首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Water content is an important physical parameter for soil, vadose zone, and porous aquifer. Accurate measurement of water content in oil-contaminated porous media is critical for the research on oil pollution process and remediation in soil and groundwater systems. In this study, an improved water content calculation formula for oil-contaminated porous media was proposed based on the theory of oven-drying method, and laboratory experiments were conducted to test the applicability and accuracy of the formula for several types of manually prepared oil-contaminated porous media with different water contents. Furthermore, the measuring method and calculation formula, which can be used to determine the water content of porous media sampled from the oil-contaminated sites, were proposed for the first time in this study based on the improved formula. The experimental results showed that the improved formula was very accurate when used to calculate the water contents of diesel-contaminated sand, gasoline-contaminated mild clay, and engine oil-contaminated sand, indicating that it was widely applicable to oils with different volatile ability as well as porous media with different texture. This study meets the urgent need for accurate determination of water content in oil-contaminated porous media, and it solves the technical problem that the existing water content measuring methods cannot be applied directly in the field study.  相似文献   

2.
In many applications in flows through porous media, one needs to determine the properties of subsurface to detect, monitor, or predict the actions of natural or induced forces. Here, we focus on two important subsurface properties: rock permeability and porosity. A Bayesian approach using a Markov Chain Monte Carlo (MCMC) algorithm is well suited for reconstructing the spatial distribution of permeability and porosity, and quantifying associated uncertainty in these properties. A crucial step in this approach is the computation of a likelihood function, which involves solving a possibly nonlinear system of partial differential equations. The computation time for the likelihood function limits the number of MCMC iterations that can be performed in a practical period of time. This affects the consistency of the posterior distribution of permeability and porosity obtained by MCMC exploration. To speed-up the posterior exploration, we can use a prefetching technique, which relies on the fact that multiple likelihoods of possible states into the future in an MCMC chain can be computed ahead of time. In this paper, we show that the prefetching technique implemented on multiple processors can make the Bayesian approach computationally tractable for subsurface characterization and prediction of porous media flows.  相似文献   

3.
A new approach for calculating strain for particulate media   总被引:1,自引:0,他引:1  
Discrete element modelling is a viable alternative to conventional continuum‐based analysis for analysing problems involving localized deformations of particulate media. However, to aid in the interpretation of the results, it is useful to express the results of discrete element analyses in terms of the continuum parameters of stress and strain. A number of homogenization methods have been proposed to calculate strain in discrete systems; however, two significant limitations of these methods remain. First, none of these methods incorporate particle rotation effects satisfactorily, although significant particle rotation occurs in shear bands in both physical tests and numerical simulations of granular materials. Additionally, observations of the particle displacement fields in shear bands in granular materials indicate that the displacements within the localizations are erratic. Consequently, existing linear, local interpolation approaches produce substantial variations in the strain values calculated in adjacent elements in the region of localization, hindering clear visualization of the strain localization as it evolves. A new method of domain discretization for calculating strain is proposed. This method is capable of capturing particle rotation and employs a non‐local meshfree interpolation procedure capable of smoothing the erratic displacements in strain localizations, which better defines their evolution. The proposed method is validated for problems involving both two and three dimensions. A number of methods are compared with the proposed method and pertinent insights are made. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
圈闭有不连续、非流动和非混溶气体的含水层,被称为准饱和含水层。圈闭气体的存在会降低含水层的渗透性能,但准饱和渗透系数、圈闭气体饱和度和驱替速率之间的关系还没有完全被理解。本文通过室内砂性介质的驱替试验开展了圈闭气体饱和度、准饱和渗透系数和驱替速率三者相互关系的研究。研究表明,虽然总体上圈闭气体饱和度随驱替速率的增大而减小,但是在高驱替速率和低驱替速率分别出现了圈闭气体饱和度不随驱替速率变化的等值区间,该“台阶”型曲线可以采用与van Genuchten曲线类似的数学模型来表征,而砂性介质的准饱和渗透系数与圈闭气体饱和度之间呈简单的线性负相关关系。这两个经验模型说明可以用驱替速率定量估算准饱和渗透系数,该关系为利用驱替速率估算准饱和渗透系数提供了理论依据。上述准饱和水力学性质为深入理解准饱和地下水水流提供了依据。另外,驱替速率与圈闭气体饱和度的关系还表明,实验室测量完全饱和渗透系数时,应以大于初始毛细上升速率的速率进行饱和,以避免介质中的空气被水圈闭。  相似文献   

5.
武文华  李锡夔 《岩土力学》2009,30(5):1477-1482
对饱和多孔介质提出了一个含溶混污染物输运(传质)过程的混合元方法,其中污染物输运过程数学模型包含了对流、机械逸散、分子弥散和吸附等机制。固相位移、应变和有效应力,孔隙水压力、压力空间梯度和Darcy速度,污染物浓度、浓度空间梯度和浓度流量在单元内均为独立变量分别插值。基于胡海昌-Washizu三变量广义变分原理,结合可以滤掉虚假振荡的特征线方法,推导出饱和土中水力-力学-传质耦合问题控制方程的单元弱形式,并导出了混合元计算公式。数值模拟证明了所提出的方法可以提供与传统4点积分方案同样精度,同时能够提高计算效率。  相似文献   

6.
7.
In this paper, a multiscale homogenization approach is developed for fully coupled saturated porous media to represent the idealized sugar cube model, which is generally employed in fractured porous media on the basis of dual porosity models. In this manner, an extended version of the Hill-Mandel theory that incorporates the microdynamic effects into the multiscale analysis is presented, and the concept of the deformable dual porosity model is demonstrated. Numerical simulations are performed employing the multiscale analysis and dual porosity model, and the results are compared with the direct numerical simulation through 2 numerical examples. Finally, a combined multiscale-dual porosity technique is introduced by employing a bridge between these 2 techniques as an alternative approach that reduces the computational cost of numerical simulation in modeling of heterogeneous deformable porous media.  相似文献   

8.
A pore-scale numerical model based on Smoothed Particle Hydrodynamics (SPH) is described for modelling fluid flow phenomena in porous media. Originally developed for astrophysics applications, SPH is extended to model incompressible flows of low Reynolds number as encountered in groundwater flow systems. In this paper, an overview of SPH is provided and the required modifications for modelling flow through porous media are described, including treatment of viscosity, equation of state, and no-slip boundary conditions. The performance of the model is demonstrated for two-dimensional flow through idealized porous media composed of spatially periodic square and hexagonal arrays of cylinders. The results are in close agreement with solutions obtained using the finite element method and published solutions in the literature. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
非饱和介质中热能传输及水分迁移的数值积分解   总被引:1,自引:0,他引:1  
白冰  刘大鹏 《岩土力学》2006,27(12):2085-2089
在给出非饱和介质热能-水分传输的耦合质量控制方程和基于Fourier热传导定律的热能平衡方程的基础上,对热能传输及水分迁移的基本特征和机理进行了分析。其中,考虑了温度势、吸力势和重力势的耦合作用影响。给出有热源时控制方程的简化形式,并对半无限体自由表面作用平面热源条件下介质内非稳态温度场、体积含水率分布场进行数值积分求解。利用这些解答给出常热源强度和变热源强度两种情况下,温度场随时间的变化特征以及水分迁移的演化过程,并分析了重力项对计算结果的影响。  相似文献   

10.
When porous, fluid-saturated, bodies of geologic dimensions are subjected to temperature gradients on the order of the normal geothermal gradient (25°C/km) it is shown that large (km) scale eddy currents will spontaneously arise and persist in these bodies. The velocity of these fluid currents is on the order of 1 meter per year, but taken over a period of several million years, the mass flux accompanying the fluid flow is large enough to produce significant porosity changes. It is shown that diffusive mass transfer is generally a negligible component of the total mass flux when characteristic distances are greater than grain diameters and it is concluded that most post-depositional reservoir cementation is due to slowly circulating fluids. In terms of a broad perspective, reservoir diagenesis can be regarded as a low heat flow analogue of hydrothermal alteration, occupying the low fluid flow regime of the spectrum, and passing into the hydrothermal regime as the heat flow and fluid velocities increase.  相似文献   

11.
We present a method to transform the governing equations of multispecies reactive transport in porous media. The reformulation leads to a smaller problem size by decoupling of equations and by elimination of unknowns, which increases the efficiency of numerical simulations. The reformulation presented here is a generalization of earlier works. In fact, a whole class of transformations is now presented. This class is parametrized by the choice of certain transformation matrices. For specific choices, some known formulations of reactive transport can be retrieved. Hence, the software based on the presented transformation can be used to obtain efficiency comparisons of different solution approaches. For our efficiency tests, we use the MoMaS benchmark problem on reactive transport.  相似文献   

12.
In this paper, we present a semi-implicit method for the incompressible three-phase flow equations in two dimensions. In particular, a high-order discontinuous Galerkin spatial discretization is coupled with a backward Euler discretization in time. We consider a pressure-saturation formulation, decouple the pressure and saturation equations, and solve them sequentially while still keeping each equation implicit in its respective unknown. We present several numerical examples on both homogeneous and heterogeneous media, with varying permeability and porosity. Our results demonstrate the robustness of the scheme. In particular, no slope limiters are required and a relatively large time step may be taken.  相似文献   

13.
Flows of multiple fluid phases are common in many subsurface reservoirs. Numerical simulation of these flows can be challenging and computationally expensive. Dynamic adaptive mesh optimisation and related approaches, such as adaptive grid refinement can increase solution accuracy at reduced computational cost. However, in models or parts of the model domain, where the local Courant number is large, the solution may propagate beyond the region in which the mesh is refined, resulting in reduced solution accuracy, which can never be recovered. A methodology is presented here to modify the mesh within the non-linear solver. The method allows efficient application of dynamic mesh adaptivity techniques even with high Courant numbers. These high Courant numbers may not be desired but a consequence of the heterogeneity of the domain. Therefore, the method presented can be considered as a more robust and accurate version of the standard dynamic mesh adaptivity techniques.  相似文献   

14.
Under certain physically reasonable assumptions, three-phase flow of immiscible, incompressible fluids can be described by a 2×2 nongenuinely nonlinear, hyperbolic system. We combine analytical solutions to the corresponding Riemann problem with an efficient front-tracking method to study Cauchy and initial-boundary value problems. Unlike finite difference methods, the front-tracking method treats all waves as discontinuities by evolving shocks exactly and approximating rarefactions by small entropy-violating discontinuities. This way, the method can track individual waves and give very accurate (or even exact) resolution of discontinuities. We demonstrate the applicability of the method through several numerical examples, including a streamline simulation of a water-alternating-gas (WAG) injection process in a three-dimensional, heterogeneous, shallow-marine formation.  相似文献   

15.
A finite element procedure is developed to accurately locate the free surface of unconfined seepage flow through porous media. The free surface is taken as the boundary between wet and dry soils, with flow in the saturated region characterized by Darcy's law. The method involves equations and meshing which are fully consistent with a general formulation for geotechnical engineering problems involving simultaneous solution of pore fluid pressures and soil skeleton displacements. Accuracy and versatility of the proposed procedure are demonstrated by solving various unconfined seepage flow problems through earth structures. Free surfaces and flownets are presented for the calculated flow fields.  相似文献   

16.
Improved knowledge of processes determining groundwater quality is an important precondition for the solution of various ecological and water management problems. In areas with highly fluctuating groundwater levels, time-limited access, local pollution sources or temporary interactions between surface water and groundwater, a temporary groundwater sampling technique could be of advantage. Furthermore, depth-specific sampling is of high value for investigating groundwater pollution related to seepage or surface water infiltration. A stainless steel core probe has been developed to obtain groundwater samples and to measure the hydraulic head distribution at various defined depths. The sampling technique is applicable only for non-volatile water constituents. An advantage of the core probe is that it can be driven into soil or sediments using ordinary low cost percussion equipment. The probe enables hydraulic head measurements and water sampling over vertical intervals of 0.3 m. Results from field experiments using the stainless steel core probe were in good correspondence with results from groundwater sampling at nearby observation wells. In the upper layer of the aquifer, the intrinsic spatial change in concentrations of sulphate, chloride and other water constituents is a function of distance between observation points and groundwater surface. Results indicate strong effects of a fluctuating groundwater level on groundwater quality at certain depths.  相似文献   

17.
The present study investigates propagation of a cohesive crack in non‐isothermal unsaturated porous medium under mode I conditions. Basic points of skeleton deformation, moisture, and heat transfer for unsaturated porous medium are presented. Boundary conditions on the crack surface that consist of mechanical interaction of the crack and the porous medium, water, and heat flows through the crack are taken into consideration. For spatial discretization, the extended finite element method is used. This method uses enriched shape functions in addition to ordinary shape functions for approximation of displacement, pressure, and temperature fields. The Heaviside step function and the distance function are exploited as enrichment functions for representing the crack surfaces displacement and the discontinuous vertical gradients of the pressure and temperature fields along the crack, respectively. For temporal discretization, backward finite difference scheme is applied. Problems solved from the literature show the validity of the model as well as the dependency of structural response on the material properties and loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A major limitation of the use of high-resolution groundwater models on a regional scale for resource management by water companies is the excessive RAM requirements of such models which surpass the capacity of today's PCs. A strategy is presented to overcome this problem by using overlapping domain decomposition techniques. Furthermore, because very long computing time is the bottleneck for the practical use of this technique for large groundwater models, an analysis is also presented of a number of methods implemented to increase calculation performance. The approach presented here is characterized by a fairly simple structure that represents a generalized relaxation algorithm. It can be adapted for use with finite element as well as with finite difference methods. Electronic Publication  相似文献   

19.
成层多孔粘弹性地基在轴对称荷载作用下的解   总被引:1,自引:0,他引:1  
于立 《岩土力学》2001,22(3):276-280
给出一种有效的解析方法求解成层多孔粘弹性地基在轴对称荷载作用下的固结问题,通过关于时间t的拉普拉斯变换和关于半径r的亨克尔变换,将控制偏微分方程转化为常微分方程,从而得到用常微分短阵方程形式表示的控制方程,基于矩阵常微分方程的解以及拉普拉斯,亨克尔逆变换,可得到该固结问题的解,该方法理论及计算简捷,通过算例比较了该方法的精度,并研究了地基的粘弹性特性对固结过程的影响。  相似文献   

20.
刘红岩  李俊峰 《岩土力学》2016,37(Z1):95-100
作为岩体组成部分的非贯通节理对岩体力学特性有着重要影响,然而几乎目前所有的岩体损伤变量计算方法都仅考虑节理几何参数对岩体力学特性的影响。对含单组非贯通节理的岩体力学特性进行研究,提出一个能够同时考虑节理几何及强度参数对岩体力学特性影响的新的岩体损伤变量计算方法。首先,采用弹性余能等效假设代替Lemaitre应变等效假设研究由节理引起的岩体各向异性损伤,并基于断裂力学中单个节理引起的附加应变能增量与损伤力学应变能释放量相关联的观点,推导出由单条节理引起的损伤变量计算公式。其次,根据断裂力学理论获得了单轴压缩下单条节理尖端应力强度因子(SIF)KⅠ、KⅡ的计算公式。最后,通过考虑节理间的相互作用给出了单组单排或多排节理尖端应力强度因子KⅠ、KⅡ的计算公式,得到了单组节理引起的岩体损伤变量计算公式,并与已有试验结果的对比分析证明了该公式的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号