首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
点云滤波是机载LiDAR数据处理的重要步骤.现有滤波算法大部分要建立点云之间的索引关系,增加了算法的复杂度;或需要对原始数据进行内插,导致原有精度损失.本文在对LiDAR点云数据的高程进行统计分析的基础上,引入模糊C均值聚类分析算法,针对大区域平坦复杂城区数据,无须建立索引或进行内插,能够快速简单地实现地面点与非地面点的分类.实验结果表明,该方法切实可行,能够较好地满足精度需求.  相似文献   

2.
针对机载LiDAR道路点云提取过程中自动化提取困难,停车场、水泥地以及与道路相连的地面点难以去除等问题,提出一种三角网约束与密度聚类相结合的机载LiDAR道路点云提取方法。在已有滤波结果的基础上,该方法首先根据道路点云样本的强度信息提取初始道路点,建立Delaunay三角网,运用三角网边长约束精化初始道路点;然后,通过密度聚类算法提取连通性较好且密度较大的独立三角网;最后,采用数学形态学算法优化道路边缘,确定最终道路点。实验选取国际摄影测量与遥感协会提供的两组城市机载LiDAR点云数据进行道路点云提取,结果表明:本文算法可以较好地进行道路点云的自动提取,且对不同类型的道路具有良好的自适应性,验证了算法的可靠性。  相似文献   

3.
针对现有胸径提取精度不够高、自动化程度低等不足,基于地基激光雷达胸径切片点云数据,该文提出了一种改进K均值聚类的林木胸径提取方法.利用约束条件优化初始种子点的选择原则,避免随机种子点选择造成聚类结果陷入局部最优;采用拐点法自适应确定聚类目标类别数目,提高单木胸径点分割的自动化程度;根据点云与类别中心统计参数识别并剔除非目标对象点,通过圆模型参数求解实现胸径值计算.结果 表明:改进后的K均值聚类能快速实现林木胸径点的批量化提取,无须林木数目、样地大小等先验知识,具有自动化程度高、抗噪性强的优势.该研究对地基激光雷达在林业资源调查及生产管理应用具有一定的实际应用参考价值.  相似文献   

4.
针对机载LiDAR建筑物点云提取过程中易受植被的影响的问题,本文提出了一种机载LiDAR建筑物点云的渐进提取算法.首先通过布料模拟滤波算法对地面点云与非地面点云进行区分,在此基础上利用最大类间方差法算法(Otsu)对非地面点云进行阈值分割,提取初始建筑物点云;然后根据点云的连通性对初始建筑物点云进行密度聚类分割(DBS...  相似文献   

5.
道路是建设数字交通和数字城市的重要组成部分,也是空间地理信息的重要元素。针对传统遥感技术提取道路效率低、自动化程度不高以及易受周围环境影响等问题,基于无人机搭载LiDAR测量系统获取的某城郊结合区的点云数据,提出一种点云数据预处理、道路点云分级提取和道路边界提取算法。该算法首先对获取的LiDAR点云原始数据进行去噪处理,再结合曲面拟合滤波和点云几何特征提取包含道路在内的地面点云,然后利用点云的强度信息初提取道路点云,针对与道路材质相似的停车场等地物点云,在构建TIN的基础上,使用边长和面积约束进一步对道路点云进行精提取,最后使用α-shape算法对道路边界进行提取,并利用算法对实测的点云数据进行道路提取,以准确率和误分率对本文算法进行定量分析,结果表明提出的道路提取算法能够快速准确地提取道路点云。  相似文献   

6.
融合空谱特征的车载LiDAR点云道路标识线提取   总被引:1,自引:0,他引:1  
道路标识线是三维道路场景中重要的交通标识之一。自动提取点云场景中的标识线信息对于道路路宽测量、自动驾驶等任务具有十分重要的意义。本文提出了一种基于空谱特征的车载Li DAR点云道路标识线提取方法。该方法充分考虑车载激光点云中道路标识线的颜色、空间邻域和高程等位置关系,直接对点云数据进行自动分类,提取道路标识线。为了验证本文方法的有效性,采用高速公路路段场景的车载激光点云数据进行试验,从中选取训练数据及测试区域进行道路标识线提取试验。最后,本文基于手动标记数据验证本文方法的效果,道路标识线提取总体精度为99.64%。  相似文献   

7.
在城区的机载LiDAR点云中一般存在大量打在树木上的点,从点云中提取的树木点可以应用于城区绿化面积和树木参数的估计,以及树木的建模。针对城区环境,本文在综合分析树木点和其他地物空间分布模式的基础上,提出了一种只利用点云的几何性质,结合点云空间分布模式来提取树木点的方法。实验表明,该方法可以取得很高的分类精度,卡帕系数为0.9713。  相似文献   

8.
为提高机载LiDAR点云数据的单木分割精度和效率,本文提出了一种基于Nystr?m的谱聚类算法。该算法基于谱聚类方法,同时引入了mean shift体素化和Nystr?m方法,在保持谱聚类算法优越表现的同时,大幅降低了谱聚类算法的空间和时间复杂度。首先,用mean shift方法将点云数据转换到体素空间以合理压缩数据量,使用带有体素权重的高斯相似度函数在体素空间中构造相似图。然后,使用Nystr?m方法计算相似度矩阵的近似特征向量和特征值。接下来,使用K-means方法在特征空间中进行聚类,并将结果映射回原始点集以获得单木的聚类点。最后,直接从单木聚类中获取单木参数。在黑龙江省孟家岗林场的实验结果表明:本算法有效改进了谱聚类算法,以牺牲5%的分割精度为代价将分割效率提升了约96倍;与K-means方法相比,本算法在分割精度和计算效率方面均表现更优;从分割结果中提取的树高参数具有较高的精度,R2和RMSE值分别为0.86和1.62 m。本文提出的基于Nystr?m的谱聚类算法是一种有效的机载LiDAR点云分割方法,可以用来进行单木点云分割和单木因子提取。  相似文献   

9.
针对现有算法从LiDAR点云中提取复杂建筑物屋顶面不完整、阈值难以设置的问题,提出一种结合点云空间分布的法向量密度聚类提取屋顶面点云方法。通过构建Delaunay三角网,计算建筑物LiDAR点云的法向量;在分析建筑物点云空间和法向量分布特点的基础上,定义一种邻域关系度量屋顶面点云之间的相似性,并利用提出的算法聚类建筑物点云,得到屋顶面片点云粗提取结果;通过构建屋顶面片缓冲区,经面片处理得到建筑物各屋顶面的完整点云。选取不同复杂程度的建筑物进行实验,结果表明,算法能有效提取复杂建筑物屋顶面点云,具有较好的适应性,并能为建筑物三维重建提供可靠的屋顶面信息。  相似文献   

10.
机载激光雷达(LiDAR)点云滤波是点云数据处理的关键步骤,决定着后续派生品应用的精细程度。针对复杂场景区各种地物的交错性和多态性、地形的突变(断裂)性、相邻地物和地面点高程的相似性等导致的难以区分地物点和地面点瓶颈,本文提出了一种基于多特征聚类的点云层次滤波方法。本文方法首先耦合点云几何和物理信息进行多特征点云聚类,然后发展一种顾及地形断裂的地面点簇识别方法捕捉各类地面点,最后利用捕捉到的地面点构建初始地面参考面,并借助多尺度层次点云滤波方法进一步查找原始点云中的地面点。以4组地形复杂且建筑物和植被混杂区点云数据为试验数据,将本文方法与6种代表性滤波算法对比表明,本文方法的平均总误差最小、滤波性能最优、稳定性最高。  相似文献   

11.
机载LiDAR点云数据能提供回波强度和地面粗糙度指数,为遥感信息自动提取增添了有价值的约束信息。将这些信息引入到道路自动提取之中,结合光谱特征和道路描述因子建立了一种面向对象的道路联合提取方法。首先,由点云数据衍生归一化数字表面模型(nDSM)和粗糙度指数;然后对配准后的多源数据进行多分辨率分割,进而使用粗糙度指数和回波强度、道路描述因子等特征进行分类;最后,去除道路噪声,并获取准确的道路骨架网。实验结果表明,该方法对道路提取的准确度达95%以上。  相似文献   

12.
对于利用机载LiDAR点云数据提取城区道路提出一种新的思路。首先利用机载LiDAR点云数据的高程和强度属性对城区道路进行初始提取,获得初始道路点云;其次采用距离分割法和基于RANSAC算法的分割方法精化初始道路点云,有效剔除停车场等与道路相似的区域;最后采用数学形态学细化方法提取道路中心线。实验结果表明,该方法可以较正确和完整地提取城区道路。  相似文献   

13.
提出一种基于离散点的道路中心线提取方法。在利用高程、强度和几何形状等多特征逐步约束提取出条带道路点的基础上,采用迭代Meanshift算法将条带道路聚集成线状点集,并通过分段Hough变换检测出矢量道路中线。实验表明,该方法克服了传统中心线提取方法中的精度损失,提高了准确度。  相似文献   

14.
基于边缘检测算法的LiDAR数据建筑物提取   总被引:4,自引:0,他引:4  
LiDAR技术可以快速获取地形表面高精度3维信息。基于LiDAR数据提取建筑物目标是这一技术的重要应用之一。探讨了一种基于LiDAR点云数据生成不同比例尺的DSM深度影像,然后利用边缘检测算子提取建筑物边缘的方法。实验证明,该方法不需要其他辅助数据,可以从LiDAR点云数据中提取建筑物边缘,并滤除了许多干扰信息。这种方法为基于LiDAR数据提取建筑物目标提供了新的思路。  相似文献   

15.
LiDAR技术可以快速获取地形表面高精度3维信息。基于LiDAR数据提取建筑物目标是这一技术的重要应用之一。探讨了一种基于LiDAR点云数据生成不同比例尺的DSM深度影像,然后利用边缘检测算子提取建筑物边缘的方法。实验证明,该方法不需要其他辅助数据,可以从LiDAR点云数据中提取建筑物边缘,并滤除了许多干扰信息。这种方法为基于LiDAR数据提取建筑物目标提供了新的思路。  相似文献   

16.
利用机载LiDAR点云数据提取城区道路   总被引:3,自引:1,他引:3  
提出一种从机载LiDAR点云中提取城区道路的方法。首先,利用机载LiDAR点云的高程和强度属性,对末次回波点云进行去噪、滤波和分类后获取初始道路点云;然后使用基于边长和面积阈值的约束Delaunay不规则三角网方法精化初始道路点云;最后采用α-Shapes方法从精化后的道路点集中提取道路轮廓,并用数学形态学细化方法提取道路中心线。试验结果表明,该方法提取的城区道路正确率和完整性较高。  相似文献   

17.
城区的道路自动提取受场景复杂度的影响一直是极具挑战的任务,尤其是阴影和遮挡较严重地区的道路提取难度较大。结合LiDAR数据和高分辨率遥感影像,提出一种自动道路提取方法。该方法首先对滤波后的点云强度信息获取初始道路中线及道路关键点;将地面点云强度、离散度及高分辨率遥感影像光谱数据多重信息融合建立道路模型,并以优化后的道路关键点作为种子点利用动态规划计算模型最优解,进一步提取道路网。试验表明,该方法在城市复杂场景下的自动提取主要道路是有效的。  相似文献   

18.
传统道路横纵断面获取主要是先利用全站仪或实时差分定位技术RTK放样得到中桩,再测出每个横断面的高程,费时费力。针对传统方法获取效率低、成本高的问题,提出了一种利用高精度车载LiDAR数据进行道路横纵断面获取的方法。首先对获取的点云数据进行预处理,然后进行点云滤波、路面点云精确提取,最后通过对路面点云数据构建地表数模的方式制作道路横纵断面图。工程实践表明,该方法可高精度自动提取道路横纵断面,提高了道路勘测设计的效率。  相似文献   

19.
The existing roadway infrastructures are mostly archived with two-dimensional (2D) drawings that lack the possibility for three-dimensional (3D) interpretation and advanced 3D analysis. The mobile LiDAR system (MLS) is gaining popularity in 3D mapping applications along various types of road corridors. MLS achieves the highest data quality and completeness among the traditional roadway data collection methods. The rural roads in different countries especially in India form a substantial portion of the road network. Therefore the proper maintenance and road safety analysis of rural roads are recommended activity, which could be addressed using detailed 3D road surface information. The absence of raised curb at road boundary, and presence of complexity, heterogeneity and occlusions along the rural roadway settings restrict the use of existing studies for road surface extraction using MLS point cloud data. Therefore considering the above requirement, this research paper proposes a two-stage method. The first stage extract planar ground surfaces which are further used to filter road surface in the second stage. Global properties of road, that is, topology and smoothness and its radiometric response to laser beam of MLS are used in the second stage. MLS point cloud data of rural roadway were used to test the proposed method. The road surface points were accurately extracted without being affected by the absence of raised curb and hanging objects over the road surface, that is, tree canopies and overhead power lines. The quantitative assessment of the proposed method was performed in terms of correctness, completeness and quality, which were 96.3, 94.2, and 90.9%, respectively.  相似文献   

20.
基于LiDAR数据的DEM和矢量自动提取探讨   总被引:1,自引:1,他引:1  
近年来LiDAR技术发展迅速,应用潜力巨大.基于TerraSolid软件环境,简要介绍了LiDAR数据的分类,在此基础上,重点讨论了LiDAR数据的DEM和矢量自动提取的相关问题.由LiDAR数据生成的DEM精度较高.但矢量自动提取还未到实用阶段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号