首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
梁冰  陈楠  姜利国 《中国岩溶》2011,30(3):359-362
为了更好防治煤矸石山对环境危害,研究了不同温度和CO2分压条件下煤矸石内各矿物的溶解-释放规律。应用美国地质调查所开发的水化学模拟软件PHREEQC对在不同温度和CO2分压条件下煤矸石内各矿物的溶解度进行了水化学模拟。研究结果显示,煤矸石内所有矿物溶解度都随着温度的上升而增大,然而随着溶液中CO2分压的不断增大这种趋势逐渐转变为随着温度的上升溶解度逐渐减小;煤矸石内所有矿物(石英除外)溶解度随着CO2分压的增大而增大。碳酸盐(方解石)的溶解度随着CO2分压升高呈现非线性迅速增大的趋势,其它盐类的溶解度随着CO2分压的升高增大的速率较为缓慢。在煤矸石山内部,某处煤矸石淋溶液内CO2分压越高,其化学组分浸出量也就越大;在矸石山透气性良好时,温度越高煤矸石化学成分的浸出量越大。   相似文献   

2.
研究考虑活度情况下地下水开放系统在不同温度和CO2分压下碳酸的3种存在形式与pH值之间的关系.分析地下水中CO2分压为10~105Pa,温度为0~30℃变化时pH0的变化情况,发现在一定CO2分压下,pH0值随温度的升高而降低并趋于一个稳定的值.在一定温度下,pH0值随CO2分压的升高而降低.但不论地下水的温度和CO2分压如何变化,pH0=7.92~8.60.这些结论更符合地下水实际情况,更有利于对水分析资料的审查.  相似文献   

3.
利用自行研制的高温高压反应釜,在不同温度、压力和矿化度条件下测试CO2在地层水中的溶解度。实验结果表明:温度一定的条件下,CO2在水中的溶解度随压力的增加而增加;压力一定的条件下,CO2在水中溶解度的主要变化趋势为随温度的增加而降低,当温度大于100℃、压力在22 MPa左右时,CO2在地层水中的溶解度将发生异常,出现低压(小于22 MPa)时随温度的增加而降低,高压(大于22 MPa)时随温度的增加而略微升高;在温度压力都一定的条件下,CO2在水中的溶解度随矿化度的增加而降低。并且,在新测得的实验数据和已有的实验数据的基础上,通过修正PR-HV状态方程中的参数,建立了一个能够精确计算CO2在水中溶解度的模型;并将该模型与其他模型对比。对比结果表明,该模型计算精度最高,平均相对误差仅为2.69%。  相似文献   

4.
煤层CO2地质封存可实现CO2减排和增产煤层气双重目标,是一种极具发展前景的碳封存技术。相对于其他封存地质体而言,煤的微孔极其发育,煤层CO2封存机制与煤中气、水微观作用关系密切,其内在影响机理尚不清楚。以2个烟煤样品的系统煤岩学分析测试为基础,构建了煤的大分子结构及板状孔隙空间模型,进一步采用分子动力学方法模拟了不同温、压条件下、不同煤基质类型表面的CO2和水的润湿行为,揭示煤层CO2注入后引起的水润湿性变化规律,初步阐明煤层CO2封存的可注性、封存潜力、封存有效性等影响因素及微观作用机理。结果表明:(1)影响煤润湿性的主要因素是煤中极性含氧官能团,其含量越高煤的润湿性越强;(2)煤中注入CO2后,CO2通过溶解作用穿透水分子层与水分子发生竞争吸附,从而减小水在煤表面润湿性;(3)随注入压力增大和温度降低,煤表面CO2吸附量增多,对氢键破坏作用增强,润湿性减弱越明显;(4)亲水性煤层CO<...  相似文献   

5.
为提高煤层CH4抽采效率,利用自主研发的实验系统,模拟超临界CO2在深部煤层中驱替CH4的过程,开展了不同温度和注入压力条件下原煤试样中超临界CO2渗流、吸附及驱替CH4实验。结果表明:在恒定温度条件下,随着超临界CO2注入压力逐渐增大,煤体渗透率提高,CO2吸附量增加。超临界CO2注入压力和温度对驱替效果影响显著。不同温度条件下,当超临界CO2注入压力从8 MPa增至12 MPa,CH4驱替量平均增长了0.076 cm3/g,CH4驱替效率增加了17%~23%,超临界CO2置换体积比呈线性递减趋势;相同注入压力条件下,温度每升高10℃,驱替效率平均增加8%,置换体积比平均下降0.5。研究结果为高效抽采煤层CH4和实现CO2封存提供理论依据。   相似文献   

6.
二元气驱技术(CO2/N2-ECBM)已成为煤层气增产的重要手段,明确CO2/N2在煤层中的竞争吸附规律以及对煤层物性的影响具有重大意义。利用分子模拟软件Materials Studio建立延川南煤层气实际区块温度、压力条件下的煤分子模型。基于巨正则蒙特卡洛(GCMC)方法研究CO2/N2交替驱替煤层气技术中各注入阶段对CH4吸附的影响,明确CO2、N2对煤层孔渗物性的影响规律。结果表明:在CO2注入阶段,煤层中甲烷迅速解吸;煤中气体吸附总量上升,煤基质膨胀效应增强,导致煤的孔隙体积降低。而转N2注入后,由于N2分压作用使得CH4、CO2吸附量呈现出不同程度的降低;当ωN2CO2≤0.6时煤分子中气体总吸附量迅速降低,而当N2饱和吸附后气体总吸附量保持稳定。煤层孔渗物性随着气体吸附总量呈现出迅速增大后趋于平缓的趋势。此外,ωN2CO2>0.6后N2吸附率迅速降低,这会使得产出气中CH4纯度较低,导致后期提纯成本大大增加。因此,当ωN2CO2=0.6左右时,CH4解吸量为最大值,煤孔隙率较高,最有利于煤层气的开发。   相似文献   

7.
深部煤层游离态CO2理论存储容量随深度增加而变化。基于山西沁水盆地南部煤样测试基本数据,对游离态CO2煤层存储容量进行计算,并分析其随深度变化规律。基于建立的煤层游离态CO2存储容量计算模型显示,煤储层游离态CO2存储容量受孔隙度、含气饱和度、地层温度、地层压力等共同作用的影响。CO2注入后改变煤储层物性会导致理论存储量有不同程度增加,但存储量增值与实验煤样颗粒大小有关;应力作用下煤储层孔隙度随埋深呈负指数降低规律会显著降低CO2存储容量,含气饱和度增大会显著增大存储量。   相似文献   

8.
为了研究等压扩散条件下不同变质程度煤中CO2置换CH4特征规律,选择无烟煤、瘦煤和气肥煤3种煤样,进行了不同等压扩散压力下的等压扩散置换实验。实验结果表明:随着煤变质程度的增加煤吸附CH4和CO2的能力表现出逐渐增强的趋势,且CO2的吸附量大于CH4的吸附量;随着实验点扩散压力的增加,CO2对CH4的绝对置换量和置换率均随之增加,CO2对CH4的注置比却随之降低。在实验煤样变质程度范围内,CH4置换率与煤变质程度和CO2注置比均呈负相关关系。研究成果对井下注CO2置换煤层CH4的工程技术和理论具有指导意义。   相似文献   

9.
亨利定律的引入,使煤层气在溶解过程中发生的组分分馏得以合理解释,为煤层气的富集成藏研究提供了信息。采用半经验公式计算CH4(甲烷)和CO2(二氧化碳)的亨利常数,根据逸度因子公式求取CH4和CO2的逸度,根据亨利定律计算出不同埋深下CH4和CO2在地层水中的溶解度。结果表明:CH4溶解度随埋深的增加而增加;CO2的溶解度则随埋深的增加而先增加后(在800 m深度以下)又减小,但CO2与CH4溶解度比率却在不断减小。这就意味着浅部CO2的溶解运移分馏更为活跃,它随深度的增加逐渐减弱。这一认识为圈定煤层气富集区和确定CO2注入(以驱使CH4产出)的最佳温压环境提供了理论依据。   相似文献   

10.
CO2注入煤层会改造储层孔裂隙结构,对提高CO2埋藏和强化甲烷抽采能力产生重要影响。为探究CO2注入后的煤体结构演化规律,选择山西沁水盆地寺河矿无烟煤和新源矿焦煤样品进行模拟实验,通过测试并分析CO2注入前后煤体积参数的变化,得到以下结论:CO2的注入可以溶蚀煤中矿物,增加连通孔隙体积并引起有机质的膨胀;矿物溶蚀对孔隙体积变化的贡献不显著,却导致大量封闭孔转换为连通孔,其中大于40μm的大孔孔隙体积增幅最大;有机质的膨胀量较大,其对孔隙的挤压作用可能会降低煤体的连通性;CO2注入对煤体结构的改造作用受煤级和模拟埋深条件的共同影响。   相似文献   

11.
为揭示深部煤层超临界CO2(ScCO2)吸附特征及其控制机理,以沁水盆地南部余吾矿、寺河矿、成庄矿的3号煤为研究对象,通过自制等温吸附仪进行了不同温度(45℃,62.5℃,80℃)、最高压力达到CO2超临界压力以上时的等温吸附实验。研究结果表明:高温高压条件下ScCO2吸附曲线不同于常温常压下CO2吸附曲线,随压力升高ScCO2过剩吸附量和绝对吸附量分别呈4段式和3段式变化,ScCO2达到过剩吸附量峰值出现的压力点具有随温度升高向高压增高的特征;ScCO2过剩吸附量远低于绝对吸附量,无法采用Langmuir吸附模型进行解释;温度对ScCO2吸附抑制明显,水分对ScCO2吸附没有起到抑制作用,灰分含量较高对ScCO2吸附量有明显抑制作用,煤中高镜质组含量和高Rmax对ScCO2吸附具有较明显的促进作用;超临界状态下煤对ScCO2的吸附量大小由微孔和过渡孔所控制,且与微孔比表面积大小有关,高变质煤对ScCO2的吸附能力降低可能是因微孔中矿物充填所致。   相似文献   

12.
查明超临界状态下煤岩对CO2的吸附/解吸特征,能为煤层气开采现场注CO2的注入参数选取提供理论依据。以山西屯留矿的瘦煤和寺河矿的无烟煤为研究对象,借助ISO-300型等温吸附实验仪分别进行了不同温度(35℃、45℃、55℃)、最高压力达到CO2临界压力以上时的吸附/解吸实验。结果表明:超临界状态下,随着压力升高,容量法测得的吸附量存在最大值,不代表煤样的绝对吸附量,而是Gibbs吸附量;根据煤岩在高压下吸附CO2的本质,计算出超临界状态下煤岩吸附/解吸CO2的真实量。超临界状态下煤岩吸附CO2的真实量与压力之间符合langmuir吸附曲线,随着吸附压力的升高,Gibbs吸附量与绝对吸附量之间的差值越来越大;随着温度的升高,煤样的饱和吸附量降低;同样条件下,高变质程度的无烟煤对CO2的饱和吸附量大于瘦煤;超临界状态下煤样对CO2的绝对吸附等温线和绝对解吸等温线是可逆的。   相似文献   

13.
以沁水盆地成庄矿煤样为研究对象,利用实验室自主研发的CO2注入与煤层气强化开采实验模拟装置进行不同有效应力和CO2吸附压力下的煤岩渗透率测试。实验结果表明,煤岩的裂隙压缩系数受到CO2吸附的影响,初始状态下、亚临界CO2吸附和超临界CO2吸附煤样裂隙压缩系数分别为0.066、0.086和0.089。引起裂隙压缩系数改变的原因主要有两方面:CO2和煤中矿物反应提高了煤基质的不连续性;CO2软化了煤基质同时降低了煤岩的力学性质。利用考虑吸附应变以及内部膨胀系数的渗透率模型对实测渗透率进行拟合,发现有效应力和内部膨胀系数成正比。CO2吸附压力和有效应力的增大均提高了煤岩的内部膨胀系数,这影响了煤岩孔裂隙的开度,降低了煤储层的渗透率,并最终降低CO2在煤储层中的可注性。   相似文献   

14.
为了探究Klinkenberg效应及不同状态的Klinkenberg因子在注CO2提高煤层气采收率(CO2-Enhanced Coal Bed Methane,CO2-ECBM)过程中的作用,借助COMSOL有限元软件模拟分析了Klinkenberg因子为0、固定Klinkenberg因子与动态Klinkenberg因子3种状态对CO2-ECBM及有效渗透率的影响,以及CH4与CO2压力随该因子的动态变化情况,并将CH4产气量与工程实际作了对比验证。结果表明,CH4与CO2有效渗透率呈先缓慢增长再急速下降后逐渐趋于平缓的态势,相较于固定Klinkenberg因子或Klinkenberg因子为0,动态Klinkenberg因子影响下的CH4与CO2有效渗透率更大,当Klinkenberg因子为动态变量时,受不同气体的摩尔质量与动力黏度影响,CO2有效渗透率小于CH4有效渗透率。在动态Klinkenberg因子作用下...  相似文献   

15.
煤基CO2地质封存是温室气体减排的重要方式,但也存在地下CO2泄露的安全风险。为了评估煤基CO2地质封存的安全性,采集沁水盆地南部胡底矿3号煤顶板泥质粉砂岩样品,模拟实验研究“CO2-H2O-岩”反应中柱状试样人工裂缝形貌、全岩矿物组成与CO2导流能力变化。结果表明:方解石脉溶蚀、次生矿物充填与外部有效应力共同影响试样裂缝导流能力。原始渗透率为0.016×10–3μm2的低渗试样,方解石脉溶蚀导致实验前期渗透率升高;随着反应进行,有效应力主导下裂缝闭合,渗透率呈“先升后降”变化趋势;原始渗透率为3.785×10–3μm2的高渗试样,H2CO3不断溶蚀裂缝壁面长石等矿物,并产生高岭石等次生矿物混合充填于裂缝中,使渗透率持续降低。煤基CO2地质封存过程中,较高的注入压力导致顶板产生人工裂缝;CO2注入施工结束后,次生矿物充填及有效应力增大使裂缝导流能力快速下降,因此,煤中封存CO2沿顶板裂缝长期泄露的风险较低。   相似文献   

16.
研究液态CO2相变特征和煤体对气相CO2和CH4的吸附规律,在不同煤质、温度和平衡压力条件下,实验得出在无烟煤和焦煤的煤体中CO2竞相吸附的能力是CH4的1.8~2.4倍。研究发现,液态CO2在0.2 s内完成相变过程,体积瞬间膨胀至794倍。通过理论研究建立了采用不耦合致裂条件下的爆破孔初始冲击压力峰值、裂隙圈有效半径和爆破致裂钻孔孔径3个主要爆破参数变量的数学模型。采用液态CO2瞬间相变出口压力为200MPa的致裂器,进行致裂爆破本煤层增透现场实验研究,研究得出距离致裂爆破孔2m和3m的控制孔在爆破后单孔瓦斯抽采纯量提高至6倍和4倍,单孔瓦斯抽采浓度提高至5倍和4倍,单孔瓦斯抽采浓度保持在35%~55%,而距离致裂爆破孔4m的控制孔在爆破5d后瓦斯抽采效果衰减至爆破前的水平。现场试验得出初始冲击压力峰值200MPa和钻孔孔径0.094m时,本煤层致裂爆破裂隙圈有效半径为3m。  相似文献   

17.
Recovery of highly viscous oil from some of the deeper oil sand deposits of northern Alberta, Canada, is made possible through injection of heat by steam or hot water flooding of the reservoirs. The rise in temperature lowers the viscosity of the bitumen allowing it to be produced. The increase in temperature accelerates the reactions between the matrix and pore minerals of the formation and can produce reaction products which can significantly alter the permeability of the reservoir. If carbonate minerals are present in the reservoir, inorganic CO2 may also be a reaction product.

The Grand Rapids reservoir consists of relatively clean quartz sand containing 7 wt.% kaolinite, 1 wt.% calcite and a trace of smectite. Core floods of this sand by a neutral NaCl brine at 265°C, 8.2-MPa overburden pressure, 6.0-MPa fluid pressure and a flow velocity of 0.4 pore volumes per hour were used to determine the potential for hydrothermal reactions between clays and carbonate minerals in a natural reservoir sand. Reaction progress was followed by continuous sampling of the production fluids. The produced water was analyzed and the phase chemistry was calculated back to the run conditions using the computer code SOLMNEQF.

Mass-balance considerations on produced total inorganic carbon (TIC) show that calcite broke down very quickly, the maximum in CO2 production occurring after only one pore volume of fluid had passed through the core. The Ca released from the breakdown of calcite was incorporated in the formation of smectite as was shown by post-run clay mineral analysis by the following unbalanced chemical reaction:

calcite+kaolinite+H4Si04Ca-smectite+H20+CO2

Silica was supplied by the dissolution of quartz. Silica concentrations analyzed in the production fluid were depressed from those predicted by previously published quartz rate equations because of the rapid rate of smectite synthesis.

These observations were used to formulate the following model for the passage of the first pore volume of NaCl brine through the core. Initially calcite is present throughout the core. As the brine enters the inlet of the core, it equilibrates with calcite. The brine remains in equilibrium with calcite throughout the core as quartz and kaolinite react to form smectite. This model was tested with the computer code PATH.UBC using CO2 production as a measure of the progress variable ξ. A best fit was achieved to the produced fluid chemistry by varying relative dissolution rates of kaolinite and quatz and varying the suppression of precipitation of certain minerals.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号