首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our work analyses the intra‐annual variability of the volume of water stored in 15 forested headwater catchments from south‐central Chile, aiming at understanding how forest management, hydrology, and climate influence the dynamic components of catchment storage. Thus, we address the following questions: (a) How does the annual water storage vary in catchments located in diverse hydroclimatic conditions and subject to variable forest management? (b) Which natural (i.e., hydrologic regime and physiographic setting) and anthropogenic factors explain the variance in water storage? Results show that the annual catchment storage increases at the beginning of each hydrological year in direct response to increases in rainfall. The maximum water storage ranges from 666 to 1,272 mm in these catchments. The catchments with Pinus or Eucalyptus spp. cover store less water than the catchments with mixed forest species cover. Forest cover (biomass volume, plantation density, and percentage of plantation and age) has the primary control on dynamic storage in all catchments. These results indicate that forest management may alter the catchment water storage.  相似文献   

2.
Several large-scale revegetation programs in China have resulted in significant changes in forest cover (ΔF) during the past three decades. As forests have important effects on catchment hydrology, evaluating the effects of ΔF on hydrology is essential. Using data from 44 catchments across China, this study derived a rational analytical equation to link changes in actual evapotranspiration (ΔET) with those in F within the Budyko framework, and further quantified the effects of ΔF on ET variation during 1976–2015. The elasticity of ET to ΔF was found to be the greatest in the dry catchments in northwest China, followed by the humid catchments in south China, and was the smallest in the subhumid and semiarid catchments in north China. F averaged across all the catchments has increased, and has further led to the increase in ET. The F-ET relationship has become more prominent in the recent decade (2006–2015), with 68.0% of the catchments showing an average increase in F of 4.5% and a resultant average increase in ET of 8.2% compared with the baseline period (1976–1985). These results are helpful for quantitative assessment of hydrological responses to afforestation, especially in water-limited regions.  相似文献   

3.
Six small, steep, south-west facing catchments (1.63–4.62 ha) have been monitored in Westland, New Zealand since 1974. Two catchments were retained in native mixed evergreen forest and the rest were subjected to various harvesting and land preparation techniques before being planted with Pinus radiata between 1977 and 1980. The 11-year water balance for the native forest catchments was: rain = streamflow + interception loss + transpiration + seepage (2370mm = 1290mm + 620mm + 360mm + 100mm). In the year after treatment streamflow generally increased by 200–250 mm, except for one treatment (clearfelling, herbicide application, no riparian reserve) where the increase was 550 mm. The catchments were planted with Pinus radiata, but rapid colonization by bracken (Pteridium esculentum) and Himalayan honeysuckle (Leycesteria formosa) led to a rapid decline in streamflow, which returned to pre-treatment levels after an average of about five years. Streamflow yields then continued to decline for another two to three years before stabilizing at a level about 250mm yr?1 lower than pre-treatment levels. At this time the catchments had a dense bracken/honeysuckle understorey beneath 5 m tall pine trees.  相似文献   

4.
Streamwatcr chemistry was monitored for five years in six streams in a paired catchment experiment in Mendolong, Sabah, Malaysia, including controls in rain forest and secondary vegetation after the [Borneo fire] of 1982–3 and comparing the effects of different ways of establishing forest plantations with Acacia mangium. Three catchments were covered with selectively logged lowland hill dipterocarp forest (W4-W6) and three (W1-W3) with secondary vegetation after forest fires. The control catchments, W3 and W6 reported in this paper, had no treatments applied. Reference monitoring at all streams was for 25 months and the total period of study reported here is 64 months. The soils in the catchments were mainly Orthic Acrisol in W3 and Gleyic Podsol in W6 and a mix of both soil types in the other catchments. Element baseflow concentrations were generally low and not significantly different from stormflow concentrations for all streams during the reference period. Concentrations were also generally consistently low for the two control streams during the whole period of measurement. Chemical inputs as wet deposition were low as a result of a high input from local convection. The rain forest on the Podsol had a tight nutrient circulation indicated by small net losses of macronutrients. The Podsol was found to have poorer conditions for soil mineralization and more surficial runoff, resulting in higher loads of S, C and N in the organic phases, with higher organic C/N ratio, in the discharge. Nitrogen was found to accumulate in both catchments. An almost double accumulation of N in W3 was attributed to a larger biomass accumulation continuing after the forest fire 3–8 years earlier. On the other hand, the Acrisol in W3 had much larger net losses of S, Si, K, Ca, Mg and Na. Most of differences could be attributed to differences in weathering between the soils and local mineralogical differences.  相似文献   

5.
Abstract

The chemistry of streamwater, bulk precipitation, throughfall and soil waters has been studied for three years in two plantation forest and two moorland catchments in mid-Wales. Na and CI are the major ions in streamwater reflecting the maritime influence on atmospheric inputs. In all streams, baseflow is characterised by high pH waters enriched in Ca, Mg, Si and HCO3. Differences in baseflow chemistry between streams reflect the varying extent of calcite and base metal sulphide mineralization within the catchments. Except for K, mean stream solute concentrations are higher in the unmineralized and mineralized forest catchments compared with their respective grassland counterparts. In the forest streams, storm flow concentrations of H+ are approximately 1.5 times and Al four times higher than in the moorland streams. Annual catchment losses of Na, Cl, SO4, NO3, Al and Si are greatest in the forest streams. In both grassland and forest systems, variations in stream chemistry be explained by mixing waters from different parts of the catchment, although NO3 concentrations may additionally be controlled by N transformations occurring between soils and streams. Differences in stream chemistry and solute budgets between forest and moorland catchments are related to greater atmospheric scavenging by the trees and changes in catchment hydrology consequent on afforestation. Mineral veins within the catchment bedrock can significantly modify the stream chemical response to afforestation.  相似文献   

6.
Eight small steep south-west facing catchments (1-63-8-26 ha) have been monitored in Westland, New Zealand since 1974. Two catchments were retained in native mixed evergreen forest and the rest were subjected to various harvesting and land preparation techniques before being planted with Pinus radiata between 1977 and 1980. Stream temperatures were measured in all catchments for 11 years, including up to four years before harvesting. The streamwater temperature regime under the native forest cover has a seasonal cycle, with an annual mean of about 9°C and mean daily temperatures ranging between a winter minimum of about 5.8°C and a summer maximum of 12.S°C. After harvesting, the winter minimum stream temperatures in all trials were unchanged as topography exerts the major control over incoming solar radiation. The largest rises in mean summer stream temperatures, up to 5.5°C, were in the catchments that had been clearcut and burnt before planting. The maximum stream temperature recorded was 22.8°C in a clearcut catchment with no riparian reserve. Summer stream temperatures in this catchment were up to 11°C higher than in an adjacent control catchment. Summer stream temperature rises in catchments with riparian reserves were less than 1.5°C. Seven years after harvesting, stream temperatures were dropping towards pre-treatments levels in only two of the six treated catchments as revegetation of the riparian areas occurred and the plantations became established. As these small headwater streams discharge into streams with flows one or two orders of magnitude larger, the increases in summer stream temperatures will be rapidly dissipated. However, the cumulative impact of harvesting many small headwater catchments that discharge into a larger stream could have a noticeable effect on stream temperature if intact riparian reserves were not retained in both headwater and main streams.  相似文献   

7.
History of forest hydrology   总被引:24,自引:0,他引:24  
Hydrology as a science and a technology is examined, as are some of the myths on the role of forests in hydrology and water resources. The history of catchment area research is traced, in Europe, in the USA and in East Africa, with particular reference to forest hydrology and, in the earlier years, to water quantity rather than water quality. The importance of associating physical process studies with hydrological systems' investigations, to enhance understanding of why particular catchments behave as they do, is stressed. Recent advances in hydrochemistry have been exploited to elucidate water flow paths within experimental catchments. Stimulated by requirements for research into acidification of surface waters, research catchments have proved to be valuable outdoor laboratories from which a much improved understanding of the flow processes has been achieved. Conflicting claims about the impacts of forestry are described and discussed.  相似文献   

8.
In central Chile, many communities rely on water obtained from small catchments in the coastal mountains. Water security for these communities is most vulnerable during the summer dry season and, from 2010 to 2017, rainfall during the dry season was between 20% and 40% below the long-term average. The rate of decrease in stream flow after a rainfall event is a good measure of the risk of flow decreasing below a critical threshold. This risk of low flow can be quantified using a recession coefficient (α) that is the slope of an exponential decay function relating flow to time since rainfall. A mathematical model was used to estimate the recession coefficient (α) for 142 rainstorm events (64 in summer; 78 in winter) in eight monitored catchments between 2008 and 2017. These catchments all have a similar geology and extend from 35 to 39 degrees of latitude south in the coastal range of south-central Chile. A hierarchical cluster analysis was used to test for differences between the mean value of α for different regions and forest types in winter and summer. The value of α did not differ (p < 0.05) between catchments in winter. Some differences were observed during summer and these were attributed to morphological differences between catchments and, in the northernmost catchments, the effect of land cover (native forest and plantation). Moreover, α for catchments with native forest was similar to those with pine plantations, although there was no difference (p < 0.05) between these and Eucalyptus plantations. The recession constant is a well-established method for understanding the effect of climate and disturbance on low flows and baseflows and can enhance local and regional analyses of hydrological processes. Understanding the recession of flow after rainfall in small headwater catchments, especially during summer, is vital for water resources management in areas where the establishment of plantations has occurred in a drying climate.  相似文献   

9.
There is considerable interest in large‐scale spatial patterns of sediment transport in catchments, and this topic is often approached using terrain‐based modelling. In such models topography influences the discharge of overland flow and its sediment transport capacity. The sediment transport capacity of overland flow is commonly expressed as a power function of slope and discharge (i.e. qs=k1qβSγ). The relationship between discharge and contributing area can also be expressed as a power function. Several reviews reveal a limited range of values for the two exponents β and γ. In this paper we examine the sensitivity of catchment‐scale patterns of sediment delivery to valley floors to a range of sediment transport capacity and hillslope hydrology parameterizations, using two catchments on the southern tablelands of New South Wales. The results indicate that, over the limited range of β and γ identified within the literature, sediment deliveries to valley floors across the two catchments are similar for all but one of five sediment transport capacity relationships. The patterns are dominated by the trend in slope through each catchment. The sensitivity to hillslope hydrology of predicted sediment delivery patterns is strong in the catchment with systematic variation in unit hillslope area, and weak in the catchment for which there are no systematic trends in unit hillslope area. We believe there is less experimental evidence to restrict choice of hillslope hydrology parameters than there is for sediment transport capacity. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Ashley A. Webb 《水文研究》2009,23(12):1679-1689
Streamflows were measured in two Pinus radiata plantation catchments and one native eucalypt forest catchment in Canobolas State forest from 1999 to 2007. In 2002/2003, clearfall harvesting of 43·2 and 40·3% of two plantation catchments occurred, respectively. Water yields increased by 54 mm (52%), 71 mm (35%) and 50 mm (19%) in the first three years post‐harvest in treated catchment A and by 103 mm (118%), 157 mm (82%) and 119 mm (48%) in treated catchment B relative to the native forest control catchment. In the fourth post‐harvest water year annual rainfall was only 488 mm, which resulted in negligible run‐off in all catchments, regardless of forest cover. In both plantation catchments, monthly streamflows increased significantly (p = 0·01, p < 0·001) due to a significant increase in baseflows (p < 0·001) after harvesting. Monthly stormflows were not significantly affected by harvesting. Flow duration curve analyses indicated a variable response between the two plantation catchments. Treated catchment A was converted from an ephemeral stream flowing 42% of the time pre‐harvest to a temporary stream flowing 82% of the time post‐harvest. These changes occurred throughout all seasons of the year but were most pronounced during summer and autumn when baseflows were maintained post‐harvest but were not observed under native forest or mature pine plantations. By contrast, flow duration increased in treated catchment B from 12% of the time pre‐harvest to 38% of the time post‐harvest with the greatest changes measured during the winter and spring months when streamflow would normally occur under native forest conditions. These observations have important implications for the development of models of plantation water use to be utilized in water resource planning in Australia. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Long-term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land-use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long-term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid-western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N-saturation, and acid deposition. Hydro-climatologic and water quality datasets from long-term measurements and data from short-duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long-term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.  相似文献   

12.
Global increases in intensive forestry have raised concerns about forest plantation effects on water, but few studies have tested the effects of plantation forest removal and native forest restoration on catchment hydrology. We describe results of a 14-year paired watershed experiment on ecological restoration in south central Chile which documents streamflow response to the early stages of native forest restoration, after clearcutting of plantations of exotic fast-growing Eucalyptus, planting of native trees, and fostering natural regeneration of native temperate rainforest species. Precipitation, streamflow, and vegetation were measured starting in 2006 in four small (3 to 5 ha) catchments with Eucalyptus globulus plantations and native riparian buffers in the Valdivian Coastal Reserve. Mean annual precipitation is 2500 mm, of which 11% occurs in summer. Streamflow increased, and increases persisted, throughout the first 9 years of vigorous native forest regeneration (2011 to 2019). Annual streamflow increased by 40% to >100% in most years and >150% in fall and summer of some years. Streamflow was 50% to 100% lower than before treatment in two dry summers. Base flow increased by 28% to 87% during the restoration period compared to pre-treatment, and remained elevated in later years despite low summer precipitation. Overall, these findings indicate that removal of Eucalyptus plantations immediately increased streamflow, and native forest restoration gradually restored deep soil moisture reservoirs that sustain base flow during dry periods, increasing water ecosystem services. To our knowledge this is the first study to assess catchment streamflow response to native forest restoration in former forest plantations. Therefore, the results of this study are relevant to global efforts to restore native forest ecosystems on land currently intensively managed with fast-growing forest plantations and may inform policy and decision-making in areas experiencing a drying trend associated with climate change.  相似文献   

13.
This study analyzes the stable isotopic compositions of hydrogen and oxygen (δ2H, δ18O) in montane meteoric waters including precipitation and stream water of central Taiwan to identify hydrological processes in montane catchments. Results of precipitation demonstrate that monsoon and altitude effects are two principal processes affecting δ and deuterium excess (dE) values of inland precipitation in central Taiwan. Furthermore, slope and intercept values of summer and winter local meteoric water line are modified by secondary evaporation effects such as moisture recycling and raindrop evaporation. Additionally, stream water's results indicate that differences in δ values among stream waters reflect isotopic altitude effect whereby lower values are more evident in stream water originating from high‐elevation catchments than low‐elevation catchments. Comparison of the isotopic results between precipitation and stream water indicates that summer precipitation containing recycled moisture is the most important water source for the studied stream waters and indicates that catchment effect and base flow contribution are the two major hydrological processes affecting mountain stream hydrology. The hydrological processes identified by the isotopic study re‐stress the important role of forests in mountain hydrology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The estimation of hydrologic transit times in a catchment provides insights into the integrated effects of water storage, mixing dynamics, and runoff generation processes. There has been limited effort to estimate transit times in southern boreal Precambrian Shield landscapes, which are characteristically heterogeneous with surface cover including till, thin soils, bedrock outcrops, and depressional wetland features that play contrasting hydrologic roles. This study presents approximately 3.5 years of precipitation and streamflow water isotope data and estimates mean transit times (MTTs) and the young water fraction (py) across six small catchments in the Muskoka-Haliburton region of south-central Ontario. The main objectives were to define a typical range of MTTs for headwater catchments in this region and to identify landscape variables that best explain differences in MTTs/py using airborne light detection and ranging and digital terrain analysis. Of the transit time distributions, the two parallel linear reservoir and gamma distributions best describe the hydrology of these catchments, particularly because of their ability to capture more extreme changes related to events such as snowmelt. The estimated MTTs, regardless of the modelling approach or distribution used, are positively associated with the percent wetland area and negatively with mean slope in the catchments. In this landscape, low-gradient features such as wetlands increase catchment scale water storage when antecedent conditions are dryer and decrease transit times when there is a moisture surplus, which plausibly explains the increases in MTTs and mean annual runoff from catchments with significant coverage of these landscape features.  相似文献   

15.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   

16.
Five aspects of the hydrology of one-day annual minimum flows QIM, have been studied using data from twelve catchments in Malawi. Results indicate that the log-normal distribution can be fitted to all twelve catchments. Four of the rivers studied are intermittent. Application of statistical methods developed in meterology to the dichotomous-transformed data of these catchments revealed that two are ‘flow-dominant’ and the other two are ‘dry-dominant’. Another catchment is entirely dominated by a hydraulic gradient towards the Shire River and Elphant Marsh and so dries up every dry season for considerable periods of time despite the relatively high rainfall in the catchment. QIM, t-days after the date of occurrence of QIM(May), can be better estimated from simple regression than from an empirically determined recession constant.  相似文献   

17.
B. Yu  Z. Zhu 《水文科学杂志》2015,60(7-8):1200-1212
Abstract

The Australian Water Balance model (AWBM) and the SimHyd rainfall–runoff model are conceptual models widely used for simulating daily flows in Australia. To evaluate their ability to model non-stationary daily flows, to quantify the effect of land disturbance, and to assess their performance in catchments outside Australia, these two models were applied to two small watersheds, the Fernow watershed No. 6 in West Virginia, USA, for the period 1959–2009, and the River Rimbaud watershed in the French Alps for the period 1968–2006. Both watersheds have experienced well documented disturbances as a result of clearing and fire, respectively. The modelling protocol followed was adopted for a workshop on hydrology under change, held during the 2013 IAHS Assembly in Göteborg, Sweden, which was based on split-sample tests. On balance, the AWBM worked marginally better than SimHyd for these two catchments, and neither model worked satisfactorily for the Fernow watershed where forest clearing, application of herbicide and changes in species composition had occurred. There is little difference in terms of model performance between periods when land disturbances occurred and other periods with relatively stable conditions. Conceptual models are better equipped to simulate climate-driven variations in the observed streamflow (e.g. the River Rimbaud), and inadequate in reproducing streamflow variability as a result of complex forest management practices.  相似文献   

18.
Runoff and peak flows in three experimental catchments with different forest conditions were analysed in a rainy temperate climate in southern Chile. The hydrological effects of clearcutting a Pinus radiata plantation covering 79·4% of the La Reina catchment were studied by analysing runoff and peak flows in the pre‐ and post‐harvesting periods. Mean annual runoff increased 110% after timber harvesting. Clearcutting generated a 32% mean increase in peak flows. Peak flow and runoff were examined in two adjacent catchments with different forest conditions. The older plantation in Los Ulmos 1 increasingly consumed more water than the younger plantation established at Los Ulmos 2, whereas differences in peak flows between these two catchments were not significant. Runoff and peak flows comparisons not only reflected changes in forest cover, but also the effect of rainfall characteristics during the study periods and the basins' morphologies. Comparisons between pre‐ and post‐harvesting peak discharges must be undertaken with caution, because a previous analysis at La Reina using a partial set of data overestimated changes in peak flows after timber harvesting. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Transit times are hypothesized to influence catchment sensitivity to atmospheric deposition of acidity and nitrogen (N) because they help determine the amount of time available for infiltrating precipitation to interact with catchment soil and biota. Transit time metrics, including fraction of young water (Fyw) and mean transit time (MTT), were calculated for 11 headwater catchments in mountains of the western United States based on differences in the amplitude of the seasonal signal of δ18O in streamflow and precipitation. Results were statistically compared with catchment characteristics to elucidate controlling mechanisms. Transit times also were compared with stream solute concentrations to test the hypothesis that transit times are a primary influence on weathering rates and biological assimilation of atmospherically deposited N. Results indicate that transit times in the study catchments are strongly related to soil, vegetation, and topographic characteristics, with barren terrain (bare rock and talus) and steep slopes linked to high Fyw and short MTT, whereas forest soil (hydrogroup B) was linked to low Fyw and greater MTT. Concentrations of silicate weathering products (Na+ and Si) were negatively related to Fyw and barren terrain, and positively related to MTT and forest soil, supporting the concept that weathering fluxes and buffering capacity tend to be low in alpine areas due to short transit times. Nitrate concentrations were positively related to N deposition, catchment slope, and barren terrain, and negatively related to forest, indicating that hydrologic and/or biogeochemical processes associated with steep slopes limit uptake of atmospherically deposited N by biota. Interannual and seasonal variability in transit times and source water contributions in the study catchments was substantial, reflecting the influence of strong temporal variations in snowmelt inputs in high‐elevation catchments of the western United States. Results from this study confirm that short transit times in these areas are a key reason they are highly sensitive to atmospheric pollution and climate change.  相似文献   

20.
Our aim was to quantify the effects of forest plantation and management (clear cut or 30% partial harvest) in relation to pasture, on catchment discharge in southeast Rio Grande do Sul state, Brazil. A paired‐catchment approach was implemented in two regions (Eldorado do Sul and São Gabriel municipalities) where discharge was measured for 4 years at three catchments in each region, two of which were predominantly eucalypt plantation (mainly Eucalyptus saligna, rotation of approximately 7–9 years) with native forest and grass in streamside zones. The third catchment was covered with grazed pasture. Weather, soils, canopy interception, groundwater level, tree growth, and leaf area index were also measured. The 3‐PG process‐based forest productivity model was adapted to predict spatial daily plantation and pasture water balance including precipitation interception, soil evaporation, transpiration, soil moisture, drainage, discharge, and monthly plantation growth. The TOPMODEL framework was used to simulate water pools and fluxes in the catchments. Discharge was higher under pasture than pre‐harvesting plantation and increased for 1–2 years after complete plantation harvest; this change was less pronounced in the catchments under partial harvest. The ratio of discharge to precipitation before harvesting varied from 7% to 13% in the eucalypt catchments and 28% to 29% under pasture. The ratio increases to 23–24% after total harvest, and to 17% after partial harvesting. The ratio under pasture also increases during this period (to 32–44%) owing to increased precipitation. The baseflow, in relation to total discharge, varied from 28% to 62% under Eucalyptus and from 38% to 43% in the pasture catchments. Hence, eucalypt plantations in these regions can be expected to influence discharge regimes when compared with pasture land use, and modelling suggests that partial harvesting would moderate the magnitude of discharge variation compared with a full catchment plantation harvesting. The model efficiency coefficient (Nash–Sutcliffe model efficiency coefficient) varied from 0.665 to 0.799 for the total period of the study. Simulation of alternative harvesting scenarios suggested that at least 20% of the catchment planted area must be harvested to increase discharge. This model could be a useful practical tool in various plantation forestry contexts around the world. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号