首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. Data from Japanese local seismograph networks suggest that the stresses in double seismic zones are in-plate compression for the upper zone and in-plate tension for the lower zone; the stresses do not necessarily appear to be down-dip. It may therefore be possible to identify other double seismic zones on the basis of data which indicate that events with differing orientations of in-plate stresses occur in a given segment of slab.
A global survey of published focal mechanisms for intermediate depth earthquakes suggests that the stress in the slab is controlled, at least in part, by the age of the slab and the rate of convergence. Old and slow slabs are under in-plate tensile stresses and the amount of in-plate compression in the slab increases with increasing convergence rate or decreasing slab age. Young and fast slabs are an exception to this trend; all such slabs are down-dip tensile. Since these slabs all subduct under continents, they may be bent by continental loading. Double seismic zones are not a feature common to all subduction zones and are only observed in slabs which are not dominated by tensile or compressive stresses.
Unbending of the lithosphere and upper mantle phase changes are unlikely to be the causes of the major features of double zones, although they may contribute to producing some of their characteristics. Sagging or thermal effects, possibly aided by asthenospheric relative motion, may produce the local deviatoric stresses that cause double zones.  相似文献   

2.
Summary. Multichannel seismic reflection sections recorded across Vancouver Island have revealed two extensive zones of deep seismic reflections that dip gently to the northeast, and a number of moderate northeasterly dipping reflections that can be traced to the surface where major faults are exposed. Based on an integrated interpretation of these data with information from gravity, heat flow, seismicity, seismic refraction, magnetotelluric and geological studies it is concluded that the lower zone of gently dipping reflections is due to underplated oceanic sediments and igneous rocks associated with the current subduction of the Juan de Fuca plate, and that the upper zone represents a similar sequence of accreted rocks associated with an earlier episode of subduction. The high density/high velocity material between the two reflection zones is either an underplated slab of oceanic lithosphere or an imbricated package of mafic rocks. Reprocessing of data from two of the seismic lines has produced a remarkable image of the terrane bounding Leech River fault, with its dip undulating from >60° near the surface to 20° at 3 km depth and ∼38° at 6 km depth.  相似文献   

3.
The deep seismicity of the Tyrrhenian Sea   总被引:4,自引:0,他引:4  
The study reappraises the deep seismicity of the Tyrrhenian Sea. Careful examination of the quality of reported hypocentres shows that the earthquakes define a zone dipping NW, about 200 km along strike, 50 km thick, and reaching a depth of about 500 km. The zone is slightly concave to the NW at a depth of 300 km, but, contrary to many previous reports, is not tightly concave, nor are there significant spatial gaps in the seismicity, which is effectively continuous with depth. Seismicity is, however, concentrated in the depth interval 250–300 km, where the dip of the seismic zone changes from 70° (above 250 km) to a more gentle dip of 45° at greater depths. Seven fault-plane solutions are available for the largest earthquakes in this depth interval, all of them consistent with a P -axis down the dip of the seismic zone, and all of them requiring movement on faults out of the plane of the subducting slab.
Two deep earthquakes near Naples lie well outside the main zone of activity; for one of which a fault-plane solution is available that has a P -axis not aligned with the dip of the seismic zone. The tightly concave slab-geometry favoured by other reports is supported mainly by the location of these events near Naples, which we think may represent deformation in a separate, probably shallower dipping, piece of subducted lithosphere.
The lack of shallow seismicity, and particularly of thrust faulting earthquakes, at the surface projection of the Benioff zone suggests that active subduction has ceased. Estimates of the convergence rate responsible for subduction in the last 10 Myr far exceed the present convergence rate of Africa and Eurasia, suggesting that the subduction was related instead to the stretching and thinning of the crust in the Tyrrhenian Sea.  相似文献   

4.
The flexural rigidity of the oceanic lithosphere is strongly dependent on its temperature structure at the time of loading. It is commonly assumed that the depth to the 450°C isotherm defines the effective elastic thickness Te of the lithosphere. However, recent gravity studies across the Baltimore Canyon and Nova Scotian margins suggest that temperature may play a more complicated role in controlling the mechanical strength of extended continental lithosphere. For example, the flexural strength of the Baltimore Canyon margin (with sediment thicknesses of ? 15 km) appears to be controlled by the depth to the 150°C isotherm whereas the strength of the Nova Scotian margin (with sediment thicknesses cf ? 10 km) is controlled by the depth to the 250°C isotherm. The apparent correlation between sediment thickness and controlling isotherm suggests that sediment blanketing may play a role in modifying the flexural strength of extended continental lithosphere. This hypothesis was investigated by simulating the sedimentation history of a margin as a Gaussian function in which sedimentation peak and rate are determined by the mean and standard deviation of the function. The temperature structure of the lithosphere is continually modified as sediments are deposited on, and incorporated into the temperature structure of, the underlying lithosphere. Given a ‘starting’ value of Te defined by the degree of extension of the lithosphere, the modification of Te appears to be directly proportional to the sedimentation rate and cumulative sediment thickness, and inversely proportional to the time at which the sedimentation rate is a maximum. The first-order consequence of sediment blanketing is to reduce the cooling rate of the lithosphere relative to cooling in the absence of sediments. At thermal equilibrium, the initial value of Te is reduced by the cumulative sediment thickness. Local isostatic conditions (i. e. Te? 0) can only be approached when the sedimentation rate is unrealistically high (> 1000 m/Myr) during the rift or early post-rift phase of basin development. However, while these early loads may be locally compensated, any subsequent loads will be regionally compensated. Thus, it is unlikely that the low present-day flexural strengths interpreted from the Baltimore Canyon and Nova Scotian passive continental margins are a consequence of sediment blanketing.  相似文献   

5.
An analysis of the Zihuatanejo, Mexico, earthquake of 1994 December 10 ( M = 6.6), based on teleseismic and near-source data, shows that it was a normal-faulting, intermediate-depth ( H = 50 ± 5 km) event. It was located about 30 km inland, within the subducted Cocos plate. The preferred fault plane has an azimuth of 130°, a dip of 79° and a rake of −86°. The rupture consisted of two subevents which were separated in time by about 2 s, with the second subevent occurring downdip of the first. The measured stress drop was relatively high, requiring a Δσ of about a kilobar to explain the high-frequency level of the near-source spectra. A rough estimate of the thickness of the seismogenic part of the oceanic lithosphere below Zihuatanejo, based on the depth and the rupture extent of this event, is 40 km.
This event and the Oaxaca earthquake of 1931 January 15 ( M = 7.8) are the two significant normal-faulting, intermediate-depth shocks whose epicentres are closest to the coast. Both of these earthquakes were preceded by several large to great shallow, low-angle thrust earthquakes, occurring updip. The observations in other subduction zones show just the opposite: normal-faulting events precede, not succeed, updip, thrust shocks. Indeed, the thrust events, soon after their occurrence, are expected to cause compression in the slab, thus inhibiting the occurrence of normal-faulting events. To explain the occurrence of the Zihuatanejo earthquake, we note that the Cocos plate, after an initial shallow-angle subduction, unbends and becomes subhorizontal. In the region of the unbending, the bottom of the slab is in horizontal extension. We speculate that the large updip seismic slip during shallow, low-angle thrust events increases the buckling of the slab, resulting in an incremental tensional stress at the bottom of the slab and causing normal-faulting earthquakes. This explanation may also hold for the 1931 Oaxaca event.  相似文献   

6.
Crustal and upper-mantle seismic discontinuities beneath eastern Turkey are imaged using teleseismic S -to- P converted phases. Three crustal phases are observed: the Moho with depth ranging between 30 and 55 km, indicating variable tectonic regimes within this continental collision zone; an upper-crustal discontinuity at approximately 10 km depth; and various crustal low-velocity zones, possibly associated with recent Quaternary volcanism. Imaging of the upper mantle is complicated by the 3-D geometry of the region, in particular due to the Bitlis–Zagros suture zone. However, several upper-mantle S -to- P converted phase are identified as being the signature of the lithosphere–asthenosphere boundary (LAB). The inferred LAB for the Eastern Anatolian Accretionary Complex indicates that eastern Turkey has an anomalously thin (between ∼60 and 80 km) lithosphere which is consistent with an oceanic slab detachment model. The observed LAB phases for the Arabian shield and Iranian plateau indicate that lithospheric thickness for these stable regions is on the order of 100 to 125 km thick, which is typical of continental margins.  相似文献   

7.
The Canary Islands swell: a coherence analysis of bathymetry and gravity   总被引:2,自引:0,他引:2  
The Canary Archipelago is an intraplate volcanic chain, located near the West African continental margin, emplaced on old oceanic lithosphere of Jurassic age, with an extended volcanic activity since Middle Miocene. The adjacent seafloor does not show the broad oceanic swell usually observed in hotspot-generated oceanic islands. However, the observation of a noticeable depth anomaly in the basement west of the Canaries might indicate that the swell is masked by a thick sedimentary cover and the influence of the Canarian volcanism. We use a spectral approach, based on coherence analysis, to determine the swell and its compensation mechanism. The coherence between gravity and topography indicates that the swell is caused by a subsurface load correlated with the surface volcanic load. The residual gravity/geoid anomaly indicates that the subsurface load extends 600 km SSW and 800 km N and NNE of the islands. We used computed depth anomalies from available deep seismic profiles to constrain the extent and amplitude of the basement uplift caused by a relatively low-density anomaly within the lithospheric mantle, and coherence analysis to constrain the elastic thickness of the lithosphere ( Te ) and the compensation depth of the swell. Depth anomalies and coherence are well simulated with Te =28–36 km, compensation depth of 40–65 km, and a negative density contrast within the lithosphere of ∼33 kg m−3. The density contrast corresponds to a temperature increment of ∼325°C, which we interpret to be partially maintained by a low-viscosity convective layer in the lowermost lithosphere, and which probably involves the shallower parts of the asthenosphere. This interpretation does not require a significant rejuvenation of the mechanical properties of the lithosphere.  相似文献   

8.
P and S receiver functions obtained from a portable array of 34 broad-band stations in east central China provide a detailed image of the crust–mantle and lithosphere–asthenosphere boundaries (LAB) in the Dabie Shan and its adjacent areas. Clear S -to- P converted waves produced at the LAB show a thin lithosphere beneath the whole study area. Based on our results, the thickest lithosphere of 72 km is observed beneath the southern part of the area within the Yangtze craton, whereas beneath the North-China platform, the lithosphere is only 60 km thick. S receiver functions also reveal, in good agreement with P receiver functions, a maximum depth of the Moho beneath the Dabie Shan orogen at approximately 40 km. Furthermore, we interpret the structural difference at 32° latitude as the probable location of the mantle suture formed between the Yangtze and the Sino-Korean cratons.  相似文献   

9.
The metamorphism of upper greenschist facies metasediments exposed in the extreme southwestern portion of St. Jonsjorden, Svalbard, is described. The rocks form part of the Mullerneset Formation of the late Precambrian age Kongsvegen Group and constitute a portion of the central-western Spitsbergen Cale-donides. Four deformations (D, -D4) and two metamorphic episodes (Mi and M2) have affected the rocks of the Mullerneset area. Mi was a prograde event which was initiated prior to the onset of the Di and continued through this deformation. Pre-Dt metamorphism reached biotite grade whereas garnet grade was attained syn-Di. M2 was a lower-middle greenschist facies metamorphism associated with D2. The results of quantitative geothermometry in the pelitic rocks show that peak Mi metamorphic temperatures decrease southwards across the field area from about 540°C to 510°C. Geobarometry and estimates of depth of burial indicate that Mi pressures were in the range of 5–7 kb. The data are consistent with geothermal gradients in the range of 21 ± 4°C/km to 24 ± 5°C/km. M2 metamorphic conditions are not precisely determinable but temperatures and pressures were probably less than those attained during Mi. It is suggested that the rocks of central-western Spitsbergen were originally deposited in an aulacogen before the initiation of Caledonian diastrophism.  相似文献   

10.
In this paper we present revised locations and original focal mechanisms computed for intermediate and deep earthquakes that occurred within the Southern Tyrrhenian subduction zone between 1988 and 1994, in order to improve our knowledge of the state of stress for this compressional margin. In particular, we define the stress distribution within a large portion of the descending slab, between 40 and about 450 km depth. The seismicity distribution reveals a continuous 40–50 km thick slab that abruptly increases its dip from subhorizontal in the Ionian Sea to a constant 70° dip in the Tyrrhenian. We computed focal mechanisms for events with magnitudes ranging from 2.7 and 5.7, obtaining the distribution of P - and T -axes for many events for which centroid moment tensor (CMT) solutions are not available, thus enabling the sampling of a larger depth range compared to previous studies. We define three portions of the slab characterized by different distributions of P - and T -axes. A general down-dip compression is found between 165 and 370 km depth, whereas in the upper part of the slab (40–165 km depth) the fault-plane solutions are strongly heterogeneous. Below 370 km the P -axes of the few deep events located further to the north have a shallower dip and are not aligned with the 70° dipping slab, possibly suggesting that they belong to a separated piece of subducted lithosphere. There is a good correspondence between the depth range in which the P -axes plunge closer to the slab dip (∼ 70°) and the interval characterized by the highest seismic energy release (190–370 km).  相似文献   

11.
The earthquakes in the seismicity belt extending through Indonesia, New Guinea, Vanuatu and Fiji to the Tonga–Kermadec subduction zone recorded at the 65 portable broad-band stations deployed during the Skippy experiment from 1993–1996 provide good coverage of the lithosphere and mantle under the Australian continent, Coral Sea and Tasman Sea.
The variation in structure in the upper part of the mantle is characterized by deter-mining a suite of 1-D structures from stacked record sections utilizing clear P and S arrivals, prepared for all propagation paths lying within a 10° azimuth band. The azimuth of these bands is rotated by 20° steps with four parallel corridors for each azimuth. This gives 26 separate azimuthal corridors for which 15 independent 1-D seismic velocity structures have been derived, which show significant variation in P and S structure.
The set of 1-D structures is combined to produce a 3-D representation by projecting the velocity values along the ray path using a turning point approximation and stacking into 3-D cells (5° by 50 km in depth). Even though this procedure will tend to underestimate wave-speed perturbations, S -velocity deviations from the ak135 reference model exceed 6 per cent in the lithosphere.
In the uppermost mantle the results display complex features and very high S -wave speeds beneath the Precambrian shields with a significant low-velocity zone beneath. High velocities are also found towards the base of the transition zone, with high S -wave speeds beneath the continent and high P -wave speeds beneath the ocean. The wave-speed patterns agree well with independent surface wave studies and delay time tomography studies in the zones of common coverage.  相似文献   

12.
We have examined the effects of the spinel-garnet phase transition on subsidence of extensional sedimentary basins. For a constant positive Clapeyron slope ( dP/dT ), the phase boundary moves downwards in the syn-rift and upwards in the post-rift phase. For a non-linear Clapeyron curve ( dP/dT > 0 above 900°C and dP/dT < 0 below 900°C), theory predicts for the reaction of the spinel-garnet phase transition, the direction of phase boundary movement is dependent on the stretching factor, the position of the Clapeyron curve and the lithospheric thickness. A smaller syn-rift and larger post-rift subsidence are predicted for a deeper phase boundary and a thicker lithosphere. The model with a non-linear Clapeyron curve is applied to the subsidence histories of a young extensional basin (Gulf of Lion) and an old continental margin (eastern Canada). The observed syn-rift uplift and the larger post-rift subsidence can be reasonably explained by this model, where the optimum depth of the phase boundary for eastern Canada (˜90 km) is consistent with the estimate from seismic observations and is larger than that for the Gulf of Lion (˜ 50 km). The depth of the spinel-garnet phase boundary is sensitive to the composition of mantle rocks and increases with the extraction of basaltic components from the lithosphere, compatible with our result that the phase boundary is deeper for an older and thicker lithosphere. Thus the surface movement associated with the rifting for these areas may reflect the chemical evolution of the continental lithosphere.  相似文献   

13.
Summary. An inversion of ISC travel-time data from selected earthquakes in the distance range 30°-90° to 53 stations in Central Europe has been used to model velocity down to 600 km depth. The model explains 0.1–0.2s of the residuals, as for other array studies, leaving 0.5 s unexplained as noise. The uppermost 100 km of the mantle and crust contains inhomogeneities that correlate remarkably well with the geology. This may be due to deep-seated thermal anomalies or, in some areas, to delays introduced by passage of the rays through sedimentary cover. The deeper anomalies are smaller and unrelated to those in the lithosphere, which suggests that the asthenosphere is decoupled from the rigid lithosphere. The structure at 600 km depth is again quite inhomogeneous and might be due to undulations of the 650 km discontinuity. The models show some suggestion of a high velocity slab trending from east to west beneath the Alps.  相似文献   

14.
Summary. Reduced Pn travel times from the Archaean Pilbara Craton of north-west Australia show a strong correlation with azimuth, which could be used as evidence of anisotropy. However, the azimuthal correlation could also be explained by a southerly dip of between 1 and 2° on the crust–mantle boundary, although the models from several reversed seismic profiles across the craton suggest a smaller dip.
A time-term analysis of the Pn date yielded several models. The preferred solution, in which the dip on the crust–mantle boundary is similar to that in the models from the reversed profiles, has approximately 2 per cent anisotropy in the uppermost mantle, with the direction of maximum velocity 30° east of north. One possible cause of the anisotropy is that olivine crystals were aligned by syntectonic recrystallization and/or power law creep in the tensional environment caused at the base of the lithosphere by flexure during loading of the lithosphere by the strata of the Hamersley Basin which overlies the Pilbara Craton.
A seismic discontinuity occurs about 15 km below the crust–mantle boundary under the craton. A qualitative analysis of all available seismic data suggests that the velocity below the boundary is probably also anisotropic, with the direction of maximum velocity between north and 40° west of north. The direction of minimum velocity below the sub-Moho boundary correlates loosely with the direction of basement lineaments in the Proterozoic Capricorn Orogenic Belt to the south of the craton, suggesting that the anisotropy under the boundary may be younger than that immediately under the crust/mantle boundary. This is consistent with the notion that the Archaean lithosphere was thinner than the present lithosphere.  相似文献   

15.
A hypothesis for the seismogenesis of a double seismic zone   总被引:1,自引:0,他引:1  
The seismogenesis of a double seismic zone, in particular the lower layer of a double seismic zone, has not been adequately explained in the literature. On the basis of seismic data and geothermal structures along three well-studied cross-sections in the Kuril-Kamchatka and Japan subduction zones, we investigate the temperature/pressure conditions associated with seismogenic structures of the double seismic zones. the corresponding T/P loci seem to suggest that earthquakes observed in the lower layer and in the lower part (below approximately 130 ± 20 km) of the top layer of a double seismic zone were caused by metastable phase transition-a mechanism similar to that responsible for deep-focus earthquakes only at lower temperature/pressure conditions. Under this hypothesis, the wedge-shaped configuration of a double seismic zone is interpreted to represent the loci of the kinetic boundary of the phase transition. According to theoretical/experimental studies and the constraints imposed by our observations, a likely candidate for such a phase transition is the metastable Al-rich enstatite decomposing into the assemblage of Al-poor enstatite plus garnet. Earthquakes in the upper part of the top layer were most probably due to conventional mechanisms such as dehydration of subducted materials and/or facies change from basalt to eclogite. That the top layer involves more than one seismogenic mechanism is also implied by the distinct behaviour of seismicity in the vicinity of 130 ± 20 km. Because the presence of deviatoric stress is critical to the reaction rate of a metastable phase transition, it is inferred that single seismic zones are also caused by the same mechanisms, except that the implicit layer of a supposed double seismic zone is missing, due to the insufficient amount of appropriate metastable minerals or to the lack of appropriate deviatoric stresses in the source region.  相似文献   

16.
Summary. This paper explores the middle ground between complex thermally-coupled viscous flow models and simple corner flow models of island arc environments. The calculation retains the density-driven nature of convection and relaxes the geometrical constraints of corner flow, yet still provides semianalytical solutions for velocity and stress. A novel aspect of the procedure is its allowance for a coupled elastic lithosphere on top of a Newtonian viscous mantle. Initially, simple box-like density drivers illustrate how vertical and horizontal forces are transmitted through the mantle and how the lithosphere responds by trench formation. The flexural strength of the lithosphere spatially broadens the surface topography and gravity anomalies relative to the functional form of the vertical flow stresses applied to the plate base. I find that drivers in the form of inclined subducting slabs cannot induce self-driven parallel flow; however, the necessary flow can be provided by supplying a basal drag of 1–5 MPa to the mantle from the oceanic lithosphere. These basal drag forces create regional lithospheric stress and they should be quantifiable through seismic observations of the neutral surface. The existence of a shallow elevated phase transition is suggested in two slab models of 300 km length where a maximum excess density of 0.2 g cm−3 was needed to generate an acceptable mantle flow. A North New Hebrides subduction model which satisfies flow requirements and reproduces general features of topography and gravity contains a high shear stress zone (75 MPa) around the upper slab surface to a depth of 150 km and a deviatoric tensional stress in the back arc to a depth of 70 km. The lithospheric stress state of this model suggests that slab detachment is possible through whole plate fracture.  相似文献   

17.
Small-scale elastic heterogeneities (<5  km) are found in the upper lithosphere underneath the Gräfenberg array, southeast Germany. The results are based on the analysis of broadband recordings of 17 intermediate-depth (201–272  km) events from the Hindu Kush region. The wavefront of the first P arrival and the following 40  s coda are separated into coherent and incoherent (scattered) parts in the frequency range from 0.05 to 5  Hz. The frequency-dependent intensities of the mean and fluctuation wavefields are used to describe the scattering characteristics of the lithosphere underneath the receivers. It is possible to discriminate a weak-fluctuation regime of the wavefield in the frequency range below approximately 1.5–2.5  Hz and a strong-fluctuation regime starting at 2.0–2.5  Hz and continuing to higher frequencies. In order to explain the observed wavefield fluctuations, an approach with seismic scattering at random media-type structures is proposed. The preferred model contains heterogeneities with 3–7 per cent perturbations in seismic velocity and correlation lengths of 0.6–4.8  km in the crust. This is compatible with models from active seismic experiments. Scattering in the lithospheric mantle is not required, but cannot be excluded at weak velocity contrasts (<3 per cent).  相似文献   

18.
Summary. We present evidence for a seismic discontinuity near 200km depth (the Lehmann Discontinuity) under the passive continental margin of northwest Australia, where continental lithosphere merges into oceanic lithosphere. The velocity contrast across the discontinuity is 0.2–0.3 km s-1, and is similar to the contrast across discontinuities at similar depths in seismic models for purely continental paths to the east under central Australia. The discontinuity has been shown to be present under continents, oceans and now at continental margins, and is probably a worldwide feature.  相似文献   

19.
An Mw 5.9 earthquake occurred in the Lake Rukwa rift, Tanzania, on 1994 August 18, and was well recorded by 20 broad-band seismic stations at distances of 160 to 800 km and 21 broad-band stations at teleseismic distances. The regional and teleseismic waveforms have been used to investigate the source characteristics of the main shock, and also to locate aftershocks that occurred within three weeks of the main shock. Teleseismic body-wave modelling yields the following source parameters for the main shock: source depth of 25 ± 2 km, a normal fault orientation, with a horizontal tension axis striking NE-SW and an almost vertical pressure axis (Nodal Plane I: strike 126°–142°, dip 63°–66°, and rake 280°–290°; Nodal Plane II: strike 273°–289°, dip 28°–31°, and rake 235°–245°), a scalar moment of 4.1 times 1017 N m, and a 2 s impulsive source time function. Four of the largest aftershocks also nucleated at depths of 25 km, as deduced from regional sPmp–Pmp times. The nodal planes are broadly consistent with the orientation of both the Lupa and Ufipa faults, which bound the Rukwa rift to the northeast and southwest, respectively. The rupture radius of the main shock, assuming a circular fault, is estimated to be 4 km with a corresponding stress drop of 6.5 MPa. Published estimates of crustal thickness beneath the Rukwa rift indicate that the foci of the main shock and aftershocks lie at least 10 km above the Moho. The presence of lower-crustal seismicity beneath the Rukwa rift suggests that the pre-rift thermal structure of the rifted crust has not been strongly modified by the rifting, at least to depths of 25 km.  相似文献   

20.
Summary. Four seismic refraction lines, three of which had shots every 250 m, were shot across, along and parallel to the median valley of the Mid-Atlantic Ridge at 37° N. A method has been developed for calculating the effect on the travel times of the rough sea-floor relief beneath the profiles and has been used to correct all the travel times for this effect. Most arrivals were from a main refractor of apparent velocity 5·4 to 6·3 km s−1; only beyond 35 km were faster arrivals observed from an 8·09 ± 36 km s−1 refractor. The main refractor corresponds in depth, at least approximately, to the top of Layer 3 of the ocean basins but its velocity is significantly less than normal for Layer 3, perhaps due to dip. A study of time residuals along two profiles across the median valley indicates the presence of a 2 to 3 km wide low velocity zone (about 3·2 km s−1) beneath the median valley floor. This zone extends over the upper 2·5 km of the crust and is believed to represent a zone of intrusion through which magma passes on its way to the sea floor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号