首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Stratigraphic reconstruction of the complete sequence of deposits that formed the Fossa cone of Vulcano has distinguished four principal eruptive cycles: Punte Nere, Palizzi, Commenda, and Pietre Cotte. At least three additional eruptive cycles, one of which ends with the Campo Sportivo lava, occur between deposits of the Punte Nere and Palizzi cycles. However, exposure is inadequate for their characterization. The assignment of the modern deposits that follow the Pietre Cotte lava is uncertain.Deposits of each cycle follow a similar stochastic pattern that is controlled by a decrease in the effect of water/melt interaction. The normal sequence of pyroclastic products for each cycle starts with wet-surge beds, followed by dry-surge horizons, fall deposits, and finally lava flows. Absolute age determinations have been made on each cycle-ending lava flow.Wet-surge deposits normally occur near the crater rim, whereas dry-surge deposits are more widespread, reaching the surrounding caldera wall in many places. Thick fall deposits are confined to a zone extending about 800 m from the crater rim. Lava flows normally reach the base of the cone. The greatest hazard at Fossa is related to surge eruptions. The thickness of dry-surge deposits on the flanks of the cone increases away from the crater, but they pinch out toward the source near the crater rim. SEM analysis of the surface textures of juvenile glass clasts from dry-surge deposits confirms that the dominant control on the eruptive mechanism is water/melt interaction. Only slight modifications are induced on grain surfaces during transport. Particles from the Palizzi dry-surge beds lack surface textures characteristic of fall pyroclasts which suggests that ballistic fragments were not incorporated into the dense portion of the turbulent surge cloud. A quantitative analysis of the dispersal of products from the Palizzi cycle allowed creation of a computer-generated map for this eruption.Paper presented at the IUGG Inter-disciplinary Symposium on Volcanic Hazard, Hamburg, August 1983.  相似文献   

2.
The Puu Oo eruption of Kilauea Volcano in Hawaii is one of its largest and most compositionally varied historical eruptions. The mineral and whole-rock compositions of the Puu Oo lavas indicate that there were three compositionally distinct magmas involved in the eruption. Two of these magmas were differentiated (<6.8 wt% MgO) and were apparently stored in the rift zone prior to the eruption. A third, more mafic magma (9–10 wt% MgO) was probably intruded as a dike from Kilauea's summit reservoir just before the start of the eruption. Its intrusion forced the other two magmas to mix, forming a hybrid that erupted during the first three eruptive episodes from a fissure system of vents. A new hybrid was erupted during episode 3 from the vent where Puu Oo later formed. The composition of the lava erupted from this vent became progressively more mafic over the next 21 months, although significant compositional variation occurred within some eruptive episodes. The intra-episode compositional variation was probably due to crystal fractionation in the shallow (0.0–2.9 km), dike-shaped (i.e. high surface area/volume ratio) and open-topped Puu Oo magma reservoir. The long-term compositional variation was controlled largely by mixing the early hybrid with the later, more mafic magma. The percentage of mafic magma in the erupted lava increased progressively to 100% by episode 30 (about two years after the eruption started). Three separate magma reservoirs were involved in the Puu Oo eruption. The two deeper reservoirs (3–4 km) recharged the shallow (0.4–2.9 km) Puu Oo reservoir. Recharge of the shallow reservoir occurred rapidly during an eruption indicating that these reservoirs were well connected. The connection with the early hybrid magma body was cut off before episode 30. Subsequently, only mafic magma from the summit reservoir has recharged the Puu Oo reservoir.  相似文献   

3.
The lavas of the 1955 east rift eruption of Kilauea Volcano have been the object of considerable petrologic interest for two reasons. First, the early 1955 lavas are among the most differentiated ever erupted at Kilauea, and second, the petrographic character and chemical composition of the lava being erupted changed significantly during the eruption. This shift, from more differentiated (MgO=5.0–5.7%) to more magnesian (MgO=6.2–6.8%) lava, has been variously interpreted, as either due to systematic excavation of a zoned, differentiated magma body, or to invasion of the differentiated magma by more primitive magma, followed by rapid mixing and eruption of the resulting hybrid magmas. Petrologic examination of several nearvent spatter samples of the late 1955 lavas shows abundant evidence for magma mixing, including resorbed and/or reversely zoned crystals of olivine, augite and plagioclase. In addition, the compositional ranges of olivine, plagioclase and groundmass sulfide are very large, implying that the assemblages are hybrid. Core compositions of olivine phenocrysts range from Fo85 to Fo77. The most magnesian olivines in these samples must have originally crystallized from a melt containing 8.0–8.5% MgO, which is distinctly more magnesian than the bulk composition of the late 1955 lavas. The majorelement and trace-element data are either permissive or supportive of a hybrid origin for the late 1955 lavas. In particular, the compositional trends of the 1955 lavas on plots of CaO vs MgO, and the virtual invariance of Al2O3 and Sr in these plagioclase-phyric lavas are more easily explained by magma mixing than by fractionation. The pattern of internal disequilibrium/re-equilibration in the late 1955 spatter samples is consistent with reintrusion and mixing having occurred at least twice, during the latter part of the 1955 eruption. Plagioclase zonation preserves possible evidence for additional, earlier reintrusion events. Least-squares modelling the mixing of early 1955 bulk compositions with various summit lavas±olivine pick the 1952 summit lava as most like the primitive component. The results also indicate the primitive component had MgO=7.5–8.0%, corresponding to liquidus temperatures of 1165–1175°C. The absence of Fe-Ti oxide phenocrysts in the late 1955 lavas implies that the cooler component of the hybrid had T>1110°C. Thus the thermal contrast between the two components may have been as much as 55–65°C, sufficient to produce the conspicuous disequilibrium effects visible in the spatter samples.  相似文献   

4.
During the period 1631–1944, Vesuvius was in persistent activity with alternating mild strombolian explosions, quiet effusive eruptions, and violent strombolian eruptions. The major difference between the predominant style of activity and the violent strombolian stages is the effusion rate. The lava effusion rate during major eruptions was in the range 20–100 m3/s, higher than during mild activity and quiet effusion (0.1–1 m3/s). The products erupted during the mild activity and major paroxysms have different degree of crystallization. Highly porphyritic lava flows are slowly erupted during years-long period of mild activity. This activity is fed by a magma accumulating at shallow depth within the volcanic edifice. Conversely, during the major paroxysms, a fast lava flow precedes the eruption of a volatile-rich, crystal-poor magma. We show that the more energetic eruptions are fed by episodic, multiple arrival of discrete batches of magma rising faster and not degassing during the ascent. The rapidly ascending magma pushes up the liquid residing in the shallow reservoir and eventually reaches the surface with its full complement of volatiles, producing kilometer-high lava fountains. Rapid drainage of the shallow reservoir occasionally caused small caldera collapses. The major eruptions act to unplug the upper part of the feeding system, erupting the cooling and crystallizing magma. This pattern of activity lasted for 313 y, but with a progressive decrease in the number of more energetic eruptions. As a consequence, a cooling plug blocked the volcano until it eventually prevented the eruption of new magma. The yearly probability of having at least one violent strombolian eruption has decreased from 0.12 to 0.10 from 1944 to 2007, but episodic seismic crises since 1979 may be indicative of new episodic intrusions of magma batches.  相似文献   

5.
Following the 2001 and 2002–2003 flank eruptions, activity resumed at Mt. Etna on 7 September 2004 and lasted for about 6 months. This paper presents new petrographic, major and trace element, and Sr–Nd isotope data from sequential samples collected during the entire 2004–2005 eruption. The progressive change of lava composition allowed defining three phases that correspond to different processes controlling magma dynamics inside the central volcano conduits. The compositional variability of products erupted up to 24 September is well reproduced by a fractional crystallization model that involves magma already stored at shallow depth since the 2002–2003 eruption. The progressive mixing of this magma with a distinct new one rising within the central conduits is clearly revealed by the composition of the products erupted from 24 September to 15 October. After 15 October, the contribution from the new magma gradually becomes predominant, and the efficiency of the mixing process ensures the emission of homogeneous products up to the end of the eruption. Our results give insights into the complex conditions of magma storage and evolution in the shallow plumbing system of Mt. Etna during a flank eruption. Furthermore, they confirm that the 2004–2005 activity at Etna was triggered by regional movements of the eastern flank of the volcano. They caused the opening of a complex fracture zone extending ESE which drained a magma stored at shallow depth since the 2002–2003 eruption. This process favored the ascent of a different magma in the central conduits, which began to be erupted on 24 September without any significant change in eruptive style, deformation, and seismicity until the end of eruption.  相似文献   

6.
Magma plumbing system of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:0,他引:1  
During the 2000 eruption at Miyakejima Volcano, two magmas with different compositions erupted successively from different craters. Magma erupted as spatter from the submarine craters on 27 June is aphyric basaltic andesite (<5 vol% phenocrysts, 51.4–52.2 wt% SiO2), whereas magma issued as volcanic bombs from the summit caldera on 18 August is plagioclase-phyric basalt (20 vol% phenocrysts, 50.8–51.3 wt% SiO2). The submarine spatter contains two types of crystal-clots, A-type and A-type (andesitic type). The phenocryst assemblages (plagioclase, pyroxenes and magnetite) and compositions of clinopyroxene in these clots are nearly the same, but only A-type clots contain Ca-poor plagioclase (An < 70). We consider that the A-type clots could have crystallized from a more differentiated andesitic magma than the A-type clots, because FeO*/MgO is not strongly influenced during shallow andesitic differentiation. The summit bombs contain only B-type (basaltic type) crystal-clots of Ca-rich plagioclase, olivine and clinopyroxene. The A-type and B-type clots have often coexisted in Miyakejima lavas of the period 1469–1983, suggesting that the magma storage system consists of independent batches of andesitic and basaltic magmas. According to the temporal variations of mineral compositions in crystal-clots, the andesitic magma became less evolved, and the basaltic magma more evolved, over the past 500 years. We conclude that gradually differentiating basaltic magma has been repeatedly injected into the shallower andesitic magma over this period, causing the andesitic magma to become less evolved with time. The mineral chemistries in crystal-clots of the submarine spatter and 18 August summit bombs of the 2000 eruption fall on the evolution trends of the A-type and B-type clots respectively, suggesting that the shallow andesitic and deeper basaltic magmas existing since 1469 had successively erupted from different craters. The 2000 summit collapse occurred due to drainage of the andesitic magma from the shallower chamber; as the collapse occurred, it may have caused disruption of crustal cumulates which then contaminated the ascending, deeper basalt. Thus, porphyritic basaltic magma could erupt alone without mixing with the andesitic magma from the summit caldera. The historical magma plumbing system of Miyakejima was probably destroyed during the 2000 eruption, and a new one may now form.Editorial responsibility: S Nakada, T Druitt  相似文献   

7.
The origin of Arenal basaltic andesite can be explained in terms of fractional crystallization of a parental high-alumina basalt (HAB), which assimilates crustal rocks during its storage, ascent and evolution. Contamination of this melt by Tertiary calc-alkalic intrusives (quartz–diorite and granite, with 87Sr/86Sr ratios ranging 0.70381–0.70397, nearly identical with those of the Arenal lavas) occurs at upper crustal levels, following the interaction of ascending basaltic magma masses with gabbroic–anorthositic layers. Fragments of these layers are found as inclusions within Arenal lavas and tephra and may show reaction rims (1–5 mm thick, consisting of augite, hypersthene, bytownitic–anorthitic plagioclase, and granular titanomagnetite) at the gabbro–lava interface. These reaction rims indicate that complete `assimilation' was prevented since the temperature of the host basaltic magma was not high enough to melt the gabbroic materials (whose mineral phases are nearly identical to the early formed liquidus phases in the differentiating HAB). Olivine gabbros crystallized at pressure of about 5–6 kbar and equilibrated with the parental HAB at pressures of 3–6 kbar (both under anhydrous and hydrous conditions), and temperatures ranging 1000–1100°C. In particular, `deeper' interactions between the mafic inclusions and the hydrous basaltic melt (i.e., with about 3.5 wt.% H2O) are likely to occur at 5.4 (±0.4) kbar and temperatures approaching 1100°C. The olivine gabbros are thus interpreted as cumulates which represent crystallized portions of earlier Arenal-type basalts. Some of the gabbros have been `mildly' tectonized and recrystallized to give mafic granulites that may exhibit a distinct foliation. Below Arenal volcano a zoned magma chamber evolved prior the last eruptive cycle: three distinct andesitic magma layers were produced by simple AFC of a high-alumina basalt (HAB) with assimilation of Tertiary quartz–dioritic and granitic rocks. Early erupted 1968 tephra and 1969 lavas (which represent the first two layers of the upper part of a zoned magma chamber) were produced by simple AFC, with fractionation of plagioclase, pyroxene and magnetite and concomitant assimilation of quartz–dioritic rocks. Assimilation rates were constant (r1=0.33) for a relative mass of magma remaining of 0.77–0.80, respectively. Lavas erupted around 1974 are less differentiated and represent the `primitive andesitic magma type' residing within the middle–lower part of the chamber. These lavas were also produced by simple AFC: assimilation rates and the relative mass of magma remaining increased of about 10%, respectively (r1=0.36, and F=0.89). Ba enrichment of the above lavas is related to selective assimilation of Ba from Tertiary granitic rocks. Lava eruption occurred as a dynamic response to the intrusion of a new magma into the old reservoir. This process caused the instability of the zoned magma column inducing syneruptive mixing between portions of two contiguous magma layers (both within the column itself and at lower levels where the new basalt was intruded into the reservoir). Syneruptive mixing (mingling) within the middle–upper part of the chamber involved fractions of earlier gabbroic cumulitic materials (lavas erupted around 1970). On the contrary, within the lower part of the chamber, mixing between the intruded HAB and the residing andesitic melt was followed by simple fractional crystallization (FC) of the hybrid magma layer (lavas erupted in 1978–1980). By that time the original magma chamber was completely evacuated. Lavas erupted in 1982/1984 were thus modelled by means of `open system' AFCRE (i.e., AFC with continuous recharge of a fractionating magma batch during eruption): in this case assimilation rates were r1=0.33 and F=0.86. Recharge rates are slightly higher than extrusion rates and may reflect differences in density (between extruded and injected magmas), together with dynamic fluctuations of these parameters during eruption. Ba and LREE (La, Ce) enrichments of these lavas can be related to selective assimilation of Tertiary granitic and quartz–dioritic rocks. Calculated contents for Zr, Y and other REE are in acceptable agreement with the observed values. It is concluded that simple AFC occurs between two distinct eruption cycles and is typical of a period of repose or mild and decreasing volcanic activity. On the contrary, magma mixing, eventually followed by fractional crystallization (FC) of the hybrid magma layer, occurs during an ongoing eruption. Open-system AFCRE is only operative when the original magma chamber has been totally replenished by the new basaltic magma, and seems a prelude to the progressive ceasing of a major eruptive cycle.  相似文献   

8.
Over the last 42 ka, volcanic activity at Lipari Island (Aeolian Arc, Italy) produced lava domes, flows and pyroclastic deposits with rhyolitic composition, showing in many cases evidence of magma mixing such as latitic enclaves and banding. In this same period, on nearby Vulcano Island, similar rhyolitic lava domes, pyroclastic products and lava flows, ranging in composition from shoshonite to rhyolite, were erupted. As a whole, the post-42 ka products of Lipari and Vulcano show geochemical variations with time, which are well correlated between the two islands and may correspond to a modification of the primary magmas. The rhyolitic products are similar to each other in their major elements composition, but differ in their trace element abundances (e.g. La ranging from 40 to 78 ppm for SiO2 close to 75 wt%). Their isotopic composition is variable, too. The 87Sr/86Sr (0.704723–0.705992) and 143Nd/144Nd (0.512575–0.512526) ranges partially overlap those of the more mafic products (latites), having 87Sr/86Sr from 0.7044 to 0.7047 and 143Nd/144Nd from 0.512672 to 0.512615. 206Pb/204Pb is 19.390–19.450 in latites and 19.350–19.380 in rhyolites. Crystal fractionation and crustal assimilation processes of andesitic to latitic melts, showing an increasing content in incompatible elements in time, may explain the genesis of the different rhyolitic magmas. The rocks of the local crustal basement assimilated may correspond to lithotypes present in the Calabrian Arc. Mixing and mingling processes between latitic and rhyolitic magmas that are not genetically related occur during most of the eruptions. The alignment of vents related to the volcanic activity of the last 40 ka corresponds to the NNW–SSE Tindari–Letojanni strike-slip fault and to the correlated N–S extensional fault system. The mafic magmas erupted along these different directions display evidence of an evolution at different PH2O conditions. This suggests that the Tindari–Letojanni fault played a relevant role in the ascent, storage and diversification of magmas during the recent volcanic activity.  相似文献   

9.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   

10.
The magmatic system feeding the last eruption of the volcano La Fossa, Vulcano Island, Italy was studied. The petrogenetic mechanisms controlling the differentiation of erupted rocks were investigated through petrography, mineral chemistry, major, trace and rare earth element and Sr, Nd and Pb isotopic geochemistry. In addition, melt inclusion and fluid inclusion data were collected on both juvenile material and xenolithic partially melted metamorphic clasts to quantify the P-T conditions of the magma chamber feeding the eruption. A regular and continuous chemical zoning has been highlighted: rhyolites are the first erupted products, followed by trachytes and latites, whereas rhyolitic compositions were also found in the upper part of the sequence. The chemical and isotopic composition of the rhyolites indicates that they originated by fractional crystallization from latitic magmas plus the assimilation of crustal material; the trachytes represent hybrid magmas resulting from the mixing of latites and rhyolites, contaminated in the shallow magmatic system. The erupted products, primarily compositionally zoned from latites to rhyolites, are heterogeneous due to syn-eruptive mingling. The occurrence of magmacrust interaction processes, evidenced by isotopic variations (87Sr/86Sr=0.70474±3 to 0.70511±3; 143Nd/144Nd=0.512550±6 to 0.512614±8; 206Pb/204Pb=19.318–19.489; 207Pb/204Pb=15.642–15.782; 208Pb/204Pb=39.175–39.613), is confirmed by the presence of partially melted metamorphic xenoliths, with 87Sr/86Sr=0.71633±6 to 0.72505±2 and 143Nd/144Nd=0.51229±7, in rhyolites and trachytes. AFC calculations indicate a few percentage contribution of crustal material to the differentiating magmas. Thermometric measurements on melt inclusions indicate that the crystallization temperatures of the latites and trachytes were in the range of 1050–1100° C, whereas the temperature of the rhyolites appears to have been around 1000°C at the time of the eruption. Compositional data on melt inclusions reveal that the magmas involved in the eruption contained about 1–1.5 wt.% dissolved H2O in pre-eruptive conditions. Secondary fluid inclusions found in metamorphic xenoliths give low equilibration pressure data (30–60 MPa), giving the location of the higher portions of the chamber at around 1500–2000 m of depth.  相似文献   

11.
Kilauea's 1955 eruption was the first major eruption (longer than 2 days) on its east rift zone in 115 years. It lasted 88 days during which 108 × 106 m3 of lava was erupted along a discontinuous, 15-km-long system of fissures. A wide compositional range of lavas was erupted including the most differentiated lavas (5.0 wt% MgO) from a historic Kilauea eruption. Lavas from the first half of the eruption are strongly differentiated (5.0–5.7 wt% MgO); later lavas are weakly to moderately differentiated (6.2–6.7 wt% MgO). Previous studies using only major-element compositions invoked either crystal fractionation (Macdonald and Eaton 1964) or magma mixing (Wright and Fiske 1971) as models to explain the wide compositional variation in the lavas. To further evaluate these models detailed petrographic, mineralogical, and whole-rock, major, and trace element XRF analyses were made of the 1955 lavas. Plagioclase and clinopyroxene in the early and late lavas show no petrographic evidence for magma mixing. Olivines from both the early and late lavas show minor resorption, which is typical of tholeiitic lavas with low MgO contents. Core-to-rim microprobe analyses across olivine, augite, and plagioclase mineral grains give no evidence of disequilibrium features related to mixing. Instead, plots of An/Ab vs distance from the core (D) and %Fo vs (D)4.5 generated essentially linear trends indicative of simple crystal fractionation. Least-squares, mass-balance calculations for major- and trace-element data using observed mineral compositions yield excellent results for crystal fractionation (sum of residuals squared <0.01 for major elements, and <5% for trace elements); magma mixing produced less satisfactory results especially for Cr. Furthermore, trace-element plots of Zr vs Sr, Cr, and A12O3 generate curved trends indicative of crystal fractionation processes. There is no evidence that mixing occurred in the 1955 lavas. Instead, the data are best explained by crystal fractionation involving a reservoir that extends at least 15 km along Kilauea's east rift zone. A dike was intruded into the rift zone from the summit reservoir eight days after the eruption started. Instead of causing magma mixing, the dike probably acted as a hydraulic plunger forcing more of the stored magma to be erupted.  相似文献   

12.
On December 4, 1983 an eruption started at vents located 1.5 km southwest of the summit of Piton de la Fournaise at the base of the central cone. After 31 months of quiescence this was one of the longest repose period in the last fifty years. The eruption had two phases: December 4 to January 18 and January 18 to February 18. Phase 1 produced about 8 × 106 m3 of lava and Phase II about 9 × 106 m3. The erupted lava is an aphyric basalt whose mineralogical and geochemical composition is close to that of other lavas emitted since 1977.The precursors of the December 4 outbreak were limited to two-week shallow (1.5–3 km) seismic crisis of fewer than 50 events. No long-term increase was noted in the local seismicity which is very quiet during repose periods and no long-term ground inflation preceded the eruption. Outbreaks of Phases I and II were preceded by short (2.5 hours and 1.5 hours) seismic swarms corresponding to the rise of magma toward the surface from a shallow reservoir. Large ground deformation explained by the emplacement of the shallow intrusions, was recorded during the seismic swarms. A summit inflation was observed in early January, before the phase II outbreak, while the phase I eruption was still continuing.Piton de la Fournaise volcanological observatory was installed in 1980. Seismic and ground deformation data now available for a period of 4 years including the 1981 and the 1983–1984 eruptions, allow us to describe the physical behavior of the volcano during this period. These observations lead us to propose that the magma transfer from deep levels to the shallow magma reservoir is not a continuous process but a periodic one and that the shallow magma reservoir was not resupplied before the 1981 and 1983–1984 eruptions. Considerations on the eruptive history and the composition of recent lavas indicate that the reservoir was refilled in 1977.  相似文献   

13.
The largest natrocarbonatite lava flow eruption ever documented at Oldoinyo Lengai, NW Tanzania, occurred from March 25 to April 5, 2006, in two main phases. It was associated with hornito collapse, rapid extrusion of lava covering a third of the crater and emplacement of a 3-km long compound rubbly pahoehoe to blocky aa-like flow on the W flank. The eruption was followed by rapid enlargement of a pit crater. The erupted natrocarbonatite lava has high silica content (3% SiO2). The eruption chronology is reconstructed from eyewitness and news media reports and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, which provide the most reliable evidence to constrain the eruption’s onset and variations in activity. The eruption products were mapped in the field and the total erupted lava volume estimated at 9.2 ± 3.0 × 105 m3. The event chronology and field evidence are consistent with vent construct instability causing magma mixing and rapid extrusion from shallow reservoirs. It provides new insights into and highlights the evolution of the shallow magmatic system at this unique natrocarbonatite volcano.  相似文献   

14.
A study of the historic record of activity of Piton de la Fournaise has revealed a cyclic pattern of eruption involving effusion of oceanite lava from major-flank centers every 20–40 years. Calculated volumes of the recent lava flows and pyroclastic ejecta have established an effusion rate of 3.9 m3 s−1 since 1931 and 6.2 m3 s−1 since 1951. Flank eruptions outside the present caldera define a distribution maximum which is expected to correlate with the depth range of a high-level magma reservoir.A model has been constructed which requires replenishment of a high-level magma chamber at a constant rate and regular eruption from summit and minor-flank centers, acting as “safety valves” to the magma chamber; when the magma chamber reaches its maximum expansion, a major-flank outburst of oceanitic lava occurs.The fact that calculated effusion rates are not consistent with radiometric dates implies an increase in effusion volume with time for the volcano.  相似文献   

15.
The recent finding of mafic enclaves in the Rocche Rosse (RR) lava flow, the last magmatic product on Lipari (Aeolian Islands, Italy) (AD 1230 ± 40), opens the possibility to investigate in detail the most recent magmatic system of the island, an important issue for the volcanic hazard assessment of the area. The RR lava flow is an aphyric rhyolitic coulée consisting of grey and black pumice and black and grey obsidian. Enclaves have ellipsoidal to spheroidal shape and vary from mm-sized in the central portion of the flow, to cm-sized, at the top and in the flow front, where they are also more abundant. Enclaves are shoshonitic-latitic (group A) and trachytic (group B) in composition. The mineralogy of group A consists of dominant clinopyroxene crystals with minor abundance of feldspar (plagioclase > K-feldspar), olivine and biotite, while group B is composed of feldspar (K-feldspar > plagioclase) with minor clinopyroxene, olivine and biotite. Geochemical modeling suggests that the host rhyolitic rocks could be the product of AFC (Assimilation plus Fractional Crystallization) of a magma compositionally similar to the associated shoshonitic-latitic enclaves, which, in turn, could be obtained, through an AFC process, from the primitive melts erupted as olivine hosted melt inclusions during the last 15 ka at Vulcano. The already-known last 42 ka relationship between Lipari and Vulcano Islands is here reinforced until historical time, especially for the last 1 ka. The geochemical and petrological overlap between Lipari and Vulcano is interpreted to reflect the existence of a similar magmatic system underneath the two islands. The nearly aphyric RR rhyolites are interpreted to be the products of a superheated (temperature far above the liquidus) and initially water-undersaturated magma that underwent degassing close to the surface inhibiting microlite crystallization.  相似文献   

16.
Contemporaneous Plinian eruptions of rhyolite pumice from Glass Mountain and Little Glass Mountain during the last 1100 years B.P. were followed by extrusion of lava flows. 1.2 km of material was erupted and 10% by volume is tephra. All of the tephra deposits consist of very poorly sorted coarse ash and lapilli that are mostly pumice pyroclasts.Eruptive sequences, chemical composition and petrographic character of the rhyolites at Little Glass Mountain and Glass Mountain suggest that they came from the same magma body. The 1:9 ratio of tephra to lavas is typical of small silicic magma chambers. Eruption from a small chamber, 4–6 km deep, at vents 15 km apart is possible if magma rose along cone sheets with dips of 45–60°. The caldera rim and arcuate lines of vents near it may represent the surface expression of several concentric cone sheets.Pumice pyroclasts erupted at Glass Mountain and Little Glass Mountain may have formed in the following manner: (1) vesicle growth and coalescence beginning at 1–2 km depths; (2) elongation of the vesicles by flow within the cone sheets; (3) disruption of the vesiculated magma when it reached the surface by an expansion wave passing down through it; and (4) eruption of comminution products as pumice pyroclasts. Plinian activity at Little Glass Mountain and Glass Mountain continued until the volatile-rich top of the magma chamber had been depleted.  相似文献   

17.
The historic Breccia di Commenda (BC) explosive eruption of Vulcano (Aeolian Islands, Italy) opened with a phase that generated a gray fine ash layer dispersed to the northwest (phase 1). The eruption continued with a dilute pyroclastic density current (PDC) that was dispersed to the east, followed by the emplacement of radially distributed, topographically controlled PDC deposits (phase 2). The last phase of the eruption produced a sequence of accretionary lapilli and gray fine ash dispersed toward the southeast (phase 3). The most impressive feature of the BC is its high lithic/juvenile clast ratio and the yellow color of the deposits of phase 2. Lithic fragments are mainly hydrothermally altered rocks, in the silicic and advanced argillic facies. Juvenile fragments, ranging from 20?% to 40?% by volume, are mainly confined to the ash component of the deposits and comprise rhyolitic to trachyandesite, poorly to non-vesicular fragments. The fine ash fraction of the deposits is richer in S, Cu, Zn, Pb, and As than the BC juvenile lapilli and bombs, and also the juvenile components of other La Fossa units, suggesting that the BC formed in the presence of an anomalously high amount of S and metals. Sulfur and metals may have been carried as aerosols by chloride- and sulfate-bearing micro-crystals, derived from the condensation of magmatic gas in the eruptive cloud. The high content of hydrothermally altered lithic clasts in the deposits suggests that explosions involved the fluid-saturated hydrothermally altered rocks residing in the conduit zone. However, the presence of a juvenile component in the deposits supports the idea that this explosion may have been triggered by the ascent of new magma. We categorize this eruption as magmatic-hydrothermal to emphasize that in this type of phreatomagmatic eruption the external water was an active hydrothermal system. Rock magnetic temperatures of non-altered lava lithic fragments indicate a uniform deposit temperature for the PDC deposits of between 200 and 260?°C, with a maximum at 280?°C. These homogeneous, relatively low temperatures are consistent with the idea that the phase 2 explosions involved the expansion of abundant steam from the flashing of the hydrothermal system. In addition, recent paleomagnetic dating of the BC provides an age of between 1000 and 1200?AD, younger than that reported in the previously published data, suggesting that previous interpretations and the recent history of La Fossa and Mt. Pilato require re-evaluation.  相似文献   

18.
The 1998 eruption of Volcán Cerro Azul in the Galápagos Islands produced two intra-caldera vents and a flank vent that erupted more than 1.0×108 m3 of lava. Lava compositions changed notably during the 5-week eruption, and contemporaneous eruptions in the caldera and on the flank produced different compositions. Lavas erupted from the flank vent range from 6.3 to 14.1% MgO, nearly the entire range of MgO contents previously reported from the volcano. On-site monitoring of eruptive activity is linked with petrogenetic processes such that geochemical variations are evaluated in a temporal context. Lavas from the 1998 eruption record two petrogenetic stages characterized by progressively more mafic lavas as the eruption proceeded. Crystal compositions, whole rock major and trace element compositions, and isotope ratios indicate that early lavas are the product of mixing between 1998 magma and remnant magma of the 1979 eruption. Intra-caldera lavas and later lavas have no 1979 signature, but were produced by the 1998 magma incorporating olivine and clinopyroxene xenocrysts. Thus, early magma petrogenesis is characterized by mixing with the 1979 magma, followed by the magma progressively entraining wehrlite cumulate mush.Editorial Responsibility: M.R. Carroll  相似文献   

19.
We present reults from simultaneous precise levelling and gravity surveys on Mount Etna covering the period August 1980–August 1981. The flank eruption of March 1981 erupted 18–35 × 105m3 of lava. Following it, upward movements of more than 17 cm were observed close to the new fissure and a broad, apparently independent, uplift of 5 cm was observed 4 km to the west. A zone of about 2 cm depression to the east of the fissure is insufficient to account for the volume of magma erupted. Gravity results show positive changes of up to 63 microgal, and display good positive correlation with elevation changes. Both sets of measurements appear to be due to new intrusion of magma rather than subsurface magma drainage. Ground deformation close to the new fissure is well modelled by intrusion of a dyke in the zone 100–500 m below the surface, striking along the fissure and of dip between 75–90°. The gravity changes are modelled as due to a deeper intrusion of magma, along the same line but some 1500 m below the surface. The changes were not present immediately after the eruption but occurred during the ensuing 5 months. It is proposed that this introduction of matter occurred by crack propagation along the fissure in the aftermath of the eruption. Towards the west of the fissure, and some 4 km west of the summit, ground deformation is modelled by intrusion of a dyke in the zone 300–1500 m below the surface and dipping at 80–85°. Again, gravity changes appear to be due to magma intrusion at greater depth, close to sea level. In this case gravity changes are interpreted as due to magma density changes, as a result of pressure increase in a larger scale fissure zone. This same pressure increase may be forcing the new intrusion close to the surface, and makes this part of the volcano a region of especially high risk.  相似文献   

20.
A dacitic magma (64.5 wt.% SiO2), a mixture of phenocryst-rich rhyodacite and an aphyric mafic magma, was erupted during the recent 1991–1995 Mount Unzen eruptive cycle. The experimental and analytical results of this study reveal additional details about conditions in the premixing and postmixing magmas, and the nature of the mixing process. The preeruption rhyodacitic magma was at a temperature of 790±20°C according to Fe–Ti oxide phenocryst cores, and at a depth of 6 to 7 km (160 MPa) according to Al-in-hornblende geobarometry. The mafic magma that mixed with the rhyodacite is found as andesitic (54 to 62 wt.% SiO2) enclaves in the erupted magma and was essentially aphyric when intruded. Phase equilibria indicate that an aphyric andesite at 160 MPa is >1030°C (H2O-saturated) and possibly as high as 1130°C (2 wt.% H2O). The composition of the rhyodacite which was mixed with the andesite is estimated to lie between 67 and 69 wt.% SiO2. Using these compositions and temperatures, the temperature of the Unzen magma after mixing is estimated to be at least 850° to 870°C. The groundmass Fe–Ti oxide microphenocrysts and those in pargasite-bearing reaction zones around biotite phenocrysts both give 890±20°C temperatures; the oxide–oxide contacts give temperatures of 910±20°C. The 900±30°C postmixing temperatures are consistent with phase-equilibria experiments which show that the magma was not above 930°C at 160 MPa. Our Fe–Ti oxide reequilibration experiments suggest that the mixing of the two magmas began within a few weeks of the eruption, which is a shorter time than is calculated using available diffusion data. There is also evidence that some mixing took place much closer to the time of extrusion based on the presence of unrimmed biotite phenocrysts in the magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号