首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a highly dynamic environment with sources and sinks of energy, flux tubes do not in general obey local conservation laws, nor do the ensembles of flux tubes that exhibit collective phenomena. We use the approach of energetically open dissipative systems to study nonlinear waves in flux tubes and their role in the dynamics of the overlying atmosphere. We present results of theoretical and observational studies of the properties of moving magnetic features (MMFs) around sunspots and the response of the overlying atmosphere to various types of MMFs. We show that all types of MMFs, often having conflicting properties, can be described on a unified basis by employing the model of shocks and solitons propagating along the penumbral filaments co-aligned with Evershed flows. The model is also consistent with the response of the upper atmosphere to individual MMFs, which depends on their type. For example, soliton-type bipolar MMFs mainly participate in the formation of a moat and do not carry much energy into the upper atmosphere, whereas shock-like MMFs, with the appearance of single-polarity features, are often associated with chromospheric jets and microflares.  相似文献   

2.
利用Hinode卫星观测的单色像和磁图,对出现在黑子半影内的35对偶极运动磁特征进行形态特征、运动速度以及低层太阳大气响应3方面的研究,得出以下结论:(1)偶极运动磁特征正负两极成对出现在黑子半影较垂直的磁场之间并向着半影外边界运动,间接验证了偶极运动磁特征起源于黑子半影水平磁场,在2-8小时的时间间隔内,同一位置上会反复出现形态特征和运动速度相似的偶极运动磁特征,为海蛇状磁力线模型提供了证据支持. (2)光球和色球在偶极运动磁特征向外运动过程中会出现增亮,说明偶极运动磁特征会加热中低层太阳大气.(3)偶极运动磁特征的出现位置和半影磁场结构分布符合非梳子状黑子半影结构特征.  相似文献   

3.
We present new measurements of Moving Magnetic Features (MMFs) based on the observations of the active region NOAA 5612 made at Big Bear Solar Observatory (BBSO) on 2 August, 1989. We check the existing theoretical models against our new observations and discuss the origin of MMFs conjectured from the deduced observational constraints.  相似文献   

4.
By using the monochromatic images and magnetograms obtained with the satellite Hinode, 35 pairs of bipolar moving magnetic features (MMFs) in sunspot penumbrae are studied in the following three aspects: the morphological characteristics, velocities of motion and responses in low atmospheric layers. Then the following conclusions are drawn. (1) The bipolar MMFs appear in pairs of positive and negative polarities, are located in the midst of the approximately vertical magnetic fields in spot penumbrae, and move toward the outer boundaries of penumbrae. This indirectly justifies that the bipolar MMFs originate in the horizontal magnetic fields of penumbrae. In the time intervals of 2-8 hours and at the same positions, there appear the bipolar MMFs with similar morphologial characteristics and velocities of motion. This povides an evidence which supports the model of magnetic lines in the shape of sea serpent. (2) In the process of motion of bipolar MMFs there may appear brightenings in the photospere and chromosphere, and this implies that the middle and low layers of solar atmosphere are heated by the bipolar MMFs. (3) The sites of occurrence of bipolar MMFs and the distribution of penumbral magnetic field agree with the structural characteristics of uncombed sunspot penumbrae.  相似文献   

5.
In this paper, three-dimensional linear force-free field configurations that can be associated with filaments are considered. It is assumed that the field configurations are suitable to represent filaments if they contain magnetic dips. With the photospheric flux distribution chosen to be an arcade with a dextral/sinistral axial component, it is found that dipped configurations exist only for large values of alpha (where, ×B=B). The dips always lie above the polarity inversion line in the centre of the channel between the flux regions. When the dips are viewed from above to a depth of 1 Mm they resemble closely the shape of filaments viewed in absorption on the solar disk. As the magnitude of alpha increases, the horizontal and vertical extent of the dips also increases, giving active-region filaments for low values of alpha and quiescient filaments for high values of alpha. Dextral filaments only form for negative values of alpha and sinistral filaments for positive values of alpha. The portion of the field line that is dipped is always of inverse polarity and the magnitude of the field in the dipped region increases with height, both of which are consistent with Leroy, Bommier, and Sahal-Bréchot (1983). Overlying the region of dips there are arcades of normal polarity which have the correct left-bearing/right-bearing orientation for dextral/sinistral filaments. When the hypothesis of barbs occurring in dipped field lines is used, barbs that branch out of the main axis and to the right/left for dextral/sinistral filaments can be formed around minority polarity elements on either side of the polarity inversion line. No barbs are found around normal polarity elements. The model reproduces many of the observed features of filament channels, filaments and their barbs.  相似文献   

6.
We investigate the gradients of magnetic fields across neutral lines (NLs) and compare their properties for NLs with and without chromospheric filaments. Our results show that there is a range of preferred magnetic field gradients where the filament formation is enhanced. On the other hand, a horizontal gradient of the magnetic field across an NL alone does not appear to be a single factor that determines if a filament will form (or not) in a given location.  相似文献   

7.
Penumbral oscillations were measured in two opposite parts in the penumbra of a spot, using photographic spectra of Na D lines. Power spectra of velocities show the presence of the 5-min oscillation with lowv rms.Coherence and phase analyses between the velocity fluctuations of the lines are also studied.The results seem to show that the 5-min oscillation is still surviving as a standing or evanescent wave at the height of formation of Na D lines.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

8.
Well-developed filament channels may be present in the solar atmosphere even when there is no trace of filament material inside them. Such magnetic systems with filament channels without filaments can result in coronal mass ejections that might appear to have no corresponding solar surface source regions. In this case study, we analyze CMEs on 9 August 2001 and 3 March 2011 and trace their origins to magnetic systems with filament channels containing no obvious filament material on the days around the eruptions.  相似文献   

9.
High-resolution MDI magnetograms are used to study the pattern of moving magnetic inhomogeneities in sunspots. We examine the inward and outward moving features in sunspots. The velocity of these features is small in the umbra while it is about 0.5 km s–1 in the outer penumbra. The inward and outward moving features may be the possible origin for the long-term fluctuations of magnetic field strength in sunspots.  相似文献   

10.
Bernasconi  P.N.  Rust  D.M.  Georgoulis  M.K.  Labonte  B.J. 《Solar physics》2002,209(1):119-139
Solar Physics - On 25 January, 2000, we observed active region NOAA&;nbsp;8844 with the Flare Genesis Experiment (FGE), a balloon-borne observatory with an 80-cm solar telescope. FGE was...  相似文献   

11.
We present results of investigations into chromospheric velocity oscillations in sunspots, carried out at the Sayan Solar Observatory. It is shown that the “chevron” structures in the space-time diagrams demonstrate wavetrain properties. Such structures are indicators of a propagating wave process and they are typical of many sunspots. In the authors’ opinion, three-minute umbral oscillations are not the source of running penumbral waves (RPW). It is very likely that umbral oscillations and RPW initially propagate along different magnetic field lines. We explain the decrease in RPW propagation velocity and frequency in the outer penumbra, as compared with the inner, by the combined action of different frequency modes. To better reveal the properties of these modes, frequency filtering was used. Our measurements of the RPW (five-minute mode) wavelength and RPW propagation velocity in different sunspots vary from 12 to 30 and from 28 to 60 – 70 km s−1 correspondingly.  相似文献   

12.
In this paper the effect of a small magnetic element approaching the main body of a solar filament is considered through non-linear force-free field modeling. The filament is represented by a series of magnetic dips. Once the dips are calculated, a simple hydrostatic atmosphere model is applied to determine which structures have sufficient column mass depth to be visible in Hα. Two orientations of the bipole are considered, either parallel or anti-parallel to the overlying arcade. The magnetic polarity that lies closest to the filament is then advected towards the filament. Initially for both the dominant and minority polarity advected elements, right/left bearing barbs are produced for dextral/sinsitral filaments. The production of barbs due to dominant polarity elements is a new feature. In later stages the filament breaks into two dipped sections and takes a highly irregular, non-symmetrical form with multiple pillars. The two sections are connected by field lines with double dips even though the twist of the field is less than one turn. Reconnection is not found to play a key role in the break up of the filament. The non-linear force-free fields produce very different results to extrapolated linear-force free fields. For the cases considered here the linear force-free field does not produce the break up of the filament nor the production of barbs as a result of dominant polarity elements.  相似文献   

13.
Based on the single-fluid MHD model of Mars space simulation, this paper has studied the magnetic field structure in the near-Mars space and investigated the influence of Martian crustal magnetic anomalies on the magnetic field structure. In the process of the solar wind interaction with Mars, the bow shock and magnetic pile-up region are produced. The interplanetary magnetic lines are curved and deformed while they are towed toward the two poles by the solar wind. The majority of magnetic lines bypass the two poles, then leave behind a ‘V-shaped’ structure in the magnetotail behind Mars. In the crust of Mars, the local magnetic anomalies have a noticeable influence on the magnetic field structure. The magnetic anomalies at different positions and in different intensities interact with the solar wind to form the mini-magnetospheres of different structures and morphologies, such as the towed mini-magnetosphere and the mini-magnetosphere with open magnetic lines. The local magnetic anomalies have changed the near-Mars magnetic field structure, and probably changed the plasma distribution as well.  相似文献   

14.
Pevtsov  Alexei A. 《Solar physics》2002,207(1):111-123
We use Yohkoh soft X-ray telescope data and H full-disk observations to study the evolution of chromospheric filaments and coronal sigmoids in 6 active regions in association with coronal mass ejections (CMEs). In two cases, CMEs are directly observed by the SOHO/LASCO C2 coronagraph. In four cases, other observations (magnetic clouds, geomagnetic storms, sigmoid-arcade evolution) are used as CME indicators. Prior to eruption, each active region shows a bright coronal sigmoidal loop and underlying H filament. The sigmoid activates, erupts and gets replaced by a cusp, or an arcade. In contrast, the H filament shows no significant changes in association with sigmoid eruption and CME. We explain these observations in a framework of the classical two-ribbon flare model.  相似文献   

15.
The locations of barbs of quiescent solar filaments are compared with the photospheric/chromospheric network, which thereby serves as a proxy of regions with enhanced concentrations of magnetic flux. The study covers quiet regions, where also the photospheric network as represented by flow converging regions, i.e., supergranular cell boundaries, contain largely weak magnetic fields. It is shown that close to 65% of the observed end points of barbs falls within the network boundaries. The remaining fraction points into the inner areas of the network cells. This confirms earlier findings (Lin et al., Solar Physics, 2004) that quiescent filaments are basically connected with weaker magnetic fields in the photosphere below.  相似文献   

16.
Chae  Jongchul  Moon  Yong-Jae  Wang  Haimin  Yun  H.S. 《Solar physics》2002,207(1):73-85
Canceling magnetic features are commonly believed to result from magnetic reconnection in the low atmosphere. According to the Sweet–Parker type reconnection model, the rate of flux cancellation in a canceling magnetic feature is related to the converging speed of each pole. To test this prediction observationally, we have analyzed the time variation of two canceling magnetic features in detail using the high-resolution magnetograms taken by the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). As a result, we have obtained the rate and converging speed of flux cancellation in each feature: 1.3×1018 Mx hr–1 (or 1.1×106 G cm s–1 per unit contact length) and 0.35 km s–1 in the smaller one, and 3.5×1018 Mx hr–1 (1.2×106 G cm s–1) and 0.27 km s–1 in the bigger one. The observed speeds are found to be significantly bigger than the theoretically expected ones, but this discrepancy can be resolved if uncertainty factors such as low area filling factor of magnetic flux and low electric conductivity are taken into account.  相似文献   

17.
We have used Stanford magnetic field maps to construct distributions of longitudinal magnetic field gradients in the neighbourhood of polarity inversion lines. The distributions were constructed with proper account of the type of the polarity inversion lines and of the existence or absence of dark filaments above them. It is shown that for polarity inversion lines that pass inside active regions or on their boundary, grad BII distributions for portions of the lines with persisting filament are shifted toward lower values of gradient as compared with grad BII distributions for portions of the lines without filaments. The influence of the spatial resolution of the magnetograms upon polarity inversion line characteristics is discussed.  相似文献   

18.
We present a survey of different kinds of instabilities in the context of radiative colliding flows which greatly contribute to structure formation. In particular, this includes analytical results for different kinds of thin shell instabilities (DI, NDI, NTSI). New numerical results for the non-linear evolution of such instabilities in two dimensions, and their coupling with the thermal cooling instability are presented. The astrophysical implications are briefly outlined, in particular the formation of knots and filaments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Zhou Daoqi 《Solar physics》1993,147(2):225-239
In this paper we suggest that penumbral filaments are a phenomenon of magnetohydrodynamic instability, developed in a stable and uniform magnetic field of sunspots during a dissipation process. We have solved local magnetohydrodynamic disturbance equations and have obtained the necessary condition for filament instability mode, that the ratio of filament length to width must be larger than the ratio of Alfvén speed to sound speed. We have also obtained correlations between two fluctuations from their phase difference. Although there are two correlations between the fluctuation of temperature (or filament intensity) and (1) the fluctuation of magnetic field, and (2) the fluctuation of the flow during the phases of developing and dissipating of the filament, we cannot distinguish whether the correlation is associated with the light filament or dark filament and we cannot decide whether the phase difference is 0° or 180° from tg() = 0. However, we can make a judgment: if the correlation is associated with a light filament during its development phase, it will be associated with a dark filament during its dissipation phase, andvice versa. In addition, there are no correlations between the fluctuations mentioned above for a stable filament, because the phase difference of the filament is changing with time.The phase differences of filaments are related to the existence of a gravitational field.  相似文献   

20.
Thin Threads of Solar Filaments   总被引:1,自引:0,他引:1  
High-resolution images obtained in H with the new Swedish Solar Telescope at La Palma, Spain, have been used for studies of fine-scale threads in solar filaments. The widths of the thin threads are 0.3 arcsec. The fact that the width of the thinnest threads is comparable to the diffraction limit of the telescope of about 0.14 arcsec, at the wavelength of H, suggests that even thinner threads may exist. Assuming that the threads represent thin magnetic strings, we conclude that only a small fraction of these are filled with observable absorbing plasma, at a given time. The absorbing plasma is continuously flowing along the thread structures at velocities 15± 10 kms–1, which suggests that the flows must be field-aligned. In one case where a bundle of thin threads appears to be rooted in the nearby photosphere, we find that the individual threads connects with intergranular, dark lanes in the photosphere. We do not find signs of typical network fields at the roots of the fine threads, as normally evidenced by bright points in associated G-band images. It is suggested that filament threads are rooted in relatively weak magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号