首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Acoustic profiling carried out with an Edgetech 3300 prophilograph in the junction zone of the Cape Verde Rise, Cape Verde Abyssal Plain, and Grimaldi and Bathymetrists seamounts in the Central Atlantic during Cruise 23 of the R/V Akademik Nikolaj Strakhov allowed us to obtain new data on neotectonic deformations in the ocean and to propose their interpretation. It has been established that neotectonic movements occurred in the discrete manner: blocks of undeformed rocks alternate with linear zones of intense deformation spatially related to paleotransform fracture zones, where anticlines, horsts, diapir-like morphostructures, and grabens were formed. The Cape Verde Ridge is a large horst. Its sedimentary cover is disturbed by thrust (?), reverse, and normal faults, steeply dipping fracture zones, and folds. Three stages of tectonic movements—Oligocene-early Miocene, pre-Quaternary, and Holocene—are recognized. The tectonic deformations occurred largely under near-meridional compression. Extension setting was characteristic of the Cape Verde Ridge and the Carter Rise in the Holocene.  相似文献   

8.
The Cadamosto Seamount is an unusual volcanic centre from Cape Verde, characterised by dominantly evolved volcanics, in contrast to the typically mafic volcanic centres at Cape Verde that exhibit only minor volumes of evolved volcanics. The magmatic evolution of Cadamosto Seamount is investigated to quantify the role of magma-crust interaction and thus provide a perspective on evolved end-member volcanism of Cape Verde. The preservation of mantle source signatures by Nd–Pb isotopes despite extensive magmatic differentiation provides new insights into the spatial distribution of mantle heterogeneity in the Cape Verde archipelago. Magmatic differentiation from nephelinite to phonolite involves fractional crystallisation of clinopyroxene, titanite, apatite, biotite and feldspathoids, with extensive feldspathoid accumulation being recorded in some evolved samples. Clinopyroxene crystallisation pressures of 0.38–0.17 GPa for the nephelinites constrain this extensive fractional crystallisation to the oceanic lithosphere, where no crustal assimilants or rafts of subcontinental lithospheric mantle are available. In turn, magma-crust interaction has influenced the Sr, O and S isotopes of the groundmass and late crystallising feldspathoids, which formed at shallow crustal depths reflecting the availability of oceanic sediments and anhydrite precipitated in the ocean crust. The Nd–Pb isotopes have not been affected by these processes of magma-crust interaction and hence preserve the mantle source signature. The Cadamosto Seamount samples have high 206Pb/204Pb (>19.5), high εNd (+6 to +7) and negative Δ8/4Pb, showing affinity with the northern Cape Verde islands as opposed to the adjacent southern islands. Hence, the Cadamosto Seamount in the west is located spatially beyond the EM1-like component found further east. This heterogeneity is not encountered in the oceanic lithosphere beneath the Cadamosto Seamount despite greater extents of fractional crystallisation at oceanic lithospheric depths than the islands of Fogo and Santiago. Our data provide new evidence for the complex geometry of the chemically zoned Cape Verde mantle source.  相似文献   

9.
The sedimentation and ore formation were studied in sediments from nine stations located in the 24°W profile in the Brazil Basin of the Atlantic Ocean. The sediments are represented by mio- and hemipelagic muds, which are variably enriched in hydrothermal iron and manganese oxyhydroxides. As compared to the sediments from other basins of the Atlantic Ocean, these rocks are marked by extremely high manganese contents (up to 1.33%) and maximal enrichment in Ce. It was shown that the positive Ce anomaly is related to the REE accumulation on iron oxyhydroxides. Influence of hydrothermal source leads to the decrease of Ce anomaly and LREE/HREE ratio. In the reduced sediments, preservation of positive Ce anomaly and/or its disappearance was observed after iron and manganese reduction. The REE contents were determined for the first time in the Ethmodiscus oozes of the Brazil Basin. Ore deposits of the Brazil Basin are represented by ferromanganese crust and ferromanganese nodules. Judging from the contents of iron, manganese, rare, and trace elements, these formations are ascribed to the sedimentation (hydrogenic) deposits. They are characterized by a notable positive Ce anomaly in the REE pattern. The extremely high Ce content (up to 96% of total REE) was discovered for the first time in the buried nodules (Mn/Fe = 0.88).  相似文献   

10.
This paper presents materials on the chemical and mineralogical composition of Fe-Mn mineralization in island arcs (Kurile, Nampo, Mariana, New Britain, New Hebrides, and Kermadec) in the western part of the Pacific Ocean. The mineralization was proved to be of hydrothermal and/or hydrogenic genesis. The former is produced by hydrothermal Fe and Mn oxi-hydroxides that cement volcanic-terrigenous material in sediments. Some Fe oxi-hydroxides can be derived via the halmyrolysis of volcaniclastic material. Crusts of this stage are characterized by fairly low concentrations of trace and rare elements, and their REE composition is inherited from the volcanic-terrigenous material. The minerals of the Mn oxi-hydroxides are todorokite and “Ca-birnessite.” The Mn/Fe ratio increases away from the discharge sites of the hydrothermal solutions. The hydrogenic Fe-Mn crusts are characterized by high concentrations of trace and minor elements of both the Mn group (Co, Ni, Tl, and Mo) and the Fe group (REE, Y, and Th). The hydrogenic crusts consist of Fe-vernadite and Mn-feroxyhyte. Some of the hydrothermal crusts originally had a hydrothermal genesis. The first data were obtained on crust B30-72-10 from the Macauley Seamount in the Kermadec island arc, which contained anomalously high concentrations of Co (2587 ppm) and other Mn-related trace elements in the absence of hydrogeneous Fe oxi-hydroxides.  相似文献   

11.
The volcanic history of Santo Antão, NW Cape Verde Islands,includes the eruption of basanite–phonolite series magmasbetween 7·5 and 0·3 Ma and (melilite) nephelinite–phonoliteseries magmas from 0·7 to 0·1 Ma. The most primitivevolcanic rocks are olivine ± clinopyroxene-phyric, whereasthe more evolved rocks have phenocrysts of clinopyroxene ±Fe–Tioxide ± kaersutite ± haüyne ± titanite± sanidine; plagioclase occurs in some intermediate rocks.The analysed samples span a range of 19–0·03% MgO;the most primitive have 37–46% SiO2, 2·5–7%TiO2 and are enriched 50–200 x primitive mantle in highlyincompatible elements; the basanitic series is less enrichedthan the nephelinitic series. Geochemical trends in each seriescan be modelled by fractional crystallization of phenocrystassemblages from basanitic and nephelinitic parental magmas.There is little evidence for mineral–melt disequilibrium,and thus magma mixing is not of major importance in controllingbulk-rock compositions. Mantle melting processes are modelledusing fractionation-corrected magma compositions; the modelssuggest 1–4% partial melting of a heterogeneous mantleperidotite source at depths of 90–125 km. Incompatibleelement enrichment among the most primitive magma types is typicalof HIMU OIB. The Sr, Nd and Pb isotopic compositions of theSanto Antão volcanic sequence and geochemical characterchange systematically with time. The older volcanic rocks (7·5–2Ma) vary between two main mantle source components, one of whichis a young HIMU type with 206Pb/204Pb = 19·88, 7/4 =–5, 8/4 0, 87Sr/86Sr = 0·7033 and 143Nd/144Nd= 0·51288, whereas the other has somewhat less radiogenicSr and Pb and more radiogenic Nd. The intermediate age volcanicrocks (2–0·3 Ma) show a change of sources to two-componentmixing between a carbonatite-related young HIMU-type source(206Pb/204Pb = 19·93, 7/4 = –5, 8/4 = –38,87Sr/86Sr = 0·70304) and a DM-like source. A more incompatibleelement-enriched component with 7/4 > 0 (old HIMU type) isprominent in the young volcanic rocks (0·3–0·1Ma). The EM1 component that is important in the southern CapeVerde Islands appears to have played no role in the petrogenesisof the Santo Antão magmas. The primary magmas are arguedto be derived by partial melting in the Cape Verde mantle plume;temporal changes in composition are suggested to reflect layeringin the plume conduit. KEY WORDS: radiogenic isotopes; geochemistry; mantle melting; Cape Verde  相似文献   

12.
During the 28th cruise of R/V Akademik Sergei Vavilov in 2009, five different mountains belonging to the northern chain of the Baia Seamounts, located in the Brazil Basin, were dredged. Igneous rocks, limestones, and Fe-Mn crusts were collected. Igneous rocks are greatly altered resulting from halmyrolithic and/or low-temperature hydrothermal processes; the main secondary minerals are smectite, iron hydroxide, and phillipsite. Igneous rocks are subdivided into two groups, namely, trachybasalts and trachyandesites. Trachybasalts are aphyric rocks, consisting of basal plagioclase microlites, Fe-Ti ore mineral, olivine, and clinopyroxene. Trachyandesites are rarely porphyre rocks. Inclusions in trachyandesite are represented by acidic plagioclase, olivine, biotite, and zircon. The main mass is formed by acidic plagioclase and a small quantity of clinopyroxene.  相似文献   

13.
Kaolin deposits of the Swat District in Pakistan are indicated to have derived by hydrothermal alteration of more feldspathic parts of felsic intrusives, which occur enclosed in orthoamphibolites and orthogneisses of the Cretaceous Kohistan Island Arc terrane. These latter “country rocks” formed under epidote–amphibolite conditions that prograde northwards to amphibolite facies, and locally manifest slight metamorphic differentiation. The felsic intrusives exhibit a general decrease in siliceous character from west to east, but are less siliceous than most hosts of world kaolins. They are composed of chemically allied quartz diorite, tonalite, trondhjemite and pegmatoids, which evolved mainly by an orthomagmatic crystal fractionation. These parental rocks are calc-alkaline in nature, and kaolinization has proceeded in Ca-richer environment. This is in variance with the occurrence of most known kaolin deposits over potassic granites or rhyolites. Ca-metasomatism of the “host rocks” is in evidence. Kaolin formation by a supergene process is not displayed.The raw kaolin with contained unaltered plagioclase is characterized by a rather low silica (46.54–50.93%) and potash (<1%), and high alumina (23.54–26.77%), Fe2O3 (1.73–5.45%) and lime (8.13–16.93%) content. Kaolinization proceeded with a decrease in SiO2 and concomitant increase in Al2O3. The same trend is followed with fineness of grain size of washed fractions, in resemblance to other known kaolin deposits of primary as well as secondary origin.  相似文献   

14.
This research is focused on the composition of the sediments produced in volcanic islands when the climate does not favour weathering. The XRD mineralogy (bulk sample and fraction finer than 63 μm), petrography and geochemistry of a set of bedload stream and beach samples collected in the “old” Maio and the “young” Fogo islands of Cape Verde archipelago are used to investigate the compositional transformations promoted by exogenous processes during island denudation. The main factor responsible for the variability in sediment composition is the incorporation of biogenic material derived from the evolving shelves; it largely exceeds the effects of the exhumation of different volcanic and basement units. Given the arid climate (and steep land surface in Fogo), only the most labile components of basaltic rocks, such as volcanic glass, are decomposed. The incipient weathering and sorting processes are responsible for the depletion of Al in bedload deposits. The same happens with other elements usually regarded as non-mobile (namely, Nb, Th, REE, etc.), while Mg is concentrated. Thus, weathering indices grounded on the premise that “mobile” elements are lost and “non-mobile” elements are enriched via weathering are useless in Cape Verde bedload sediments. With time, weathering is able to promote Na leaching and the formation of secondary minerals, which tend to retain non-mobile elements released in the earlier stages of alteration (e.g., LREE, Th, Y, Nb, Ta etc.). Sorting processes are responsible for the selective removal of less-dense grains, explaining local differences between beach and stream deposits. Beach placers are enriched in augitic clinopyroxene (occasionally also in olivine in the Fogo island), and Sc, Cr and Co. Niobium and Ta must be hosted in fine-grained particles that are easily windblown and their abundances in dusts may reveal Cape Verde as a source of airborne material crossing the Atlantic Ocean.  相似文献   

15.
This report presents mineralogical, geochemical and isotopic data on samples obtained using the Benthic Multi‐coring System (BMS) to drill a submarine hydrothermal deposit developed in a caldera on the summit of the Suiyo Seamount in the Izu–Bonin Island Arc, south of Japan. This deposit is regarded as the first example of Kuroko‐type sulfide mineralization on a volcano at the volcanic front of an island arc. The mineralization and hydrothermal alteration below the 300 × 150‐m area of active venting was investigated to depths of 2–9 m below the sea floor. Drilling beneath the area of active venting recovered a sequence of altered volcanic rocks (dacite lavas, pyroclastic rocks of dacite–rhyolite compositions and pumice) associated with sulfide veining and patches/veins of anhydrite. No massive sulfide was found, however, and the subsea‐floor mineralization to 10 m depth is dominated by anhydrite and clay minerals with some sulfides. Sulfide‐bearing samples contained high Au (up to 42 ppm), Ag (up to 263 ppm), As (up to 1550 ppm), Hg (up to 55 ppm), Sb (up to 772 ppm), and Se (up to 24 ppm). Electron probe microanalyzer indicated that realgar, orpiment, and mimetite were major As‐bearing minerals. The sulfides were also characterized by high Zn (>10%) compared to Cu (<6.3%) and Pb (<0.6%). The δ202Hg/198Hg, δ202Hg/199Hg and δ202Hg/200Hg of the sulfide‐bearing dacite samples and a sulfide chimney decreased with increasing Hg/Zn concentration ratio. The variation of the δ202Hg/198Hg ranged from ?2.8 to +0.5‰ to relative to S‐HG02027. The large range of these δ202Hg/198Hg was greater than might be expected for such a heavy element and may be due to a predominance of kinetic effects. The variation of δ202Hg/198Hg of sulfide‐bearing dacite samples suggested that light Hg isotope in the vapor mixed with oxygenated seawater near sea floor during mineralization. Lead isotope ratios of the sulfide were very similar to those of the dacite lava, suggesting that lead is of magmatic origin. The 87Sr/86Sr ratio (0.70872) of anhydrite was different from that of the dacite lava, and suggests an Sr derivation predominantly from seawater. Hydrothermal alteration of the dacite in the Suiyo hydrothermal field was characterized by Fe‐sulfides, anhydrite, barite, montmorillonite, chlorite/montmorillonite mixed‐layer minerals, mica, and chlorite with little or no feldspar or cristobalite. Hydrothermal clay minerals changed with depth from montmorillonite to chlorite/montmorillonite mixed‐layer minerals to chlorite and mica. Hydrogen isotope ratios of chlorite/montmorillonite and mixed‐layer, mica‐chlorite composites obtained below the active venting sites ranged from ?49 to ?24‰, suggesting seawater as the dominant fluid causing alteration. Oxygen isotope ratios of anhydrite ranged from 9.2 to 10.4‰ and anhydrite formation temperatures were calculated to be 188–207°C. Oxygen isotope ratios ranged from +5.2 to +9.2‰ for montmorillonite, +3.2 to +4.5‰ for chlorite/montmorillonite mixed‐layer minerals, and +2.8 to +3.8‰ in mixtures of chlorite and mica. The formation temperatures of montmorillonite and of the chlorite–mica mixture were 160–250°C and 230–270°C, respectively. The isotope temperatures for clay minerals (220–270°C) and anhydrite (188°C) were significantly lower than the borehole temperature (308.3°C) measured just after the drilling, suggesting that temperature at this site is now higher than when clay minerals and anhydrite were formed.  相似文献   

16.
The paper reports first geological, chemical, mineralogical, Sr–Nd chemical–isotope, and geochronological data on the gabbroid massif discovered on the Hobbs coast in the Cape Burks area, West Antarctica. The area is made up of compositionally diverse gabbroids that are intersected by thin vein and dike bodies of mafic, intermediate, and fesic composition. The gabbroids are represented by olivine and olivinefree gabbros and gabbronorites, with sharply subordinate troctolites, gabbro–anorthosites, and anorthosites. The U–Pb SHRIMP–II zircon age of the gabbroids and vein rocks was estimated at 100 ± 1 Ma. The gabbroids were supposedly emplaced in the upper crust in tectonically active conditions. The thickness of the pluton is no less than 2.5–3 km. The rocks were crystallized from a highly fractionated melt. Their composition was mainly determined by accumulation and fractional crystallization. The origin of vein felsic rocks was likely related to an evolved residual liquid. The igneous complex was formed in a within–plate geodynamic setting, and its primary melts were derived from a weakly LILE enriched lithospheric mantle.  相似文献   

17.
In recent months the media have drawn attention to the Cape Verde archipelago, with particular focus on the island of Fogo, the only island presently active and with an eruption that began on 23 November 2014, finally ceasing on 7 February 2015. The Monte Amarelo conical shield forms most of the 476 km2 almost circular island of Fogo. After attaining a critical elevation of about 3500 m, the Monte Amarelo shield volcano was decapitated by a giant landslide that formed a caldera‐like depression (Cha das Caldeiras), which was subsequently partially filled by basaltic nested volcanism. This younger eruptive activity culminated in the construction of the 2829 m‐high Pico do Fogo stratocone, apparently entirely made of layers of basaltic lapilli. Continued growth of the Pico do Fogo summit eruptions was interrupted in 1750, most likely after the stratocone reached a critical height. Since then, at least eight eruptions have taken place inside the landslide depression at the periphery of the Pico do Fogo cone, including the 2014–2015 eruptive event. Strong geological similarities with the Canary Islands, 1400 km to the north, have been frequently noted, probably as a consequence of a common process of origin and evolution associated with a mantle hot‐spot. These similarities are particularly evident when comparing Fogo with the Teide Volcanic Complex on Tenerife, where a lateral collapse of the Las Cañadas stratovolcano also formed a large depression (the Caldera de Las Cañadas), now partially filled with the 3718 m‐high Teide stratocone. However, important geological differences also exist and probably relate to the contrasting evolutionary stages of both islands. The Las Cañadas volcano on Tenerife formed at a late post‐erosional stage, with predominantly evolved (trachyte and phonolite) magmas, while at Fogo basaltic volcanism is still dominant.  相似文献   

18.
19.
20.
The 1995 eruption of Fogo (Cape Verde Islands) differed from previous eruptions by the occurrence of evolved lavas, the SW-orientation of vents, and pre-eruptive seismicity between Fogo and the adjacent (~20 km) island of Brava. We have conducted a thermobarometric and chemical study of this eruption in order to reconstruct its magma plumbing system and to test for possible connections to Brava. The bimodal eruption produced basanites (5.2–6.7 wt% MgO) and phonotephrites (2.4–2.8 wt% MgO) that are related by fractional crystallization. Clinopyroxene-melt-barometry of phenocrysts yields pressure ranges of 460–680 MPa for the basanites and 460–520 MPa for the phonotephrites. Microthermometry of CO2-dominated fluid inclusions in olivine and clinopyroxene phenocrysts yields systematically lower pressure ranges of 200–310 MPa for basanites and 270–470 MPa for phonotephrites. The combined data indicate pre-eruptive storage of the 1995 magmas within the lithospheric mantle between 16 and 24 km depth. During eruption, the ascending magmas stalled temporarily at 8–11 km depth, within the lower crust, before they ascended to the surface in a few hours as indicated by zonations of olivine phenocrysts. Our data provide no evidence for magma storage at shallow levels (<200 MPa) or lateral magma movements beneath the Fogo-Brava platform. Sr–Nd–Pb isotope ratios of samples from Brava differ significantly from those of the 1995 and older Fogo lavas, which rules out contamination of the 1995 magmas by Brava material and indicates different mantle sources and magma plumbing systems for both islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号