and accretionary lapilli. These deposits are interlayered with bedded pyroclastic flow deposits and probably formed from phreatomagmatic eruptions in a shallow subaqueous environment. Such eruptions led to the formation of tuff cones or rings. If these structures emerged they may have restricted the access of seawater to the eruptive vent(s), thus causing a change in eruptive style from short, explosive pulses to the establishment of an eruption column. Collapse of this column would lead to the accumulation of pyroclastic material within and on the flanks of the cone/ring structure, and to flows which move down the structure and into the sea. Bedded pyroclastic deposits in the Wawa area are thought to have formed in this manner, and are now composed of a thicker, more massive basal unit which is overlain by one or more finely bedded ash units. Based on bed thickness, fragment and crystal size, type and abundance, these deposits are further subdivided into central, proximal and distal facies.Central facies units consist of poorly graded, thick (30–80 m) basal beds composed of 23–60% lithic and 1–8% juvenile fragments. These are overlain by 1–4 thinner ash beds (2–25 cm). Proximal facies basal beds range from 2–35 m in thickness and are composed of 15–35% lithic and 4–16% juvenile fragments. Typically, lithic components are normally graded, whereas juvenile fragments are inversely graded. These basal beds are overlain by ash beds (2–14 in number) which range from 12 cm to 6 m in thickness. Distal basal beds, where present, are thin (1–2 m), and composed of 2–8% lithic and 6–21% juvenile fragments. Overlying ash beds range up to 40 in number.The climax of pyroclastic activity is represented by a thick (1000 m) sequence of massive, poorly sorted, pyroclastic flow deposits which are composed of 5–15% lithic fragments and abundant pumice. These deposits are similar to subaerial ash flows and appear to mark the rapid eruption of large volumes of material. They are overlain by felsic lavas and/or domes. Periodic collapse of the growing domes produced abundant coarse volcanic breccia. The overall volcanic environment is suggestive of caldera formation and late stage dome extrusion.  相似文献   

16.
Two cores were recovered in the southeastern part of Lake Shkodra (Montenegro and Albania) and sampled for identification of tephra layers. The first core (SK13, 7.8 m long) was recovered from a water depth of 7 m, while the second core (SK19, 5.8 m long) was recovered close to the present‐day shoreline (water depth of 2 m). Magnetic susceptibility investigations show generally low values with some peaks that in some cases are related to tephra layers. Naked‐eye inspection of the cores allowed the identification of four tephra layers in core SK13 and five tephra layers in core SK19. Major element analyses on glass shards and mineral phases allowed correlation of the tephra layers between the two cores, and their attribution to six different Holocene explosive eruptions of southern Italy volcanoes. Two tephra layers have under‐saturated composition of glass shards (foiditic and phonolitic) and were correlated to the AD 472 and the Avellino (ca. 3.9 cal. ka BP) eruptions of Somma‐Vesuvius. One tephra layer has benmoreitic composition and was correlated to the FL eruption of Mount Etna (ca. 3.4 cal. ka BP). The other three tephra layers have trachytic composition and were correlated to Astroni (ca. 4.2 cal. ka BP), Agnano Monte Spina (ca. 4.5 cal. ka BP) and Agnano Pomici Principali (ca. 12.3 cal. ka BP) eruptions of Campi Flegrei. The ages of tephra layers are in broad agreement with eight 14C accelerator mass spectrometric measurements carried out on plant remains and charcoal from the lake sediments at different depths along the two cores. The recognition of distal tephra layers from Italian volcanoes allowed the physical link of the Holocene archive of Lake Shkodra to other archives located in the central Mediterranean area and the Balkans (i.e. Lake Ohrid). Five of the recognised tephra layers were recognised for the first time in the Balkans area, and this has relevance for volcanic hazard assessment and for ash dispersal forecasting in case of renewed explosive activity from some of the southern Italy volcanoes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Todesco  Micol 《Natural Hazards》2004,33(2):223-245
Explosive events are commonly accompanied or followed byheavy rains. These eruption-induced storms together with thedeposition of large amounts of ash contribute to destabilise thehydrological cycle in the areas affected by volcanic eruptions.Flooding of the region surrounding the active volcano can easilyfollow, increasing the complexity of the volcanic crisis and itsmanagement. This is particularly true in the case of Vesuvius,that is not only characterized by a dramatic volcanic hazard, butit is also located within an area that is normally prone to flood hazard. A complete assessment of the impact associated with explosive volcaniceruptions should involve a flood hazard assessment for the region.This work represents a first attempt to address the problem: atopographically based rainfall-runoff model was here applied to theVesuvian area where two main sub-basins were analysed. The modelwas applied to evaluate the role of selected parameters on the totaldischarge at the basins' outlet. These parameters were chosen amongthose likely to be affected by an explosive event and were variedthrough a reasonable range. Results confirm that the deposition oflarge amounts of ash can affect the temporal evolution of the dischargeand its maximum value, for a given precipitation event. The simulationspresented outline the need for a detailed flood forecasting study for theVesuvian area, that should be included within the hazard mitigation strategies.  相似文献   

18.
The rhyolitic Plinian eruption of the Chilean Chaitén Volcano, initiated on May 2, 2008, suddenly introduced abundant pyroclastic sediments in the Blanco River catchment area, which experienced important modifications. Before May 2, the river was characterised by gravelly and moderate to low-sinuosity channels crossing a vegetated and locally urbanised (Chaitén City) floodplain. This river, limited by steep and densely forested highlands, was connected with the Pacific Ocean via a tidally-influenced delta plain. After heavy rains in May 11–20, the river discharge increased and triggered several responses including logjam formation and breakage, crevassing, avulsion (and channel abandonment), changes in the pattern and dimensions of channels, and construction of a new delta plain area. In this context, the goals of this contribution were: i) to document the sedimentological processes within a detailed geomorphic framework and ii) to understand the influence of logjams on fluvial dynamics. Upstream of the logjam zone, the deposits are mostly composed of ash and lapilli with abundant palaeovolcanic (epiclastic) sediments, which were produced by dilute currents and debris flows. Downstream of the logjam zone, deposits are composed by ash and lapilli, both pumice-rich and lacking important participation of older (epiclastic) sediments. The abandoned and filled palaeochannel, and the proximal part of crevasse splays experienced transient dilute flows with variable sediment concentration and, subordinately, hyperconcentrated flows. The distal sectors of crevasse splays mostly record settling from suspension. At the delta plain, tephra transported by the Blanco River was mixed with older sediments by tide and wave action (dilute flows). We conclude that immediately after eruption, both geomorphic and sedimentary processes of the river were mainly controlled by a combination of high availability of incoherent pyroclastic sediments on steep slopes, abundant rains, large logs that jammed the river and huge areas of devastated forest. Logjams played an important role in the river response to the volcanic eruption; they were responsible of the marked compositional change recorded upstream and downstream of the logjam zone and its breakage resulted in downstream flooding and avulsion. The likelihood of formation of logjams in rivers draining forested volcanic areas should be considered in the evaluation of volcanic hazards related to Plinian eruptions.  相似文献   

19.
火山灾害区划是防御和减轻火山灾害的一种有效的方法.以中国境内规模最大、喷发危险性最高、潜在火山灾害最强的长白山天池火山为例,回顾我国火山灾害区划研究历史,讨论典型火山喷发活动引起的主要火山灾害类型、成灾机制和灾害效应,总结不同历史阶段各种不同类型火山灾害区划图的优缺点,并结合目前国际上火山灾害区划的研究现状和编图技术,对我国未来编制具有概率含义的火山灾害区划图的思路提出展望.  相似文献   

20.
We present the volcanic ash and tsunami record of the Minoan Late Bronze Age Eruption of Santorini (LBAES) in a distal setting in southwestern Turkey. In one of the drilled cores at the Letoon Hellenic antique site on Eşençay Delta, we encountered a 4 cm thick tephra deposit underlain by 46 cm thick tsunami-deposited sand (tsunamite), and an organic-rich layer that we 14C dated to 3295 ± 30 bp or 1633 bc. The relationship between Santorini distal volcanic ash and underlying tsunamite is described and interpreted. LBAES occurred in four main phases: (1) plinian; (2) phreatomagmatic; (3) phreatomagmatic with mudflows; and (4) ignimbritic flows and co-ignimbrite tephra falls. In this study, we aim to understand which eruptive phases generate distal ash during the Minoan eruptive sequence by examining the 3D surface morphology of ash formed by different fragmentation processes. To that end, we used numerous statistical multivariates, 3D fractal dimension of roughness, and a new textural parameter of surface area-3D/plotted area-2D to characterise the eruption dynamics. Based on ash surface morphologies and the calculated statistical parameters, we propose that that distal ash is represented by a single layer composed of well-mixed (coarse to fine) magmatic and phreatomagmatic ash.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号