首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the development of a stochastic model for evaluating the long-term effect of soil erosion on soil productivity. Due to random variations in annual crop yield, the effect of erosion on crop production is not easily detectable in the short run, but becomes gradually evident over a sufficiently long time period. Under these circumstances, it seems that an experimental approach to this problem may be very difficult. The long period of time over which such an experiment has to be conducted may result in prohibitively high costs. In addition, it also means that eventual resolution of this problem must be postponed until a distant future time. The stochastic model formulated here provides us with a useful tool to assess the trend in quantitative changes in crop production due to erosion and to project future crop losses. The model is a discrete parameter stochastic process. Its derivation is based on a single assumption that the annual loss rates form a sequence of independent random variables {Zi}1∞ (in this paper, we consider only two particular cases: (a) {Zi}1∞ is a sequence of constants; (b) {Zi}1∞ is a sequence of independent identically distributed random variables). For these particular cases, we obtained its marginal n-dimensional distribution function and correlation function. One of the principal model features is its simple structure and remarkable lack of restrictive and unrealistic assumptions.  相似文献   

2.
Climate change is expected to increase temperatures and lower rainfall in Mediterranean regions; however, there is a great degree of uncertainty as to the amount of change. This limits the prediction capacity of models to quantify impacts on water resources, vegetation productivity and erosion. This work circumvents this problem by analysing the sensitivity of these variables to varying degrees of temperature change (increased by up to 6·4 °C), rainfall (reduced by up to 40%) and atmospheric CO2 concentrations (increased by up to 100%). The SWAT watershed model was applied to 18 large watersheds in two contrasting regions of Portugal, one humid and one semi‐arid; incremental changes to climate variables were simulated using a stochastic weather generator. The main results indicate that water runoff, particularly subsurface runoff, is highly sensitive to these climate change trends (down by 80%). The biomass growth of most species showed a declining trend (wheat down by 40%), due to the negative impacts of increasing temperatures, dampened by higher CO2 concentrations. Mediterranean species, however, showed a positive response to milder degrees of climate change. Changes to erosion depended on the interactions between the decline in surface runoff (driving erosion rates downward) and biomass growth (driving erosion rates upward). For the milder rainfall changes, soil erosion showed a significant increasing trend in wheat fields (up to 150% in the humid watersheds), well above the recovery capacity of the soil. Overall, the results indicate a shift of the humid watersheds to acquire semi‐arid characteristics, such as more irregular river flows and increasingly marginal conditions for agricultural production. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
It is the goal of remote sensing to infer information about objects or a natural process from a remote location. This invokes that uncertainty in measurement should be viewed as central to remote sensing. In this study, the uncertainty associated with water stages derived from a single SAR image for the Alzette (G.D. of Luxembourg) 2003 flood is assessed using a stepped GLUE procedure. Main uncertain input factors to the SAR processing chain for estimating water stages include geolocation accuracy, spatial filter window size, image thresholding value, DEM vertical precision and the number of river cross sections at which water stages are estimated. Initial results show that even with plausible parameter values uncertainty in water stages over the entire river reach is 2.8 m on average. Adding spatially distributed field water stages to the GLUE analysis following a one-at-a-time approach helps to considerably reduce SAR water stage uncertainty (0.6 m on average) thereby identifying appropriate value ranges for each uncertain SAR water stage processing factor. For the GLUE analysis a Nash-like efficiency criterion adapted to spatial data is proposed whereby acceptable SAR model simulations are required to outperform a simpler regression model based on the field-surveyed average river bed gradient. Weighted CDFs for all factors based on the proposed efficiency criterion allow the generation of reliable uncertainty quantile ranges and 2D maps that show the uncertainty associated with SAR-derived water stages. The stepped GLUE procedure demonstrated that not all field data collected are necessary to achieve maximum constraining. A possible efficient way to decide on relevant locations at which to sample in the field is proposed. It is also suggested that the resulting uncertainty ranges and flood extent or depth maps may be used to evaluate 1D or 2D flood inundation models in terms of water stages, depths or extents. For this, the extended GLUE approach, which copes with the presence of uncertainty in the observed data, may be adopted.  相似文献   

4.
A general trend of decreasing soil loss rates with increasing vegetation cover fraction is widely accepted. Field observations and experimental work, however, show that the form of the cover‐erosion function can vary considerably, in particular for low cover conditions that prevail on arid and semiarid hillslopes. In this paper the structured spatial distribution of the vegetation cover and associated soil attributes is proposed as one of the possible causes of variation in cover–erosion relationships, in particular in dryland environments where patchy vegetation covers are common. A simulation approach was used to test the hypothesis that hillslope discharge and soil loss could be affected by variation in the spatial correlation structure of coupled vegetation cover and soil patterns alone. The Limburg Soil Erosion Model (LISEM) was parameterized and verified for a small catchment with discontinuous vegetation cover at Rambla Honda, SE Spain. Using the same parameter sets LISEM was subsequently used to simulate water and sediment fluxes on 1 ha hypothetical hillslopes with simulated spatial distributions of vegetation and soil parameters. Storms of constant rainfall intensity in the range of 30–70 mm h?1 and 10–30 min duration were applied. To quantify the effect of the spatial correlation structure of the vegetation and soil patterns, predicted discharge and soil loss rates from hillslopes with spatially structured distributions of vegetation and soil parameters were compared with those from hillslopes with spatially uniform distributions. The results showed that the spatial organization of bare and vegetated surfaces alone can have a substantial impact on predicted storm discharge and erosion. In general, water and sediment yields from hillslopes with spatially structured distributions of vegetation and soil parameters were greater than from identical hillslopes with spatially uniform distributions. Within a storm the effect of spatially structured vegetation and soil patterns was observed to be highly dynamic, and to depend on rainfall intensity and slope gradient. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Total soil erosion is a result of both aeolian and fluvial processes, which is particularly true in semiarid regions. However, although physically interrelated, these two processes have conventionally been studied and modelled independently. Recently, a few researchers highlighted the importance and need of considering both processes in concert as well as their interactions, but they did not give specific modelling approaches or algorithms. The objectives of this study were to (1) formulate an integrated aeolian and fluvial prediction (IAFP) model, (2) parameterize the IAFP model for a semiarid steppe watershed located in northeastern China by using literature and historical data and (3) use the model to predict soil erosion in the watershed and assess the sensitivity of predicted erosion to environmental factors such as soil moisture and vegetation coverage. The results indicated that the IAFP model can capture the dynamic interactions between aeolian and fluvial erosion processes. For the study watershed, the model predicted a higher occurrence frequency of fluvial erosion than that of aeolian erosion and showed that these two processes almost equivalently contributed to the average total erosion of 0.07 mm year?1 across the simulation period. The ‘existing’ vegetation cover can provide an overall good protection of the soils, although the vegetation cover was predicted to play a larger role in a drier than a wetter year as well as in controlling aeolian than fluvial erosion. In addition, soil erosion was predicted to be more sensitive to soil moisture than land coverage. A soil moisture level of 0.23–0.25 was determined to be the probable switch point from aeolian‐to fluvial‐dominant process or vice versa. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Four techniques for soil erosion assessment were compared over two consecutive seasons for bare-fallow plots and a maize-cowpea sequence in 1985 at IITA, Ibadan, Nigeria. The techniques used were: tracer (aluminium paint), nails (16 and 25), the rill method, and the Universal Soil Loss Equation (USLE). Soil loss estimated by these techniques was compared with that determined using the runoff plot technique. There was significantly more soil loss (P < 0·01) in bare-fallow than in plots under maize (Zea mays) or cowpea (Vigna unguiculata). In the first season, soil loss from plots sown to maize was 40·2 Mg ha?1 compared with 153·3 Mg ha?1 from bare-fallow plots. In the second season, bare-fallow plots lost 87·5 Mg ha?1 against 39·4 Mg ha?1 lost from plots growing cowpea. The techniques used for assessing erosion had no influence on the magnitude of soil erosion and did not interfere with the processes of erosion. There was no significant difference (P < 0·05) between soil erosion determined by the nails and the runoff plot technique. Soil loss determined on six plots (three under maize, three bare-fallow) by the rill technique, at the end of the season, was significantly lower (P < 0·05) than that determined by the runoff plot technique. The soil loss estimated by the rill method was 143·2, 108·8 and 121·9 Mg ha?1 for 11, 11, and 8 per cent slopes respectively, in comparison with 201·5, 162·0, and 166·4 Mg ha?1 measured by the runoff plot method. Soil loss measured on three bare-fallow plots on 10 different dates by the rill technique was also significantly lower (P < 0·01) than that measured by the runoff plot. In the first season the USLE significantly underestimated soil loss. On 11, 11, and 8 per cent slopes, respectively, soil loss determined by the USLE was 77, 92, and 63 per cent of that measured by the runoff plot. However, in the second season there was no significant difference between soil loss determined by the USLE and that determined by the conventional runoff plot technique.  相似文献   

7.
This paper examines the potential for improving Soil and Water Assessment Tool (SWAT) hydrologic predictions of root-zone soil moisture, evapotranspiration, and stream flow within the 341 km2 Cobb Creek Watershed in southwestern Oklahoma through the assimilation of surface soil moisture observations using an Ensemble Kalman filter (EnKF). In a series of synthetic twin experiments assimilating surface soil moisture is shown to effectively update SWAT upper-layer soil moisture predictions and provide moderate improvement to lower layer soil moisture and evapotranspiration estimates. However, insufficient SWAT-predicted vertical coupling results in limited updating of deep soil moisture, regardless of the SWAT parameterization chosen for root-water extraction. Likewise, a real data assimilation experiment using ground-based soil moisture observations has only limited success in updating upper-layer soil moisture and is generally unsuccessful in enhancing SWAT stream flow predictions. Comparisons against ground-based observations suggest that SWAT significantly under-predicts the magnitude of vertical soil water coupling at the site, and this lack of coupling impedes the ability of the EnKF to effectively update deep soil moisture, groundwater flow and surface runoff. The failed attempt to improve stream flow prediction is also attributed to the inability of the EnKF to correct for existing biases in SWAT-predicted stream flow components.  相似文献   

8.
This study sought to contribute to an improved understanding of soil erosion and redistribution on Mediterranean agricultural land, where traditional soil conservation practices have been applied over millennia to provide effective protection of cultivated land. The study was undertaken in the Na Borges catchment, a groundwater-dominated lowland limestone basin (319 km2), located in the northeastern part of Mallorca, Spain. The average sediment yield from the basin, based on river sediment load data, is 1 t/km2·yr. The 137Cs technique was used to quantify soil redistribution rates over the past 40 years and to identify the key factors involved in soil erosion and redistribution processes. To estimate erosion and deposition rates and to elucidate the main factors affecting soil redistribution, samples were collected from six slope transects representative of the local land use and slope gradients and the presence or absence of soil conservation practices. A mass balance and a profile distribution conversion model were used for cultivated areas and areas of natural vegetation, respectively, to derive point estimates of the soil redistribution rates from the 137Cs inventories measured for individual soil bulk cores. In areas without soil conservation practices, the estimated mean soil erosion rates ranged from 12.7 to 26.4 t/ha·yr, which correspond to the slight and moderate erosion classes. The erosivity of Mediterranean climatic conditions combined with the influence of agricultural practices and slope gradient on soil erosion, represent the main factors responsible for the variation of soil losses documented for the cultivated land located in downslope areas, in the absence of soil conservation practices. Deposition dominated for those transects affected by soil conservation practices, with rates ranging between 18.8 and 96.6 t/ha·yr. However, this situation does not mean that soil conservation measures retain all the sediment, but rather that agriculture and urbanization (i.e. new rural paths and stone boundaries) modified the micro-topography and diverted sediment from other upslope zones towards the slopes where sampling transects were located.  相似文献   

9.
This study examines the effect of water repellency on controlling temporal variability of runoff generation mechanisms and soil detachment on metamorphic derived soils under dry‐Mediterranean climate. The research is carried out in an unburnt Mediterranean hillslope in souther Spain characterized by a patchy vegetation pattern and shallow soils. The Water Drop Penetration Time test (WDPT) is applied to measure water repellency at the end of summer (Sep‐2008), mid autumn (Nov‐2008) and mid winter (Feb‐2009). Rainfall simulations were used to obtain runoff generation and soil detachment in the same periods of time. The main shrub specie is Cistus monspeliensis which leaves a load of litter during the summer due to the lack of water. This great amount of organic material is accumulated under the shrubs triggering an extreme water repellence (WDPT > 6,000 s) that limits infiltration processes. This process is enforced due to the low soil water content at the end of dry season. Certain water repellency (WDPT > 1,500 s) is also observed on bare soil as consequence of their sandier texture and the accumulation of annual plants which die at the end of the wet season. Soil moisture increases during the autumn and water repellency disappears in both shrub and bare soil at the middle of the wet season (WDPT < 5 s). The main consequence is that the temporal trend of water repellency controls the mechanism and frequency of runoff generation and, hence, soil detachment. At the end of the summer, Hortonian mechanisms predominates when water repellency is extreme, even in soils under Cistus monspeliensis where runoff generation can reach higher peaks of overland flow and sediment concentration. Conversely, only the saturation of soil could generate runoff during the wet season being this quite less frequent in bare soil and absent in shrub. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
An experimental study based on the effects of fire on soil hydrology was developed at the Experimental Station of ‘La Concordia’ (Valencia, Spain). It is located on a calcareous hillside facing SSE and composed of nine erosion plots (4 × 20 m). In summer 2003, after eight years of soil and vegetation recovery from previous fires in 1995 (with three fire treatments: T1 high‐intensity fire, T2 moderate intensity, and T3 not burnt), experimental fires of low intensity were again conducted on the plots already burnt, to study the effects of repeated fires on the soil water infiltration, soil water content and runoff. Infiltration rates and capacities were measured by the mini‐disk infiltrometer method (MDI), assessing the effects of vegetation cover by comparing the under‐canopy microenvironment (UC) and its absence on bare soil (BS), immediately before and after the fire experiments. Soil properties like water retention capacity (SWRC) and water content (SWC) were also determined for the different fire treatments (T1, T2 and T3) and microsites (UC and BS). Hydrological parameters, such as runoff and infiltration rate, were monitored at plot scale from July 2002 to July 2004. In the post‐fire period, data displayed a 20% runoff increase and a decrease in infiltration (18%). Differences in the steady‐state infiltration rate (SSI) and infiltration capacity (IC) were tested with the MDI on the different treatments (T1, T2 and T3), and between the UC and BS microsites of each treatment. After fire, the SSI of the UC soil declined from 16 mm h−1 to 12 mm h−1 on T1, and from 24 mm h−1 to 19 mm h−1 on T2. The IC was reduced by 2/3 in the T1 UC soil, and by half on T2 UC soil. On the BS of T1 and T2, the fire effect was minimal, and higher infiltration rates and capacities were reached. Therefore, the presence/absence of vegetation when burnt influenced the post‐burnt infiltration patterns at soil microscale. On the T3, different rates and capacities were obtained depending on the microsites (UC and BS), with higher SSI (25 mm h−1) and IC (226 mm h−1) on BS than on UC (SSI of 18 mm h−1 and IC of 136 mm h−1). The SWRC and SWC were recovered from 1995 to 2003 (prior to the fires). The 2003 fire promoted high variability on the SWC at pF 0·1, 2 and 2·5, and the SWRC on burnt soils were reduced. To summarize, the IC and SSI post‐fire decreases were related to the lower infiltration rate at plot scale, the significant differences in the SWRC between burnt and control treatments, and the increase in the runoff yield (20%). According to the results, the MDI was a useful tool to characterize the soil infiltration on the vegetation patches of the Mediterranean maquia, and contrary to other studies, on the UC soil, the infiltration rate and IC, when soil was dry, were lower than that obtained on BS. Once the soil gets wet, similar values were found on both microenvironments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The impacts of climate change on storm runoff and erosion in Mediterranean watersheds are difficult to assess due to the expected increase in storm frequency coupled with a decrease in total rainfall and soil moisture, added to positive or negative changes to different types of vegetation cover. This report, the second part of a two‐part article, addresses this issue by analysing the sensitivity of runoff and erosion to incremental degrees of change (from ? 20 to + 20%) to storm rainfall, pre‐storm soil moisture, and vegetation cover, in two Mediterranean watersheds, using the MEFIDIS model. The main results point to the high sensitivity of storm runoff and peak runoff rates to changes in storm rainfall (2·2% per 1% change) and, to a lesser degree, to soil water content (?1·2% per 1% change). Catchment sediment yield shows a greater sensitivity than within‐watershed erosion rates to both parameters: 7·8 versus 4·0% per 1% change for storm rainfall, and ? 4·9 versus ? 2·3% per 1% change for soil water content, indicating an increase in sensitivity with spatial scale due to changes to sediment connectivity within the catchment. Runoff and erosion showed a relatively low sensitivity to changes in vegetation cover. Finally, the shallow soils in one of the catchments led to a greater sensitivity to changes in storm rainfall and soil moisture. Overall, the results indicate that decreasing soil moisture levels caused by climate change could be sufficient to offset the impact of greater storm intensity in Mediterranean watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
为解决建筑物震害信息提取自动化程度不高的问题,本文将全卷积神经网络应用于建筑物震害遥感信息提取。以玉树地震后获取的玉树县城区0.2m分辨率航空影像作为建筑物震害信息提取试验数据源,将试验区地物划分为倒塌建筑物、未倒塌建筑物和背景3类。对427个500×500像素的子影像进行人工分类与标注,选取393个组成训练样本集,34个用于验证。利用训练样本集对全卷积神经网络进行训练,采用训练后的网络对验证样本进行建筑物震害信息提取及精度评价。研究结果表明:建筑物震害遥感信息提取总体分类精度为82.3%,全卷积神经网络方法能提高信息提取自动化程度,具有较好的建筑物震害信息提取能力。  相似文献   

13.
Modifications are made to the revised Morgan–Morgan–Finney erosion prediction model to enable the effects of vegetation cover to be expressed through measurable plant parameters. Given the potential role of vegetation in controlling water pollution by trapping clay particles in the landscape, changes are also made to the way the model deals with sediment deposition and to allow the model to incorporate particle‐size selectivity in the processes of erosion, transport and deposition. Vegetation effects are described in relation to percentage canopy cover, percentage ground cover, plant height, effective hydrological depth, density of plant stems and stem diameter. Deposition is modelled through a particle fall number, which takes account of particle settling velocity, flow velocity, flow depth and slope length. The detachment, transport and deposition of soil particles are simulated separately for clay, silt and sand. Average linear sensitivity analysis shows that the revised model behaves rationally. For bare soil conditions soil loss predictions are most sensitive to changes in rainfall and soil parameters, but with a vegetation cover plant parameters become more important than soil parameters. Tests with the model using field measurements under a range of slope, soil and crop covers from Bedfordshire and Cambridgeshire, UK, give good predictions of mean annual soil loss. Regression analysis of predicted against observed values yields an intercept value close to zero and a line slope close to 1·0, with a coefficient of efficiency of 0·81 over a range of values from zero to 38·6 t ha?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
High sediment concentrations in runoff are a characteristic feature of the Chinese Loess Plateau, and are probably caused by factors such as the occurrence of erodible materials on steep slopes, the characteristics of the loess and the harsh climate that results in low plant cover. When sediment concentration increases, fluid density increases, viscosity increases and settling velocity decreases. These effects become increasingly important with increasing concentration and can result in flow behaviour that is quite different from that of clear water flow. Although the net effect of these changes on the flow is not always apparent, erosion models that deal with high sediment concentrations should consider such effects and could include corrections for some of these effects. A case study in a small catchment on the Loess Plateau indicated that sediment concentrations were considerable, and literature data suggested that for such sediment concentrations, corrections for settling velocity, fluid density and viscosity are needed. Furthermore, a number of corrections are necessary to be able to compare field measurements with results of soil erosion models: sediment volume should be subtracted from runoff volume and a density correction is needed to use data from a pressure transducer. For flumes that were used to measure discharge from smaller areas inside the catchment, the measured water level should be corrected by subtracting the sediment level in the flume from the water level, while the sediment volume should also be subtracted from the discharge. Finally, measured concentration should be corrected to give concentration expressed as grams per litre of clear water, since soil erosion models express sediment concentration in this way. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Agricultural land management requires strategies to reduce impacts on soil and water resources while maintaining food production. Models that capture the effects of agricultural and conservation practices on soil erosion and sediment delivery can help to address this challenge. Historic records of climatic variability and agricultural change over the last century also offer valuable information for establishing extended baselines against which to evaluate management scenarios. Here, we present an approach that combines centennial‐scale reconstructions of climate and agricultural land cover with modelling across four lake catchments in the UK where radiometric dating provides a record of lake sedimentation. We compare simulations using MMF‐TWI, a catchment‐scale model developed for humid agricultural landscapes that incorporates representation of seasonal variability in vegetation cover, soil water balance, runoff and sediment contributing areas. MMF‐TWI produced mean annual sediment exports within 9–20% of sediment core‐based records without calibration and using guide parameter values to represent vegetation cover. Simulations of land management scenarios compare upland afforestation and lowland field‐scale conservation measures to reconstructed historic baselines. Oak woodland versus conifer afforestation showed similar reductions in mean annual surface runoff (8–16%) compared to current moorland vegetation but a larger reduction in sediment exports (26–46 versus 4–30%). Riparian woodland buffers reduced upland sediment yields by 15–41%, depending on understorey cover levels, but had only minor effect on surface runoff. Planting of winter cover crops in the lowland arable catchment halved historic sediment exports. Permanent grass margins applied to sets of arable fields across 15% or more of the catchment led to further significant reduction in exports. Our findings show the potential for reducing sediment delivery at the catchment scale with land management interventions. We also demonstrate how MMF‐TWI can support hydrologically‐informed decision making to better target conservation measures in humid agricultural environments. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

17.
Exceptional rainfall events cause significant losses of soil, although few studies have addressed the validation of model predictions at field scale during severe erosive episodes. In this study, we evaluate the predictive ability of the enhanced Soil Erosion and Redistribution Tool (SERT‐2014) model for mapping and quantifying soil erosion during the exceptional rainfall event (~235 mm) that affected the Central Spanish Pyrenees in October 2012. The capacity of the simulation model is evaluated in a fallow cereal field (1.9 ha) at a high spatial scale (1 × 1 m). Validation was performed with field‐quantified rates of soil loss in the rills and ephemeral gullies and also with a detailed map of soil redistribution. The SERT‐2014 model was run for the six rainfall sub‐events that made up the exceptional event, simulating the different hydrological responses of soils with maximum runoff depths ranging between 40 and 1017 mm. Predicted average and maximum soil erosion was 11 and 117 Mg ha?1 event?1, respectively. Total soil loss and sediment yield to the La Reina gully amounted to 16.3 and 9.0 Mg event?1. These rates are in agreement with field estimations of soil loss of 20.0 Mg event?1. Most soil loss (86%) occurred during the first sub‐event. Although soil accumulation was overestimated in the first sub‐event because of the large amount of detached soil, the enhanced SERT‐2014 model successfully predicted the different spatial patterns and values of soil redistribution for each sub‐event. Further research should focus on stream transport capacity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Rill erosion is an important erosional form on agricultural soils in England, causing large losses of soil, particularly on cultivated slopes. This paper describes a rill system that developed in a small agricultural catchment in north Oxfordshire during the winter of 1992–93. The rill system comprised two components: a system of ‘feeder rills’ along the valley-side slopes, which were the result of flow concentration and erosion along wheelings, and a thalweg rill, which formed along a dry valley bottom as a result of surface runoff concentration from the feeder rills. Total volumetric soil loss from the rill system was 32·28 m3, equivalent to 3·01 m3, ha?1 for the rill catchment area, or 3·91 t ha?1. Mean discharge for the thalweg rill and feeder rills, calculated during a storm event, was 31·101s?1 and 1·171s?1, respectively. All flows were fully turbulent and supercritical. We emphasize the need for a spatially distributed approach to the study of runoff and erosion at the catchment scale.  相似文献   

19.
The paper shows an application of Scale Recursive Estimation (SRE) used to assimilate rainfall rates estimated during a storm event from three remote sensing devices. These are the TMI radiometer and the PR radar, carried on board of the TRMM satellite and the KNQA Memphis Weather Surveillance radar, belonging to the NEXRAD network, each one providing rain rate estimates at a different spatial scale. The variability of rain rate process in scales is modeled as a multiplicative random cascade, including spatial intermittence. The observational noise in the estimates is modeled according to a multiplicative error. System estimation, including process and observational noise, is carried out using Maximum Likelihood Estimation implemented by a scale recursive Expectation Maximization (EM) algorithm. As a result, new rainfall rate estimates are obtained that feature decreased estimation error as compared to those coming from each device alone. The performance of the SRE-EM approach is compared with that of the latest methods proposed for data fusion of multisensor estimates. The proposed approach improves the current methods adopted for SRE and provides an alternative for data fusion in the field of precipitation.  相似文献   

20.
The correct determination of the sediment yield from a basin is of paramount importance in several hydraulic and environmental applications, such as the evaluation of the storage reduction of artificial reservoirs. However, due to the highly episodic nature of sediment supply and transport in many environments and to the extreme complexity of the processes involved, the evaluation of the sediment load in a river is still highly uncertain. When the time scale of interest is sufficiently long, and when the primary sediment source comes from distributed erosion in the watershed, the problem can be tackled in an indirect fashion, by computing the contribution to the annual suspended yield from soil erosion. In order to accomplish this task, we propose a distributed application of the widely used USLE formula. The formula is automatically applied along drainage networks derived from a digital elevation model and properly modified to take into account the presence of deposition zones in the watershed. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号