首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the impoundment of the Three Gorges Reservoir in June 2003, numerous preexisting landslides have been reactivated. This paper seeks to find the factors influencing landslide deformation and the relationship between displacement and fluctuation of the reservoir water level, while the displacement and the intensity of rainfall based on monitoring data; 6 years of monitoring were carried out on the Shiliushubao landslide, a old landslide, consisting of a deep-seated main block and two shallow blocks, with a volume of 1,180 × 104 m3 and located on the left bank of the Yangtze River, 66 km upstream of the Three Gorges dam. This landslide was reactivated by the impoundment and since then the landslide body has been experiencing persistent deformation with an observed maximum cumulative displacement of 8,598.5 mm up to December 2009. Based on the monitoring data, we analyzed the relationship between the fluctuation of the reservoir water level and displacement, rainfall and displacement, and found that the rainfall is the major factor influencing deformation for two shallow blocks and the displacement has a positive correlation with the variation of rainfall intensity. The fluctuation of the reservoir water level is the primary factor for main block, and the deformation rate has a negative correlation with the variation of reservoir water level, declined with the rise of the water level and increased with the drawdown of the water level.  相似文献   

2.
A special monitoring and warning system has been established and improved in the Three Gorges Reservoir area since 1999. It is necessary to develop a real-time monitoring system on landslides because there are dense populations centered in the reservoir area and geo-hazards may be triggered by a 30-m water level fluctuation between 145 and 175 m in elevation during reservoir operation; the regular monitoring could not be suitable to the early warning on landslides. Since 2003, the authors have carried out a real-time monitoring and early warning project on landslides at the relocated Wushan town in the Three Gorges Reservoir area. The monitoring station includes Global Positioning System with high-accuracy double frequency to monitor ground displacement, time domain reflection technology, and immobile borehole, inclinometer to monitor deep displacement, piezometer to monitor pore water pressure, and precipitation and reservoir water level monitoring. Compared with traditional methods, the real-time monitoring is continuous and traceable in the acquisition process, and the cycle of data acquisition is very short, usually within hours, minutes, or even shorter. Based on the landslide monitoring experience at the Three Gorges Reservoir area, the early warning criteria on landslide are established in which the critical situation is classified into four levels: blue, yellow, orange, and red, respectively, expressed by no, slight, moderate, and high risk situation. Comprehensive judgment from multimonitoring data of Yuhuangge landslide in this area since 2004 suggested that the new Wushan town will be at the blue early warning level, although some monitoring data of individual displacement at deep borehole showed that the displacement was increased by 5 mm in 5 months with an average velocity of 1.0 mm/month, and the data of BOTDR also showed an obvious dislocation along a stairway on the landslide.  相似文献   

3.
长江三峡工程库区千将坪滑坡地质特征及成因分析   总被引:3,自引:0,他引:3  
千将坪滑坡体位于三峡库区长江支流青干河的左岸,距三峡工程坝址44km。2003年7月13日零时20分,三峡库区秭归县千将坪村发生了山体基岩滑坡,造成15人死亡、9人失踪,4家乡镇企业被摧毁。文章通过对滑后详细地质调查,阐述了千将坪滑坡区地质条件,描述了滑坡发生的前兆现象以及滑坡发生滑动的过程,仔细分析了千将坪滑坡各要素的特征。根据滑坡体物质组成和结构的差异,把滑体物质自滑坡后缘至前缘分为块石堆积区、基岩裂解区、土夹块石区、漂砾卵石区。同时,文中研究了滑带土的物理力学性质,分析了滑坡体的成因机制,从地形地貌、岩性组合、构造条件详细论述了斜坡失稳的内因,认为导致斜坡失稳的外部因素有集中降雨、农田灌溉以及三峡蓄水3个方面的影响。  相似文献   

4.
In the evolution of landslides, besides the geological conditions, displacement depends on the variation of the controlling factors. Due to the periodic fluctuation of the reservoir water level and the precipitation, the shape of cumulative displacement-time curves of the colluvial landslides in the Three Gorges Reservoir follows a step function. The Baijiabao landslide in the Three Gorges region was selected as a case study. By analysing the response relationship between the landslide deformation, the rainfall, the reservoir water level and the groundwater level, an extreme learning machine was proposed in order to establish the landslide displacement prediction model in relation to controlling factors. The result demonstrated that the curves of the predicted and measured values were very similar, with a correlation coefficient of 0.984. They showed a distinctive step-like deformation characteristic, which underlined the role of the influencing factors in the displacement of the landslide. In relation to controlling factors, the proposed extreme learning machine (ELM) model showed a great ability to predict the Baijiabao landslide and is thus an effective displacement prediction method for colluvial landslides with step-like deformation in the Three Gorges Reservoir region.  相似文献   

5.
The Shuping landslide was reactivated by the initial impoundment of the Three Gorges Dam Reservoir, China in June 2003. For purposes of landslide disaster mitigation in the reservoir area and identification of landslide movement and deformation caused by reservoir level changes, a monitoring system mainly consisting of drum-style extensometers was installed in the eastern part of the Shuping landslide. Systematic monitoring was started in August 2004 with installation of 13 extensometers above the waterline after the initial impoundment. In August 2006, 11 more drum-style extensometers were installed above the high waterline (175 m) and five flexible extensometers were installed along a longitudinal section in the elongation to low waterline. In this paper, the monitoring results from August 2004 to July 2007 are presented and the deforming of the Shuping landslide caused by both reservoir level changes and rainfall is examined.  相似文献   

6.
建立高效合理的区域滑坡灾害降雨预警模型对滑坡防治具有重要意义.然而以往的研究多侧重于临滑预警,对蠕变型滑坡在强降雨工况下的短暂加速变形的预警研究还有待深入.以三峡库区云阳县域内滑坡为例,首先根据滑坡地表位移监测数据的特点对统计样本进行合理筛选.再通过降雨因子与滑坡发生的相关性分析以及对滑坡在降雨条件下位移变化情况的数值模拟,确定了适用于不同时间阶段的降雨统计变量.然后将考虑了滑坡规模特征的滑坡位移比(累计位移与滑坡纵长之比)作为变形指标,分时段统计滑坡地表位移监测数据与历史降雨信息,建立了日降雨数据与月位移数据的对应关系,得到了可用于确定降雨量阈值的位移比模型,并获得了云阳县蠕变型滑坡的五级预警分区.最后分别选用研究区滑坡险情实例、长年位移监测数据及极端降雨事件对模型预警效果进行检验.结果显示基于专业监测数据的位移比模型的滑坡降雨预警结果与实际情况相符,可为蠕变型滑坡的预警预报提供依据.   相似文献   

7.
对不同类型的35个滑坡进行统计分析,发现滑坡临滑前加速度和速度符合Voight模型的幂函数关系。由于无法准确判断三峡库区具台阶状位移特征的滑坡何时处于最后加速失稳阶段,故不能直接应用该模型进行预报。根据台阶状位移特征的滑坡变形特征,本文采用了基于Voight模型的警戒速度方法。该方法是基于Voight模型采用非线性回归分析求得模型参数,按不同风险级别要求求得紧急状态、警戒状态、提前警戒状态的速度阀值,并与实际监测的速度对比去预报滑坡所处的危险等级。采用警戒速度方法对白水河滑坡和新滩滑坡进行了分析,发现预测结果与实际较为接近,预测效果较好。  相似文献   

8.
A methodology for monitoring system of an impoundment-induced landslide in Three Gorges Reservoir Area, China is introduced. Currently, based on landslide geological classification, the monitoring regions and methods which include types of monitoring instruments, placement and calibration precision of instruments, and appropriate periods for instrumental placement is confirmed. To optimize the monitoring system, sensitivity analysis of displacements and the water table in landslides affected by reservoir surface fluctuation is completed to determine the layout of the monitoring cross sections and the monitoring points. As a case study, the behavior of displacements and the potential fluctuation of the water table in the Shiliushubao landslide, produced by the gradual water impoundment at Three Gorges Reservoir, has been simulated using 3D finite element method analysis. The sensitivity analysis of Shiliushubao landslide is investigated by the fuzzy set evaluation method. As a result, the monitoring network of Shiliushubao landslide is established.  相似文献   

9.
三峡库区香溪河段典型滑坡变形特征分析   总被引:2,自引:0,他引:2  
本文从坡形采集入手,对三峡库区香溪河段蓄水后发生变形的滑坡进行归纳统计。统计表明,近水库岸坡为凸形的滑坡更容易发生变形。对香溪河段典型滑坡进行了长期地表位移监测,获得八字门滑坡和白家包滑坡的变形曲线为台阶状,耿家坪滑坡的变形曲线为脉动形。近库水微地貌为凸岸,滑体物质为老滑坡堆积物的滑坡变形曲线为台阶状,变形具积累性;近库水微地貌为凹岸,滑体物质为崩塌堆积物的滑坡变形曲线为脉动形,变形具“弹性”。  相似文献   

10.
Frequent soil landslide events are recorded in the Three Gorges Reservoir area, China, making it necessary to investigate the failure mode of such riverside landslides. Geotechnical centrifugal test is considered to be the most realistic laboratory model, which can reconstruct the required geo-stress. In this study, the Liangshuijing landslide in the Three Gorgers Reservoir area is selected for a scaled centrifugal model experiment, and a water pump system is employed to retain the rainfall condition. Using the techniques of digital photography and pore water pressure transducers, water level fluctuation is controlled, and multi-physical data are thus obtained, including the pore water pressure, earth pressure, surface displacement and deep displacement. The analysis results indicate that: Three stages were set in the test (waterflooding stage, rainfall stage and drainage stage). Seven transverse cracks with wide of 1–5 mm appeared during the model test, of which 3 cracks at the toe landslide were caused by reservoir water fluctuation, and the cracks at the middle and rear part were caused by rainfall. During rainfall process, the maximum displacement of landslide model reaches 3 cm. And the maximum deformation of the model exceeds 12 cm at the drainage stage. The failure process of the slope model can be divided into four stages: microcracks appearance and propagation stage, thrust-type failure stage, retrogressive failure stage, and holistic failure stage. When the thrust-type zone caused by rainfall was connected or even overlapped with the retrogressive failure zone caused by the drainage, the landslide would start, which displayed a typical composite failure pattern. The failure mode and deformation mechanism under the coupling actions of water level fluctuation and rainfall are revealed in the model test, which could appropriately guide for the analysis and evaluation of riverside landslides.  相似文献   

11.
More than 5000 landslides or potential landslides have been induced in the Three Gorges Reservoir (TGR) region since the impoundment in 2003, which have caused great damage and remain a huge threat to the dam and people living in the reservoir area. Understanding the deformation characteristics and failure mechanism of the landslides can be helpful in stability evaluation and landslide prediction. The primary aim of this study is to research the characteristics of the landslide motion and its relationships with environmental triggers, taking the Quchi landslide, a large, slow-moving, reactivated landslide in the TGR region, as an example. The instability clearly showed visible signs of movements since 2002, and after that, the slope has been experiencing persistent deformation. By combining 4 years of meteorological, hydrological data with displacement measurements from open fractures, deep boreholes, and surface points, as well as in situ observations, this paper reports the geological and geotechnical investigations performed to define the movement. The deformation is believed to be governed by reservoir water levels, while the precipitation has a minor effect. Seasonally, the slope movement has a very distinctive pattern with large deformation starting abruptly right after reservoir drawdown in June and lasting into late summer (September). Then there is a rapid transition to constant deformation (almost no displacement) as the reservoir level rises. The slope displacements appear to gradually increase every year, which suggests very high possibility of the large and overall failure of the slide. Both monitoring results and geomorphological observations have highlighted that the two active slide masses Q1 and Q2 would probably collapse in different kinematic evolution modes, i.e., the multistage failure and whole sliding motion.  相似文献   

12.
三峡大坝自2003年蓄水以来,库区形成大量涉水滑坡。长江三峡库区的浮托减重型滑坡随库水位升降,变形非协调性增加,此类滑坡变形与库水位关系的不明确性,为其监测预警预报工作带来困惑。以木鱼包滑坡为研究对象,通过全自动GPS变形监测系统获取的滑坡监测资料,结合多次的野外考察、15年专业监测和库水位升降等资料进行分析,运用有限元软件Geo-studio进行数值模拟,模拟库水位以不同速率在175~145m间升降下对滑坡稳定性的影响。研究表明:(1)库水位由145m升至175m的过程中,滑坡的稳定系数变化为先减后增再减,库水上升速率越大,前期稳定系数减小的时间段越小,随后稳定系数增加的速率也越快;(2)在库水位由175m下降到145m的过程中,整个稳定系数变化趋势为先减小后增大,呈“V”字形,存在一个最危险水面,不同的库水下降速率对应的最危险水面高度也不一样,库水位以0.4,0.6,0.8,1.0,1.6m/d的速率下降时对应的最危险水位分别在169.8,167.8,162.6,162.0,162.2m左右;(3)木鱼包滑坡作为三峡库区典型的浮托减重性滑坡,在库水位大幅度及周期性升降的影响下,一直保持着蠕滑状态,平均日位移量为0.4mm/d,目前处于基本稳定状态。所得结论对三峡库区浮托减重型滑坡预警预报工作有一定的参考与借鉴意义。  相似文献   

13.
In the period of impounding and running of the Three Gorges Reservoir, the sensitive degrees of change of groundwater table and displacement to the fluctuation of water level are different in different parts of landslides induced by the fluctuation of water level (as the case of Xietan Landslide). According to the relationship between different sensitive degrees of monitoring variables (underground water level and displacement) and quantity of monitoring information, the sensitive zones of groundwater table and displacement to the fluctuation of reservoir water level are divided into different degrees by the approach of fuzzy pattern recognition. The result of numerical subarea of sensitive zone of groundwater table and displacement indicates that the middle and front part of the landslide are the main places with groundwater table affected by the fluctuation of water level of reservoir; the variation of horizontal displacement of surficial part of the middle and front part of the landslide is more sensitive to water impounding and sudden fall of water level; and with the increase of elevation and depth of the landslide, the horizontal displacement changes less and less; the change of vertical displacement of surficial parts of the landslide is most sensitive to the fluctuation of water level of Three Gorges Reservoir; and with the increase of depth, the change of vertical displacement become smaller and smaller. By the means of the numerical subarea regulation of Xietan Landslide, the suggestions to the point layout for monitoring the groundwater table and displacement in the landside of Three Gorges Reservoir are put forward.  相似文献   

14.
The prediction of active landslide displacement is a critical component of an early warning system and helps prevent property damage and loss of human lives. For the colluvial landslides in the Three Gorges Reservoir, the monitored displacement, precipitation, and reservoir level indicated that the characteristics of the deformations were closely related to the seasonal fluctuation of rainfall and reservoir level and that the displacement curve versus time showed a stepwise pattern. Besides the geological conditions, landslide displacement also depended on the variation in the influencing factors. Two typical colluvial landslides, the Baishuihe landslide and the Bazimen landslide, were selected for case studies. To analyze the different response components of the total displacement, the accumulated displacement was divided into a trend and a periodic component using a time series model. For the prediction of the periodic displacement, a back-propagation neural network model was adopted with selected factors including (1) the accumulated precipitation during the last 1-month period, (2) the accumulated precipitation over a 2-month period, (3) change of reservoir level during the last 1 month, (4) the average elevation of the reservoir level in the current month, and (5) the accumulated displacement increment during 1 year. The prediction of the displacement showed a periodic response in the displacement as a function of the variation of the influencing factors. The prediction model provided a good representation of the measured slide displacement behavior at the Baishuihe and the Bazimen sites, which can be adopted for displacement prediction and early warning of colluvial landslides in the Three Gorges Reservoir.  相似文献   

15.
The first impoundment of the Three Gorges Dam reservoir in China started from a water surface elevation of 95 m on June 1, 2003 and reached 135 m on June 15, 2003. Shortly after the water level reached 135 m, many slopes began to deform and some landslides occurred. The Qianjiangping landslide is the largest one; it occurred on the early morning of July 14, 2003 and caused great loss of lives and property. Field investigation revealed that, although failure occurred after the reservoir reached 135 m, the stability of the slope was already reduced by preexisting sheared bedding planes. To study the mechanism of the rapid motion of this reactivated landslide, two soil samples were taken from a yellow clay layer and a black silt layer in the sliding zone, respectively, and a series of ring shear tests were conducted on the samples. One series of ring shear tests simulates the creep deformation behavior, while the other series simulates different shear rates. Conclusions drawn from analysis of the ring shear tests indicate that the mechanism of the rapid motion of the reactivated landslide was caused by the rate effect of the black silt layer during the motion phase after the creep failure. The yellow clay layer did not play any important role in the rapid motion in the 2003 event.  相似文献   

16.
三峡水库区何家湾滑坡监测及防治措施研究   总被引:5,自引:1,他引:5  
在研究了三峡水库区何家湾滑坡体空间形态、自然地理及地层岩性的基础上,从气象、水文、库区蓄水及水位变动因素入手,分析了滑坡形成的原因。根据库区地质灾害监测预警工程设计,结合何家湾滑坡的结构和变形特征,确定具体监测方法。对该滑坡进行了大地形变监测、地下水位监测、滑体深部位移监测及宏观监测。其中,大地形变监测数据分析表明:何家湾滑坡的最大变形量已超过2cm,且一直呈现增大趋势;地下水位、滑体深部位移均未发现明显异常,宏观监测亦未发现明显的新的变形迹象。通过分析监测资料并考虑到未来三峡水库蓄水,认为何家湾滑坡目前处于潜在不稳定状态。滑坡体在饱水及水库蓄水后,将处于临界蠕滑或失稳状态。结合滑坡体实际情况对滑坡防治进行初步研究,提出了采用回填压脚支档为主、辅以排水的综合治理措施;并建议加强数据远程传输的研究与实践,以解决目前监测效率不高的问题。  相似文献   

17.
三峡水库自2003年蓄水后,在长江干流和支流发生了不同程度的边坡变形和破坏.有些变形缓慢并对房屋和道路造成损坏,有些产生高速运动并引发涌浪,造成惨重人员伤亡.本文从库岸边坡的结构着眼,以千将坪滑坡和树坪滑坡为例,通过现场调查、现场长期观测、室内简易模型试验,分析库水位涨落条件下不同结构边坡的变形破坏机制,为库区运营过程...  相似文献   

18.
三峡工程建设以来,库区土地利用类型发生重大变化.为深入研究三峡库区蓄水以来滑坡发育与土地利用类型变化的关系,本文利用不同时期(1987年、2000年和2010年)卫星影像,研究三峡库首区秭归至巴东段长江干流土地利用类型变化,采用滑坡面积模数比(Rsi)分析滑坡发育与土地类型及变化的关联性.结果表明:(1)在1987~2...  相似文献   

19.
三峡水库区陈家沟滑坡地质特征与防治措施   总被引:4,自引:0,他引:4  
在研究了三峡水库区奉节县陈家沟滑坡的工程地质条件及滑坡体基本特征的基础上,介绍了该滑坡的结构及变形特征。从滑坡形成条件、诱发变形因素两方面分析了滑坡形成的原因及诱发坡体失稳的主要因素;据岩土样品的试验值、现场大剪值,结合地区经验值及反算值,确定计算滑坡稳定性及剩余滑坡推力的抗剪强度参数,考虑到未来三峡水库蓄水,在不同工况下对滑坡体进行稳定性计算。结果表明:在天然及暴雨情况下,滑坡整体均处于稳定状态;次级滑坡体在饱水及水库蓄水后,处于临界蠕滑或失稳状态。结合工程实际对滑坡治理进行初步研究,提出回填压脚专档为幸捕以排水的综合治理措施。  相似文献   

20.
殷坤龙  刘艺梁  汪洋  姜治兵 《地球科学》2012,37(5):1067-1074
三峡水库自2003年开始蓄水以来, 库岸滑坡变形明显加剧, 滑坡变形不仅造成建筑物破坏, 高速滑坡滑入水库还会产生很大的涌浪, 其潜在的危害性远远超过滑坡本身.2003年7月13日发生在三峡库区的千将坪滑坡就是由水库蓄水诱发所致, 滑坡最高涌浪达到39 m, 在水库传播达30 km之远, 涌浪造成了人员伤亡与财产损失.为了更好地研究水库滑坡涌浪特征和传播规律, 以三峡库区重大科研项目为依托, 采用室内大型物理模拟实验手段, 对三峡库区滑坡涌浪开展了深入研究.通过对三峡库区已经开展勘探的潜在滑坡的地质资料进行统计分析, 按照正交试验设计方法, 制定了包含滑坡规模、入水速度、滑动面倾角、水深、岸坡坡角等综合影响因素的试验方案, 以三峡库区白水河滑坡上下游河道为原型, 建立了1∶200比例尺的河道物理模型, 采用试验控制系统、试验量测系统开展了滑坡涌浪三维物理模型试验.通过细致的物理模型实验, 得到了不同试验条件下的三峡库区滑坡涌浪物理模型实验观测数据.分析滑坡涌浪形态变化, 明确了滑坡最大首浪的含义.在此基础上, 以国内外经典的Noda和潘家铮提出的滑坡涌浪公式为基础, 基于试验量测数据, 提出了三峡库区滑坡涌浪计算公式.最后以三峡库区正在变形的白水河滑坡为例进行了滑坡涌浪预测研究, 预测了滑坡最大首浪高度和沿水库传播的涌浪衰减规律.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号