首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GGD30 has been suggested to be either a small reflection nebulosity or a Herbig–Haro (HH) object formed in the outflow from a nearby obscured star. Observations to date have not been able to distinguish between these two scenarios. In addition, there are conflicting proposals for the location of the exciting source for GGD30. To resolve these questions, we have carried out optical spectroscopy and near-infrared ( J , K and 3.6-μm) imaging of GGD30. Taken together, these observations reveal that the bright optical knot in GGD30 must be a HH object, excited by the outflow from an optically obscured pre-main-sequence (PMS) star located ∼3 arcsec to the southwest. Based on mid-infrared fluxes from the Mid-course Space Experiment ( MSX ) satellite, we estimate the luminosity of this PMS star to be  ∼12.5 L  which suggests it is an intermediate-mass object rather than low-mass as previously proposed. The optical spectroscopy indicates projected velocities of  ∼−270 km s−1  associated with the HH object. The fact that these velocities are blueshifted and relatively high compared to the velocities typical of HH flows suggests that the outflow from the PMS star must be almost aligned with the line of sight. There is an additional low-velocity  (∼−70 km s−1) Hα  component but its origin is not clear.  相似文献   

2.
We present the results of modelling of the H2 emission from molecular outflow sources, induced by shock waves propagating in the gas. We emphasize the importance of proper allowance for departures from equilibrium owing to the finite flow velocity of the hot, compressed gas, with special reference to the excitation, dissociation and reformation of H2. The salient features of our computer code are described. The code is applied to interpreting the spectra of the outflow sources Cepheus A West and HH43. Particular attention is paid to determining the cooling times in shocks whose speeds are sufficient for collisional dissociation of H2 to take place; the possible observational consequences of the subsequent reformation of H2 are also examined. Because molecular outflow sources are intrinsically young objects, J-type shocks may be present in conjunction with magnetic precursors, which have a C-type structure. We note that very different physical and dynamical conditions are implied by models of C- and J-type shocks which may appear to fit the same H2 excitation diagram.  相似文献   

3.
4.
We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind–wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called 'pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf–Rayet stars.
As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray.  相似文献   

5.
6.
7.
We present a general method for solving the non‐linear differential equation of monotonically increasing steady‐state radiation driven winds. We graphically identify all the singular points before transforming the momentum equation to a system of differential equations with all the gradients explicitly given. This permits a topological classification of all singular points and to calculate the maximum and minimum mass‐loss of the wind. We use our method to analyse for the first time the topology of the non‐rotating frozen‐in ionisation m‐CAK wind, with the inclusion of the finite disk correction factor, and find up to 4 singular points, three of the x‐type and one attractor‐type. The only singular point (and solution passing through) that satisfies the boundary condition at the stellar surface is the standard m‐CAK singular point. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
9.
10.
11.
12.
We discuss the high-energy afterglow emission (including high-energy photons, neutrinos and cosmic rays) following the 2004 December 27 giant flare from the soft gamma-ray repeater (SGR) 1806−20. If the initial outflow is relativistic with a bulk Lorentz factor  Γ0∼  tens, the high-energy tail of the synchrotron emission from electrons in the forward shock region gives rise to a prominent sub-GeV emission, if the electron spectrum is hard enough and if the initial Lorentz factor is high enough. This signal could serve as a diagnosis of the initial Lorentz factor of the giant flare outflow. This component is potentially detectable by the Gamma-Ray Large Area Telescope ( GLAST ) if a similar giant flare occurs in the GLAST era. With the available 10-MeV data, we constrain that  Γ0 < 50  if the electron distribution is a single power law. For a broken power-law distribution of electrons, a higher Γ0 is allowed. At energies higher than 1 GeV, the flux is lower because of a high-energy cut-off of the synchrotron emission component. The synchrotron self-Compton emission component and the inverse Compton scattering component off the photons in the giant flare oscillation tail are also considered, but they are found not significant given a moderate Γ0 (e.g. ≤ 10). The forward shock also accelerates cosmic rays to the maximum energy 1017 eV, and generates neutrinos with a typical energy 1014 eV through photomeson interaction with the X-ray tail photons. However, they are too weak to be detectable.  相似文献   

13.
14.
15.
Wide-field mapping of Serpens in submillimetre continuum emission and CO J =2–1 line emission is here complemented by optical imaging in [S  ii ] λλ 6716, 6731 line emission. Analysis of the 450- and 850-μm continuum data shows at least 10 separate sources, along with fainter diffuse background emission and filaments extending to the south and east of the core. These filaments describe 'cavity-like' structures that may have been shaped by the numerous outflows in the region. The dust opacity index, β , derived for the identifiable compact sources is of the order of 1.0±0.2, with dust temperatures in excess of 20 K. This value of β is somewhat lower than for typical class I YSOs; we suggest that the Serpens sources may be 'warm', late class 0 or early class I objects.
With the combined CO and optical data we also examine, on large scales, the outflows driven by the embedded sources in Serpens. In addition to a number of new Herbig–Haro flows (here denoted HH 455–460), a number of high-velocity CO lobes are observed; these extend radially outwards from the cluster of submillimetre sources in the core. A close association between the optical and molecular flows is also identified. The data suggest that many of the submillimetre sources power outflows. Collectively, the outflows traced in CO support the widely recognized correlation between source bolometric luminosity and outflow power, and imply a dynamical age for the whole protostellar cluster of ∼3×104 yr. Notably, this is roughly equal to the proposed duration of the 'class 0' stage in protostellar evolution.  相似文献   

16.
17.
The bipolar morphology of the planetary nebula (PN) K 3 − 35 observed in radio-continuum images was modelled with 3D hydrodynamic simulations with the adaptive grid code yguazú-a . We find that the observed morphology of this PN can be reproduced considering a precessing jet evolving in a dense AGB circumstellar medium, given by a mass-loss rate     and a terminal velocity   v w= 10 km s−1  . Synthetic thermal radio-continuum maps were generated from numerical results for several frequencies. Comparing the maps and the total fluxes obtained from the simulations with the observational results, we find that a model of precessing dense jets, where each jet injects material into the surrounding CSM at a rate     (equivalent to a density of 8 × 104 cm−3), a velocity of 1500 km s−1, a precession period of 100 yr and a semi-aperture precession angle of 20° agrees well with the observations.  相似文献   

18.
Abstract. Silicate grains in space have attracted recently a wide interest of astrophysicists due to the increasing amount and quality of observational data, especially thanks to the results obtained by the Infrared Space Observatory. The observations have shown that the presence of silicates is ubiquitous in space and that their properties vary with environmental characteristics. Silicates, together with carbon, are the principal components of solid matter in space. Since their formation, silicate grains cross many environments characterised by different physical and chemical conditions which can induce changes to their nature. Moreover, the transformations experienced in the interplay of silicate grains and the medium where they are dipped, are part of a series of processes which are the subject of possible changes in the nature of the space environment itself. Then, chemical and physical changes of silicate grains during their life play a key role in the chemical evolution of the entire Galaxy. The knowledge of silicate properties related to the conditions where they are found in space is strictly related to the study in the laboratory of the possible formation and transformation mechanisms they experience. The application of production and processing methods, capable to reproduce actual space conditions, together with the use of analytical techniques to investigate the nature of the material samples, form a subject of a complex laboratory experimental approach directed to the understanding of cosmic matter. The goal of the present paper is to review the experimental methods applied in various laboratories to the simulation and characterisation of cosmic silicate analogues. The paper describes also laboratory studies of the chemical reactions undergone and induced by silicate grains. The comparison of available laboratory results with observational data shows the essential constraints imposed by astronomical observations and, at the same time, indicates the most puzzling problems that deserve particular attention for the future. The outstanding open problems are reported and discussed. The final purpose of this paper is to provide an overview of the present stage of knowledge about silicates in space and to provide to the reader some indication of the future developments in the field. Received 25 April 2002 / Published online 14 November 2002 Send offprint requests to: L. Colangeli e–mail: colangeli@na.astro.it  相似文献   

19.
We present 3D hydrodynamical simulations of the superbubble M17, also known as the Omega Nebula, carried out with the adaptive grid code yguazú-a , which includes radiative cooling. The superbubble is modelled considering the winds of 11 individual stars from the open cluster inside the nebula (NGC 6618), for which there are estimates of the mass-loss rates and terminal velocities based on their spectral types. These stars are located inside a dense interstellar medium, and they are bounded by two dense molecular clouds. We carried out three numerical models of this scenario, considering different line-of-sight positions of the stars (the position in the plane of the sky is known, thus fixed). Synthetic thermal X-ray emission maps are calculated from the numerical models and compared with ROSAT observations of this astrophysical object. Our models successfully reproduce both the observed X-ray morphology and the total X-ray luminosity, without taking into account the thermal conduction effects.  相似文献   

20.
We present a comprehensive near-infrared study of two molecular bow shocks in two protostellar outflows, HH 99 in R Coronae Australis and VLA 1623A (HH 313) in Rho Ophiuchi. New, high-resolution, narrow-band images reveal the well-defined bow shock morphologies of both sources. These are compared with two-dimensional MHD modelling of molecular bows from which we infer flow inclination angles, shock speeds and the magnetic field in the pre-shock gas in each system. With combined echelle spectroscopy and low-resolution K -band spectra we further examine the kinematics and excitation of each source. Bow shock models are used to interpret excitation (CDR) diagrams and estimate the extinction and, in the case of VLA 1623, the ortho–para ratio associated with the observed H2 population. For the first time, morphology, excitation and kinematics are fitted with a single bow shock model.
Specifically, we find that HH 99 is best fitted by a C-type bow shock model (although a J-type cap is probably responsible for the [Fe  ii ] emission). The bow is flowing away from the observer (at an angle to the line of sight of ∼45°) at a speed of roughly 100 km s−1. VLA 1623A is interpreted in terms of a C-type bow moving towards the observer (at an angle to the line of sight of ∼75°) at a speed of ∼80 km s−1. The magnetic field associated with HH 99 is thought to be orientated parallel to the flow axis; in VLA 1623A the field is probably oblique to the flow axis, since this source is clearly asymmetric in our H2 images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号